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Crossover from coherent to incoherent dynamics in damped quantum systems
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The destruction of quantum coherence by environmental influences is investigated by taking the damped
harmonic oscillator and the dissipative two-state system as prototypical examples. It is shown that the location
of the coherent-incoherent transition depends to a large degree on the dynamical quantity under consideration.
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The destruction of quantum coherence by dissipative in- One dynamical quantity of interest is tkquilibriumcor-
fluences continues to be a problem of central interest imelation function
atomic physics, condensed matter physics, and chemical
physics. It is relevant to phenomena as diverse as wave Cosdt)=Re(q(t)q(0)), 3
packet dynamics in atonjd], defect tunneling in solidg2],
electron transfer in chemical and biological reactifl or ~ Where the brackets denote a ground-state average. Consider
quantum computergt]. Important insight into the effects of now the associated spectral functiof]
an environment on quantum coherence was obtained in the
last decade based on studies of simple quantum systems in Sosd @) =Cosd @)/ | w],
contact with a heat batls,6]. Very recently, focusing on the ] . ) .
result that, at first glance, seems to invalidate earlier studie§al susceptibility by(we setf=1)
They found that quantum coherence is destroyed at signifi-
cantly smaller damping strengths than thought previously, Sosd @) =IMxosd @)/ .
typ|lﬁa;|r|,)i/sdg;?;gr]?v?g sh?v(\:,t?r:azt/?ﬁe coherent-incoherent trankt IS an even fungtion o&.), and the second form follows from
sition depends on the particular dynamical quantity undefl® fluctuation-dissipation theorem. From E@), we have
consideration(e.g., correlation function, occupation prob- € dynamical susceptibility
ability, etc). Since different dynamical quantities may be
associated with different initial preparations of the system, Yosd w):# %)
guantum coherence may be more or less sensitive to dissipa- o8 w5~ 0’ —iyw’
tion. The resulting critical value of the damping strength then
changes to a surprisingly large degree with the respectivand hence the spectral function
coherence criterion. This will be explicitly demonstrated for
the two fundamental dissipative quantum systems, namely, S _ YWo
the damped harmonic oscillator and the dissipative two-state osd @) = (05— ©2)°+ y?w?’
system. As the differences are most pronounced at zero tem-
perature, we confine ourselves to this limit. Another problem of interest is the relaxation of the expec-
We start with the exactly solvable case ofharmonic  tation value(q(t)) starting from anonequilibrium initial
oscillator subject to Ohmic damping6]. The respective state. Applying the force:(t):ngqoe)(—t)’ the initial

®

classical equation of motion for the positig(t) is condition{q(0))=q, is preparedcf. Eq. (2)], and the rel-
_ evant dynamical quantity is
G(t) +ya(t) + wga(t) =F(t)/M, (1)
Posc(t):<Q(t)>/q0- (6)

wherevy is the usual Ohmic damping rate, the frequency
of the bare oscillator, ant¥ the mass of the particle. The
response to the external forégt) is described by

With the Fourier transfornt4) of the response function, one
obtains from Eq(2)

Posdt) =cogQt— ¢)exp(— yt/2)/coq ¢), (7)

whereQ = \Jw2— y?%/4 and ¢=arctan§/2Q).
Let us now discuss the coherent-incoherent transition as a
where(q(t)) denotes the expectation value, agg{t) is  function of the dimensionless damping strength
the linear response function, which for the harmonic oscilla-
tor coincides with the classical response function. a=ylwy.

1 t
@)= o | dxelt=tF®), @
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We first consider the appropriate coherence criterion baseghore, Lesage, Saleur, and Skof#{ have employed integra-

on the spectral functionS,c{w). For weak damping, bility and form-factor techniques to study this model as well.
a<a., the functionS,{ w) exhibits two inelastic peaks at Both groups have calculated the ground-state spin-spin cor-
finite frequency w==*w,(a). At the critical damping relation function of the Kondo model equivalent to the
strengtha., one hasw,(a:)=0, and the two peaks merge T=0 equilibrium two-state correlation function

into a single quasielastic peak centeredat0. This quasi-

elastic peak then persists far> . The value ofa. can be C(t)=Re(o(1)74(0)).

