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Quasispecies evolution of finite populations

Yi-Cheng Zhang
Institut de Physique The´orique, Universite´ de Fribourg, CH-1700, Switzerland

~Received 9 January 1997!

We analyze a differential stochastic model to study quasispecies evolution. Using a variational method we
show that the apparently smooth equation naturally gives rise to intermittent behavior—punctuated evolution.
We also show that a finite population puts severe constraints on the evolution modes, and that the role played
by stochastic noise is emphasized by the random fitness landscape.@S1063-651X~97!51204-9#

PACS number~s!: 05.40.1j, 05.70.Ln
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Punctuated evolution is a conjecture proposed by pale
tologists Gould and Eldredge@1# more than two decades ag
to explain the fossil records of life forms. The evolution
the species is argued to follow an intermittent pattern w
long stasis interrupted by short activity bursts. It would
desirable to put this on an analytic basis. Bak and Snep
took the first steps in this direction@2#. In their prototype
model they showed that under very general conditions
interspecies interaction, evolution can indeed be punctua
and with a rich fractal spatial temporal structure. A mo
traditional approach is based on studying the evolution
species on a fitness landscape. We shall see that the e
tion problem is equivalent to the diffusion in a random p
tential, albeit in genotype space rather the physical one.
nonperturbative method@3# developed previously can b
readily generalized here.

In this work we shall show that the evolution of a sing
‘‘quasispecies’’ in a random fitness landscape is also pu
tuated. Our starting point is closely related to the quasis
cies approach of Eigen and Schuster@4#. We generalize to
take into account stochastic noise and finite populatio
which will play an important role. We shall show tha
though the underlying differential equation is apparen
smooth, it gives rise naturally topunctuatedsolutions. Fol-
lowing Eigen and Schuster’s notation, we consider a ge
type represented by a binary sequence of lengthN, which
can have 2N distinct configurations. The total population
assumed to be very large but finite (M ). We denote byxi the
number of individuals having the i th genotype
( i51, . . . ,2N), and byd( i , j ) the Hamming distance betwee
two genotypesi and j . The random fitness landscape is tak
to be independent and Gaussian with a unity variance
noted byVi . Though our analysis can generalize straightf
wardly to other distributions, we shall limit ourselves here
the simplest case to serve the purpose of a prototype mo
Our evolution equation is

ẋi5(
j51

2N

Wi j xj1@Vi2E~ t !#xi1h i~ t !Axi , ~1!

whereWij5md( i , j )(12m)N2d( i , j ) is the mutation rate be
tween the sequencesi and j , m is the mutation rate per bi
and per generation, and is assumed to be very small~typi-
cally 1028). Since we are interested in the relative popu
tion only, the above equation is to be normalized. For n
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malization the factorE(t) is introduced to impose that th
total population is always constant,( ixi5M . In the follow-
ing we shall simply ignoreE(t), whose freedom is used t
ensure the normalization.h i(t), the stochastic noise, as
sumes61 with equal probability, for eachi and t indepen-
dently. Note thatxi>1, as there cannot be less than o
individual for a given sequence.

The evolution equation resembles the original Eige
Schuster equation for quasispecies@4#. The first term on the
right-hand side of Eq.~1! is purely due to mutation, and th
second to reproductive advantages~disadvantages!. We find
the separation convenient, and it should not affect esse
features of the Eigen-Schuster equation. The stochastic
tribution h is new, and it can be derived following the re
soning of the Kimura evolution equation on a flat landsca
@5#. The Kimura equation applies for two species only. It c
be shown that the generalization to many species take
particularly simple form if we work in the Langevin frame
work ~the Kimura equation corresponds to the Focker-Pla
framework!. A detailed discussion will be presented els
where.

The role played by the stochastic term is best illustra
by the limiting case, where the landscape is fl
(Vk5const!. Equation~1! without theh term would imply
unlimited diffusion, and this is not correct. With it, Eq.~1!
predicts that the population is nevertheless confined in a
ited region in the genotype space. It can be shown that
typical Hamming distance of such a population isAMm.
This has already been discussed using slightly different
guage elsewhere@6# for the flat physical space, and its ge
eralization for theflat genotype space@7# has also been
worked out. In this work we consider another limit, whe
the fluctuations of a random landscape dominate. It can
shown that when both stochastic and landscape fluctuat
are present, the latter are always dominant. Therefore in
following we first consider the evolution withouth noise.

First let us consider what happens if the population
infinite. On the random landscape, there is a global optim
that typically~using extreme statistics forGaussianvariables
of the sample size 2N) has a fitness valueVglobal5AN ln2.
We see that the global optimum increases rather quickly
function of the sequence length. Let us assume that the p
lation is initially concentrated around a master sequenc
the configuration~00 . . . 0!. It decays exponentially with the
Hamming distanced, on average@3#. Within the region lim-
R3817 © 1997 The American Physical Society
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ited by a given distanced, the best fitness peak can be eas
estimated for Gaussian variables,Vd5Ad lnN. We denote by
V0 the fitness at the origin, which is of order unity. W
would like to know the location of the current mast
sequence—in other words how larged is—after a given time
t. We denote the number having the current master sequ
by x, which is a function ofd andt. We make the following
estimate for Eq.~1!, in the strong localization limit@3#. The
number of individualsx should be maximal for the maste
sequence atd:

x;Mmdexpt~Vd2V0!5max. ~2!

