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Quasispecies evolution of finite populations
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We analyze a differential stochastic model to study quasispecies evolution. Using a variational method we
show that the apparently smooth equation naturally gives rise to intermittent behavior—punctuated evolution.
We also show that a finite population puts severe constraints on the evolution modes, and that the role played
by stochastic noise is emphasized by the random fitness land$64063-651X97)51204-9
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Punctuated evolution is a conjecture proposed by paleormalization the factoE(t) is introduced to impose that the
tologists Gould and Eldreddé] more than two decades ago, total population is always constai;x;=M. In the follow-
to explain the fossil records of life forms. The evolution of ing we shall simply ignoréE(t), whose freedom is used to
the species is argued to follow an intermittent pattern withensure the normalizations;(t), the stochastic noise, as-
long stasis interrupted by short activity bursts. It would besymes+1 with equal probability, for each andt indepen-
desirable to put this on an analytic basis. Bak and Sneppegently. Note thatx;=1, as there cannot be less than one
took the first steps in this directiof2]. In their prototype individual for a given sequence.

model they showed that under very general conditions of The evolution equation resembles the original Eigen-

interspecies interaction, evolution can indeed be punctuate%Chuster equation for quasispecids The first term on the

and with a rich fractal spatial temporal structure. A more{ight-hand side of Eq(1) is purely due to mutation, and the

traditional approach is based on studying the evolution o : . .
species on a fitness landscape. We shall see that the evotllg?cond to reproductive advantageisadvantagesWe find

tion problem is equivalent to the diffusion in a random po-"'€ separation convenient, and it should not affect essential

tential, albeit in genotype space rather the physical one. Thigatures of the Eigen-Schuster equation. The stochastic con-
nonperturbative method3] developed previously can be tr|bl_Jt|on 7 is new, and it can be derlyed following the rea-
readily generalized here. soning of _the Kimura gvolutlon equation on a flat landscape
In this work we shall show that the evolution of a single [5]- The Kimura equation applies for two species only. It can
“quasispecies” in a random fitness landscape is also puncbe shown that the generalization to many species takes a
tuated. Our starting point is closely related to the quasispeParticularly simple form if we work in the Langevin frame-
cies approach of Eigen and Schusiét. We generalize to  work (the Kimura equation corresponds to the Focker-Planck
take into account stochastic noise and finite populationsframework. A detailed discussion will be presented else-
which will play an important role. We shall show that, where.
though the underlying differential equation is apparently The role played by the stochastic term is best illustrated
smooth, it gives rise naturally tpunctuatedsolutions. Fol- by the limiting case, where the landscape is flat
lowing Eigen and Schuster’s notation, we consider a genofV,=cons}. Equation(1) without the %» term would imply
type represented by a binary sequence of leigthwhich  unlimited diffusion, and this is not correct. With it, E€L)
can have 2 distinct configurations. The total population is predicts that the population is nevertheless confined in a lim-
assumed to be very large but finitelj. We denote by; the ited region in the genotype space. It can be shown that the
number of individuals having theith genotype typical Hamming distance of such a population #1 ..
(i=1,...,2%, and byd(i,j) the Hamming distance between This has already been discussed using slightly different lan-
two genotypes andj. The random fitness landscape is takenguage elsewhers] for the flat physical space, and its gen-
to be independent and Gaussian with a unity variance deeralization for theflat genotype spacé7] has also been
noted byV, . Though our analysis can generalize straightfor-worked out. In this work we consider another limit, where
wardly to other distributions, we shall limit ourselves here tothe fluctuations of a random landscape dominate. It can be
the simplest case to serve the purpose of a prototype modedhown that when both stochastic and landscape fluctuations
Our evolution equation is are present, the latter are always dominant. Therefore in the
following we first consider the evolution without noise.
2N First let us consider what happens if the population is
Xi=2, W x;+[V;—E(t)]x+ 7i(O)VX;, (1)  infinite. On the random landscape, there is a global optimum
j=1 that typically (using extreme statistics f@aussiarvariables
N N of the sample size™ has a fitness valu¥ giopa= VN In2.
where W;; = u20-D(1— p)N~900) s the mutation rate be- We see that the global optimum increases rather quickly as a
tween the sequencésand j, u is the mutation rate per bit function of the sequence length. Let us assume that the popu-
and per generation, and is assumed to be very sttyi- lation is initially concentrated around a master sequence at
cally 10°8). Since we are interested in the relative popula-the configuration(00...0. It decays exponentially with the
tion only, the above equation is to be normalized. For norHamming distancel, on averagg¢3]. Within the region lim-
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ited by a given distancd, the best fitness peak can be easilycurrent peak. It is easy to verify that the global optimum will
estimated for Gaussian variabl®g,= \/d InN. We denote by be reached after a finite number of jumps=InN In2/

V, the fitness at the origin, which is of order unity. We (2 In2).

would like to know the location of the current master The above result cannot, however, be correct for a finite
sequence—in other words how lardés—after a given time  population. As a matter of fact, for any realistic population,
t. We denote the number having the current master sequent® matter how large, the above result is grossly wrong. The
by x, which is a function ol andt. We make the following short answer to this puzzle is that whie can be very large,
estimate for Eq(1), in the strong localization limif3]. The  InM can hardly be; the latter is the only factor that appears in
number of individualsx should be maximal for the master the calculation. Another way to see this is that normally we

sequence at: haveM <2"; i.e., the number of individuals is much smaller
than that of the total possible genotypes, for any realistic
X~ M ulexpt(Vy— Vo) =max. (2)  population.

