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Transition between two oscillation modes
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A model for the symmetric coupling of two self-oscillators is presented. The nonlinearities cause the system
to vibrate in two modes of different symmetries. The transition between these two regimes of oscillation can
occur by two different scenarios. This might model the release of vortices behind circular cylinders with a
possible transition from a symmetric to an antisymmetriad&d—von Karman vortex street.
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Nowadays the understanding of self-oscillators is fairlyattempt to relate our model to the fluid mechanical equations.
complete thanks to the theory of bifurcation and of normalThe symmetry properties of the system are used as a basic
forms. A familiar model for this is the van der Pol system ingredient, as well as the fact that it operates in a stable way
[1], which displays a wide range of behavior, from weakly in an oscillating mode.
nonlinear to strongly nonlinear relaxation oscillations, mak- Let us assume that there is an oscillattre “vortex”
ing it a good model for many practical situations. However,emitten on each sidgside ,sidey) of the cylinder{5] and let
there are physical situations characterized by spontaneoti¥1.X2) be their amplitudes of oscillation. (ky(t),X,(t)) is
self-oscillations with certain basic features that are abserf Possible dynamicgx,(t),x:(t)) is also realizable by sym-
from the “generic” van der Pol system. Take for instance metry. If a vortex is emitted from sigewheneverx;(t)
the Benard—von Karman vortex street in the wake of a cyl-reaches a maximum, then the symmetrical and antisymmetri-
inder. Its phenomenology is approximately as follq@s4]: ~ cal vortex streetsFig. 1) appear as two oscillation modes,
the velocity field remains two-dimensional for Reynolds one with the two oscillators in phase and the other one with
number(Re) less than 16Gcreeping flow for Re4; recir-  the two oscillators out of phase. The symmetric méle
culation zone with two steady symmetric eddies attached beverifies x;(t) =x,(t) and the antisymmetric on@, verifies
hind the cylinder for 4Re<45; instability at Re=45 at  X1(t) =Xp(t+T/2) with T the period.
which these eddies are released alternatively to form a The simplest model representing these properties is a sys-
double row of opposite sign vortices, the rBed—von Kar- tem of two coupled harmonic oscillators with a small cou-
man vortex stregtand for Re>160 three-dimensional and pling B: }
irregular fluctuations are superimposed on the dominant pe- X1+ X1+ BX,=0,
riodic vortex shedding. Xo+X,+ BX,=0.

It is tempting to say that the periodic vortex shedding
provides a c_IassicaI example of Poincénedronov t_)ifurca_- The normal modes verifyéi+[l—(—1)‘,8]®i=0 (i
tion to a I|m|t c;yclg. Hovyev_er, one funda}mental mgredllentzl,z), with ®;=x,+x, and ®,=x,—x, each one with
v_vould be missing if one |nS|st<?d in descrl_blng these OSC'”aTrequencieSwl=1+ﬁ and w,=1—B. But this model is
tions by the van der Pol equation: no equivalent of the symyamiitonian and it is not useful to describe self-oscillations

metry of the system would be present in the mathematica)j ¢ - oscillations resulting from balance between energy in-
description. That is, this mathematical picture would make

no difference between a symmetric and an antisymmetric
release of vortices, both would be fairly described by the
same van der Pol equation, although they are clearly physi-

@

cally different. o
We propose here to implement the major symmetries of x

the Banard—von Karman oscillations by assuming that they

result from the symmetric coupling of two identical oscilla- @

tors, each one responsible for the periodic release of vortices
on one side of the cylinder. The interest of this approach is
that it shows two possible stable oscillating states: one sym-
metric, one antisymmetric, depending on the value of some
coupling parameter. By varying continuously the coupling, it
is possible to monitor the transition between these two re-
gimes, something that is beyond an approach using a single )
van der Pol equation.

A dynamical model for representing these properties is FIG. 1. A graphical representation of the two oscillation modes:
presented and some information about the transitions be&a) the symmetric vortex streed, and (b) the antisymmetric one
tween the two oscillation modes is obtained. We make n@®,.
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put and dissipation It does not present any Poincare ‘“robust” scheme of transition from mod®; to mode®,,
Andronov bifurcation, although it was shown experimentallyand vice versa, is achieved by introducing another phase
that the vortex shedding behind a cylinder results from thasymmetry breaking terr{proportional toy) in the dissipative
type of bifurcation[2]. To remedy this, we can introduce, as force of Eqs.(2):

in the van der Pol system, a nontrivial damping tetfix)