The factorMmd represents the exponential decay away a
function of d from the master sequence. There is an ex
nential increase for a sequenced distance away with an ad
vantage fitnessVd . It should compete with the old sequen
of fitnessV0. For t fixed,d is larger, the fitness advantage
better~i.e., largerVd), but the termmd is smaller. There is an
optimald which maximizes the above expression as a fu
tion of t, hence we can identify the current master sequen
Variation with respect tod leads to the relation

d~ t !5t2lnN/~ lnm!2. ~3!

Note that the constraintd(t)<N implies that after time
t'u lnmuAN/ lnN, the global optimum will be reached.

The next question is whether this movement is smooth
intermittent in time. Suppose that the current configuration
the master sequence has fitnessV, and the next configuration
hasV85Ad lnN; d is the Hamming distance between th
two configurations. In order for the master sequence to m
away from the current configuration, the next fitness pe
must be better. This already requires thatV8.V. Let us es-
timate better. If the competing peak is on the verge of w
ning, its contribution must be comparable to that of the c
rent peak. We thus have the estimate

MmdexptV8'exptV. ~4!

The left-hand side denotes the exponential advantage as
as the cost for reaching out. At the same time the curr
peak also grows exponentially, the right-hand side. T
gives us a relation fort,

t'du lnmu/~V82V!. ~5!

In principle all better peaks can win: either one with an
finitesimal advantage which is near, or one with a very la
advantage that is far away. However, both need very l
times to be realized. In reality only the peak requiring t
least time can win. As a consequence all candidate pe
whose fitness lies betweenV and the winning peak will be
skipped, while those withhigherfitness will still remain can-
didates, to be examined for the next evolutionary step.
minimize the abovet with respect to varyingd. We find that
the winning peak has the fitnessV8'2V, to the leading order
approximation (d.1,u lnmu.1). Therefore we conclude tha
the master sequence moves in an intermittent fashion, so
each new peak has about twice the fitness of that of
ce
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current peak. It is easy to verify that the global optimum w
be reached after a finite number of jumpsn' lnN ln2/
(2 ln2).

The above result cannot, however, be correct for a fin
population. As a matter of fact, for any realistic populatio
no matter how large, the above result is grossly wrong. T
short answer to this puzzle is that whileM can be very large,
lnM can hardly be; the latter is the only factor that appears
the calculation. Another way to see this is that normally
haveM!2N; i.e., the number of individuals is much smalle
than that of the total possible genotypes, for any realis
population.

For a finite populationM the constraint xi>1 or
Mmd>1 imposes that the distance from the master seque
is limited. The population can only explore a region limite
by dM' lnM/ulnmu, and the best peak within the regio
VM'AlnMlnN/ulnmu is much smaller than the global opt
mum. The above senario is nevertheless obtained here:
time the fitness value of a new peak is about double of tha
the old peak, the population makes a few jum
@n' ln(lnMlnN/ulnmu)/(2ln2)# , and ends up in the local opti
mum. After that the population quickly settles down arou
the local optimum, and there are still interesting moveme
in search of better peaks, albeit at a much slower pace.

Let us consider a population already settled around a lo
optimal peak, the deterministic part of Eq.~1! cannot make
further moves. The stochastic noise is in to help. The eff
tive contribution from noise is to make the population dr
away from its equilibrium position. From now on we want
relax the contraintxi>1 to include all positive real values
The interpretation forxi is slightly changed: it should be
proportional to theprobability of finding an individual. For
instance, for a highly unlikely sequencei 1@xi.0, it will
appear in the population if we wait long enough. In the fo
lowing we just interpretxi as a probability; noise makes th
possible but we shall not use it explicitly.

From the above reasoning we know that far away fro
the current optimal peak,Mmd can be smaller than unity
However, since it is proportional to the probability of findin
an individual at distanced, we can always havetMmd>1;
t is the waiting time. From this estimate we have a relat
for d, the drift distance from the local optimum as a functio
of time,

d5
lnM1 lnt

u lnmu
. ~6!

This is much slower than that for an infinite population, E
~3!. Let us call this mode of motion noise assisted. We ne
an extremely long time to reach the global optimum, and
cannot know for certain that it will ever be achieved in t
present framework.

In the noise-assisted mode the motion of the master
quence is also intermittent. In place of Eq.~4!, for a finite
population we now have

td
21exp~ t2td!V8'exptV, ~7!

where td51/(Mmd) is the time for the population to find a
better peakVd , d distance away from the present peakV,
1/td is the probability for this to happen. The above relati
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is expressed in exponential form. The only difference w
respect to Eq.~4! is the retarded timet2td in place oft. This
is because of the fact that before a better peak can be fo
there is no reproduction. A similar variational analysis giv
rise to the fitness improvement relation

V8'V1
1

2

lnN

u lnmu
~8!

to leading order, where conditionV@ lnN/ulnmu is assumed.
Compare the above withV8'2V. The improvement for each
jump is much smaller, and for this jump to be realized a lo
waiting time is needed@ t'(1/M )m2 lnN/4u lnmu2#.

In this work we studied a prototype evolution model, ge
eralized from the standard Eigen-Schuster model to incl
-
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s
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-
e

stochastic noise. Using variational methods developed
other branches of statistical physics, we show that pun
ated solutions are inevitable, for noninteracting quasispe
evolving on a uncorrelated landscape. Finite populations
troduce severe constraints on the evolution pace, and in
ality all population should be considered finite. Evolutio
follows two distinct modes, both of which are punctuated:
the initial mode the population evolves faster and jumps
also larger, as if the population were infinite; this mode en
when the finite population limit is felt, and evolution enters
slow, so-called noise-assisted mode which is character
by rare fluatuations around a finite region centered at a m
ter sequence. Whereas the stochastic noise is negligib
the initial evolution mode because the pace is fast, it is
only driving force for later evolution.
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