For a finite populationM the constraintx;=1 or

The factorM . represents the exponential decay away as &14°=1 imposes that the distance from the master sequence
function of d from the master sequence. There is an expolS limited. The population can only explore a region limited
nential increase for a sequengedistance away with an ad- 0¥ du=~InM/|Inu|, and the best peak within the region

vantage fitnes¥y. It should compete with the old sequence Vi~ VINMINN/[inx| is much smaller than the global opti-
of fitnessV,,. Fort fixed, d is larger, the fitness advantage is Mum. The above senario is nevertheless obtained here: each

better(i.e., largerVy), but the termu? is smaller. There is an time the fitness value of a new peak is about double of that of

optimal d which maximizes the above expression as a funcihe old peak, the population makes a few jumps
tion of t, hence we can identify the current master sequencé.N~IN(INMINN/|In.|)/(2In2)], and ends up in the local opti-

Variation with respect tal leads to the relation mum. After that the population quickly settles down around
the local optimum, and there are still interesting movements
d(t) =t2InN/(Ing)? 3) in search of better peaks, albeit at a much slower pace.

Let us consider a population already settled around a local
optimal peak, the deterministic part of Ed.) cannot make
further moves. The stochastic noise is in to help. The effec-
tive contribution from noise is to make the population drift

way from its equilibrium position. From now on we want to
elax the contraink;=1 to include all positive real values.
The interpretation forx; is slightly changed: it should be

Note that the constraint(t)<N implies that after time
t~|Inu|N/InN, the global optimum will be reached.

The next question is whether this movement is smooth o
intermittent in time. Suppose that the current configuration o
the master sequence has fithessand the next configuration
hasV’=yd InN; d is the Hamming distance between the o, rional to theprobability of finding an individual. For
two configurations. In order for the master sequence to movi stance, for a highly unlikely sequencelsx;>0, it will
away from the current configuration, the next fitness peal%ppear ih the population if we wait long enohgh., In the fol-

r_nust bg better% 'I;]his already requiris waDX' Let us efs- . lowing we just interprek; as a probability; noise makes this
timate better. If the competing peak is on the verge o Win-qssible but we shall not use it explicitly.

ning, its contribution must be comparable to that of the cur- From the above reasoning we know that far away from

rent peak. We thus have the estimate the current optimal peaky x® can be smaller than unity.
q . However, since it is proportional to the probability of finding
Mu"expV'~expV. (4 an individual at distance, we can always haveM u9=1;
t is the waiting time. From this estimate we have a relation

The left-hand side denotes the exponential advantage as Wejr d, the drift distance from the local optimum as a function
as the cost for reaching out. At the same time the currengf time,

peak also grows exponentially, the right-hand side. This
gives us a relation for, INM + Int

= TTnal ®)

t=~d|Inu|/(V' = V). (5)

This is much slower than that for an infinite population, Eq.
In principle all better peaks can win: either one with an in-(3). Let us call this mode of motion noise assisted. We need
finitesimal advantage which is near, or one with a very largean extremely long time to reach the global optimum, and we
advantage that is far away. However, both need very longannot know for certain that it will ever be achieved in the
times to be realized. In reality only the peak requiring thepresent framework.
leasttime can win. As a consequence all candidate peaks In the noise-assisted mode the motion of the master se-
whose fitness lies betweén and the winning peak will be quence is also intermittent. In place of Ed), for a finite
skipped, while those withigherfithess will still remain can- population we now have
didates, to be examined for the next evolutionary step. We
minimize the abové with respect to varyingl. We find that tglexp(t—td)v’ ~expV, )
the winning peak has the fitnegs~ 2V, to the leading order
approximation ¢>1,/Inu|>1). Therefore we conclude that wherety=1/(M w9 is the time for the population to find a
the master sequence moves in an intermittent fashion, so thhetter peakVy, d distance away from the present pedk
each new peak has about twice the fitness of that of thé/ty is the probability for this to happen. The above relation
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is expressed in exponential form. The only difference withstochastic noise. Using variational methods developed in

respect to Eq(4) is the retarded time—t, in place oft. This

other branches of statistical physics, we show that punctu-

is because of the fact that before a better peak can be fourated solutions are inevitable, for noninteracting quasispecies
there is no reproduction. A similar variational analysis givesevolving on a uncorrelated landscape. Finite populations in-

rise to the fithess improvement relation

vimvs s N 8
=V 2 [ingl ®

to leading order, where conditiovi>InN/|Iny| is assumed.

troduce severe constraints on the evolution pace, and in re-
ality all population should be considered finite. Evolution
follows two distinct modes, both of which are punctuated: In
the initial mode the population evolves faster and jumps are
also larger, as if the population were infinite; this mode ends
when the finite population limit is felt, and evolution enters a

Compare the above witif’ ~2V. The improvement for each  sjow, so-called noise-assisted mode which is characterized
jump is much smaller, and for this jump to be realized a longyy rare fluatuations around a finite region centered at a mas-

waiting time is needeﬁt~(1/M)M—'HN/4\lnu\2]_

ter sequence. Whereas the stochastic noise is negligible in

In this work we studied a prototype evolution model, gen-the initial evolution mode because the pace is fast, it is the
eralized from the standard Eigen-Schuster model to includenly driving force for later evolution.
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