in Egs. (1). The van der Pol oscillator of equation- e(1 X1~ e[ 1—x2— (1+ y)X3]X, + X1+ Bx,=0,
—x?)x+x=0 is probably the simplest example of a system ) _ (4)
with one stable limit cycle: a fixed point at the origin and an Xo— e[l—x%—(1+ y)x%]x2+x2+ Bx,=0,

unstable closed orbit foe<O and an attractive cycle for
e>0. A natural extension of the van der Pol system to thewhere y and 8 are the coupling constants. Symmetries

representation of two symmetric coupled oscillators is (X1,X2)(X5,X1) and Kq,X5,B8)<—(X2,—Xq,—B) are pre-
served.
Y 2 ARN . . . .
X1~ €[ 1= (X1 +X3) X1 + X1 + BX,=0, We have numerically studied the solutions of this system

(2) in two different regimes and found the following results for
v and B near zero.

(@) When|B|<|4] there are four oscillatory states: the pure
symmetric mode®,=(x;=X,), the pure antisymmetric
mode O,=(X;=—X,), and two new mixed mode® ;,
=(Xq,Xp) and ®,,=(X,,X;) intermediate betwee®, and
0,. If v>0, the mixed modes are stable and the pure modes
unstable. Ify<0, the mixed modes are unstable and the pure
modes stable.

(b) When|g|>|y, Egs.(4) tend to Eqs(2) (the perturba-
tion introduced byy can be neglected in front g8), the
mixed modes® ;, and ®,, collide and disappear, and the
pure mode®; and®, remain.

Let us explain in more detail the two different scenarios
(Fig. 2) that can be found for the transition between the pure

6{nodes®1 and®, when vy is fixed andg is varied(e is kept
constant and of order 1, but the results are not sensitive to its
specific valug

7 e(1- |22+ 2+ fz=0. (3  Scenario 1,y<0 [Fig. 2(@)]. (1) B<—c(e)|y| [c(e)

positive constant, depending anand of order 1 fore of

Now there are two oscillating solutions: the symmetric modeorder 1. ©, is unstable and®, stable. No mixed modes.
0,=(X,=X,) given byz;=e'™*(t) and the antisymmet- (I,) —c(e)|y|<B<c(e)|y|: the two unstable mixed modes
ric mode ®,=(x;= —X,) given byz,=e ' ™,(t), where ®,, and®,, grow from ®, for B=—c(e)|y|. In this regime
r.(t) andry(t) verify Fi—e(1—r?)r+[1—(—1)'8]r;=0 the two pure modes are stable. Depending on initial condi-
(i=1,2). tions the system oscillates in the symmetric or in the anti-

This system presents stable oscillations wheélrcl and ~ symmetric mode. WheB—c(€)|y| the two mixed modes
diverges to infinity wher8/>1 (except for initial conditions approach®, and collide with it for3=c(e)|y| making®,
r=r=0). One finds a parameter valygg&>0 such that if linearly unstable. It transfers the stability frofy to 0,. (I5)
0<B<p., then®, is stable andd, unstable, and 8.  B>c(€)|vy|: O, is stable andd, unstable. No mixed modes.
<B<0, 0, is unstable and®, stable. Also, if3.<|B|<1, Summarizing: there is a range of parametgrshere®, and

the two mode®, and®, are linearly stable. Let us remark O, are both stable, and each mog, or ®,) loses its sta-
that this simple model brings all the information we are look-bility by a supercritical bifurcation on the edges of |

ing for. The range of parametees-0 would modelize the Scenario Il, y>0 [Fig. 2(b)]. (Il;) B<—c(e)|y|]: Oy is
situations of stable limit cycle oscillations observed experi-unstable andd, stable. No mixed modes. g) —c(€)|y|
mentally for Re>Re,, where Reis the Reynolds number at <B<c(¢)|y|: the two mixed mode® ;, and @, bifurcate

the onset of vortex shedding. The paramgdewould repre-  from @, for B=—c(e)|y|. These are stablevhich makes
sent for instance the aspect ratio in the experiments of Le Gdhe difference with scenario).lIn this Il, regime the two
and collaborator§6]. pure modes are unstable and the system will decay in one of

In model equatiorf2) the transition from®, to ®, stable  the two mixed modes according to the initial conditions.
oscillation occurs a3=0. In this case the coupling is lost When B—c(e€)|y| the mixed modes approadh; and col-
and the system becomes degenerate at trandiienphase lide with it for 8=c(€)|y|. It transfers the stability from the
difference between the two oscillators is arbitjgoyesenting mixed modes t0®;. (Il3) B>c(€)|y|. O, is stable and
an infinity of stable oscillating states. In order to remove this®, unstable. No mixed modes. Summarizing: there is a
degeneracy, we need to have more than one coupling pararrange of parameters,llwhere the two mixed modes are
eter. This means that the dimension of parameter space forstable, and collide with®, or ®, on the edge of H to

transition between two modes of oscillation should beexchange stability.
greater than 1: the unfolding of this transition should be con- A derivation of the dynamics of Eq#4) can be obtained
trolled by two parameters at least. Thus, a more general anid the formalism of a slow phase dynamicd. [A different

Xo— €[ 1— (X34 X3)Xp+ Xo+ Bx,=0.

The small displacements neax;=X,=X;=X,=0 are
damped to zero wher<0 and give sustained oscillations
when e>0. The birth of a stable limit cycle is then governed
by the parametee and our interest rests in this reginfe
>0). Other properties of Eq$2) are as follows.

(i) If B=0, Egs.(2) presentO(2) symmetry. If the com-
plex variablez=x,+ix, is defined, systen{2) becomez
—€(1-]2|z+2=0, which has the symmetriez—e'?z
and z—z. A stable solution iz=e¢'?r(t) with ¢ constant
andr (t) the solution off — e(1—r?)r+r=0. Its representa-
tion point is a straight line through the origin in the
(x1,X7) plane at constant anglg, r(t) oscillating along this
line. The periodic solutioz=e*" is unstable.

(i) If B#0 the phase symmetry is destroyed, although
Z(2) symmetryz— *+iz remains. Equation&2) become
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FIG. 2. Nonlinear transition between the two oscillation modes
(04,0,): (a) in scenario |(y<0) the two intermediary mixed
modes, 0., and ©,,, are unstable an¢) in scenario 11(y>0)
these mixed modes are stable) Another representation of sce-
narios | and ll(inspired from figure 3 in Ref.8]).

calculation can be found in Ref8], where two nonlinear
oscillators with diffusive coupling, not the one we consider,
are studied in the vicinity of a HopfPoincareAndronow
bifurcation] When B=v=0, the set of Eqs(4) presents
phase symmetry¢) and temporal translation symmetfy),

and wheng or vy are different from zero the phase symmetry
is broken. For smalB or v (of the same order of magnitude
the general solution of Eq$4) can be written

X1=I’0(t+ l/f)CO&ﬁ+ (SX]_,
X2=I‘o(t+ 1/1)Sln¢+ 5)(2,

wherer(t) is the periodic nonzero solution of the van der
Pol equation:ry— e(_l—ré)'r0+r0=0, ¢ and ¢ follow a
slow dynamics(y/y, ¢l p<rylro), and 8x,, X,, ¢ and ¢

are small and of ordety,8) Linearizing Eqs.(4) to order
(v,8) we obtain a set of coupled equations to be solved for
6%, and é6x,. These equations are written in matrix notation
to make their structure more transparent:

(mH f(ro)sing g(ro>cos¢)(¢)

OXa —f(ro)cosp  g(ro)sing |\ y
v sing
—ro| B+ 5 h(ro.¢) (Co&ﬁ>, (5)
where
_( : (c0t¢ 1
- 0 th +h(r01¢) 1 tar¢ y

ﬂzatt_f(l_rg)(%‘F 1,
f(ro)=2ro—e(1-rd)ro,
9(ro)=—[2Fo—e(1-rQ)ro],
h(rg,d)=erorosin(2¢).

The relevant solution of E@5) is made of periodic functions
of time, with the same periodl asry(t). This excludes func-
tions with a secular growth and leads to a solvability condi-
tion that will ultimately become an equation of evolution for
¢(t). To write this solvability condition, one needs to define
first an inner product of functions of time with periddas
(loy=[{(0,01+ 6,0,)dt [0=(6,,6,) is written as a two-
component vectdr One notices now that the linear operator
L has a nonempty kernel:

R sing _ . [cosp
CwZOﬁwaZFO —CO&ﬁ y wb:ro Sin¢ .

Because of this nonempty kernel, E§) has no solution in
general that is periodic with periofl. To have such a solu-
tion, the right-hand side of this equation must be orthogo-
nal to the kernel of the adjoint operatdr’, made of two
functions, x;, (i=a,b), of t that are solution of the formal
equationL ™ y=0. The solvability condition is then that the
two inner products x;|¢) (i=a,b) are zero. The operator
L* can be written explicitly as

+_<f? 0
-5~

cotp 1 )

+h(r01¢)( 1 tanqﬁ

where F; =y + e&t(l—r§)+1. Since the two left vectors
Xap Once multiplied with the inner produdt), with the left
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side of Eq.(5) give zero, the same product with the right side equations (4). To show this, let us defineg'=
of Eg. (5) should give zero as well. This gives two coupled B[1,(€)/k,(€)] and y' =29s,(€)/ka(€)], which will be

equations forg and ¢: considered now as the bifurcation parameféns quantities
. l.(€)/k(€) and s,(€)/ky(€) are constants of order 1 at a
Na1 haz)| [ ¢ my Ny fixed finite value ofe, and so can be eliminated by scallng
hor Noz/ | o =B M, ty Ny’ ®  The fixed points of Eq(7) are roots(in ¢) of

whereh;,, hj,, m;, n; (i=a,b) are functions ofe and ¢ , , : _
after the time integration coming from the scalar product: B'cos24)+ (y'/2)sin(44)=0 ®)

T
hi1=f f(ro)[singxi,— cospyi,]dt, or of cos(2)=0 or B+ y'sin(2¢)=0.

0 If |8'|>]y|, this corresponds to scenarigsland Il; 5. The

T only steady states are at the zeros of cg(2vhich are at
hio= f g(ro)[cospyir+singyildt, ¢=ml4 and¢p=— /4, with one stable and the other unstable,

0 depending of the sign g8’ (and consequently g8) in agree-

(T ment with what was found numerically. ||B'|<|y'|, they are

m= | rolsingxii+cospyi.ldt, two more fixed points, which argsin"*(—g'/y') and /2
10t —sin"Y(—B'lvy). They correspond to the mixed modes and,

_= ; as B’ goes for instance from-9' to 7' (if y'>0), one finds
i 2fo Foh(fo. #)singxia +cospyio]dt the same bifurcation structure as found for the original Egs.

(4), as explained formerly under the headin§cenario II
The ¢ dependence of the vectors in the kernelfdf can be (Fig. 2).

factored out by noticing that these vectors can have the fol- |n this Rapid Communication, we have presented a simple

lowing ¢ dependence: model for systems made of two symmetric coupled self-
. oscillators[9]. This might be a theory for one of the most

v =h.(1) ~sing Zo=h (1) cosp studied instabilities in real fluid mechanics, the periodic re-

Xa~la cosp |’ Xb=Tlb sing | lease of vortices in the wake of cylinders, a phenomenon

studied experimentally and theoretically long ago by\&el
From this the two functionsh,,(t) are the nontrivial and von Karmam10,11] and their collaborators. The connec-
(=nonzerg solutions of periodr of the two linear homoge-  tion of the present work with the Beard—von Karman phe-
neous equations: nomenon could be as follows. Our idea is that the wake is

created by two symmetrically coupled self-oscillators, one
F [ha()]=0=[dy+ €a(1=r5) + 1]hy(1) =0, on each side of the cylinder. We have shown that, depending
on the coupling, these two systems may either oscillate in

2
[Fi+2e(1—rg)d][hp(t)] phase or out of phagas in the Baard—von Karman wake in

= 0=[y+e(1— r(z))of,tJr 1]h,(t)=0. a normal viscous fluid Moreover, the transition from one of
these two states to the other is realized by two different sce-
Then the equation fo.'i) is simplified to narios depending of the parameters. This might describe re-
) cent experiments by Le Gal and collaboratf$$ who ob-
ka(€)p=I,(e)cog2¢)B+S,(€)SiN4e)y, 7 serve this transition when the flow around the cylinder is

more and more constrained by plates perpendicular to the
wherek,, 15, ands, are functions of only that are propor-  axis of this cylinder.
tional to various scalar product of functions on Ed. We thank P. Le Gal for showing us some experimental
(6) with hy(t). Thus Ka(e)=—fgf(ro)ha(t)dt; l.(e)  results. Y.P. would like to thank E. Villermaux for sharing
= [rohap(t)dt; ands,(e) =€l [Jraroha p(t)dt. many insights on this topic of symmetrically coupled self-
Equation(7) presents, a@ and y vary, the same bifurca- oscillators. R. L-R. also thanks S. Rica for useful discussions
tions as the one found numerically for the original set ofand the European Community for a research grant.
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