determined by inspecting the sign of the curvature o
Sesd ) at zero frequency. From E¢5), we have the small-
® expansion

fThis quantity is the direct analog of the harmonic oscillator
correlation functionC,s{t) defined in Eq.(3).
Another useful quantity, particularly in the context of
Sped @) =2axq[ 1+ (2— 4a?) Y202+ O(w®)], (8  macroscopic quantum coherengé,5], is the occupation
probability
where xyo=1/w, is the static susceptibility. Thus the curva- P(t)= (o))
ture of Sy{w) Iis positive (implying coherence for A
a<1/y2, but changes sign at the critical value. Regardingcorresponding to the harmonic oscillator quanB(t) de-
the equilibrium correlation&,s{t), quantum coherence is fined in Eq.(6). In contrast toC(t), the functionP(t) is
suppressed fow>a=1/y2. subject to the nonequilibrium initial preparation
A different coherence criterion can be developed based og (t=0)=+1. This preparation of the initial state may be
the quantityPos{t). For weak damping, one finds damped realized by applying a large external bias. Thereby the spin is
oscillations such thaP,s{t) changes sign occasionally. As held fixed in the stater,=+1 with equilibrated environ-
the damping strength is increasedPos{t) shows a transi-  ment. At time zero, the constraint is released, and the dynam-
tion from dampEd 03C|”at0ry to a pUrEIy incoherent bEhaV'iCS starts out fromP(O):l with this factorized System_
ior. The coherent-incoherent transition is reached at the critiznyironment initial state.
cal valuea=ag . For a>ag , one hasPo(t)=0 for all Let us now discuss the coherent-incoherent transition for
timest. This coherence criterion based on a nonequilibriumthe dissipative two-state system, starting with the equilib-
initial preparation has been used in most previous W6r/&.  rium correlations. Similar to Eq.(8), the function

For the damped harmonic oscillator, we see from@gthat  S(w)=C(w)/|w| has the low-frequency expansion
Posdt) becomes overdamped far>1, while damped oscil-

lations persist for<<1. Regarding the nonequilibrium quan- S(w)= 27Ta)(é[l+ K(a))((z)wer O(wh], (10
tity Podt), one has destruction of quantum coherence for ) . o . _ _
a>a’ =1. The ratio between the critical damping strengthsWherex is the static susceptibility and(«) is a dimension-

for the two dynamical quantitie§,(t) and P.e(t) is then €SS parameter. The zero-frequency limit of Ef0) is the
given by generalized Shiba relation for the spin-boson probJa.

As a result of this relation, spin-spin correlations decay as-
aclat =112. (9)  ymptotically asC(t)=—2ax3/t? In Refs.[7,8], the func-
tion k(a) has been computed and was found to change sign
We now turn to the case of a symmettieo-state system at the critical valuex.=1/3.
Coupling to an Ohmic heat bath is described in terms of the Next we analyze the transition from oscillations to inco-

spin-boson Hamiltoniah5,6] herent relaxation in the quantiti?(t). Within the widely
) - used noninteracting-blip approximatigNIBA), the critical
He— (Aot S p_i+miwi Xi  CiXioy value is a5 =1/2 [5]. This result can easily be seen by
A\ 2m, 2 2 ) switching to the Laplace transforf(\) and defining a self-
energy>(\),
The two eigenstates af, with eigenvaluest 1 are coupled
by the transfer matrix elemeni representing the tunnel PM)=1[A+2(N)]. 11

splitting of the free system. The Ohmic bath of harmonic

oscillators is fully characterized by the spectral density ~ 'V/BA gives for the self-energy5,6]

2 ® exp(—AT)

C: _ A2

J(w):gz _mlw 5(w—wi)=27rawexq—w/wc), E()\) A COSWa)fO d (wcT)Za
[ i Wi

=Ag(Ag/N)17 22,
(12)

where « is a dimensionless damping strength, andis a  yith the effective frequency scale
high-frequency cutoff.

An important aspect of this model is its correspondence A =A[cog wa)l'(1—2a)]Y21" I (Alw )@t~
with the Kondo effect. By writing the partition function in
the Coulomb gas representation, a firm equivalence with thén the limit a«—1/2, the frequency A, approaches
anisotropic Kondo model can be establisfigfl This corre-  7A2/2w, . Fora>0, the functionP(\) has a branch point at
spondence has been exploited by Costi and Kidff¢rwho A =0. The complex\ plane is cut along the negative real
applied a dynamical version of Wilson’s numerical renor-axis, and in the cut plan®(\) is single valued. The cut
malization group to the anisotropic Kondo model. Further-leads to an incoherent contribution R(t). Moreover, for
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a<1/2, the integrand has a conjugate pair of poles in the cuthe self-energy in the limih —0. Since collapsed sojourns

\ plane describing damped oscillations. do not interact with blips or other sojourns, a grand-
To study the coherent-incoherent transition, we considecanonical gas of collapsed sojourns merely gives a factor

the pole condition from Eq(11), exp(—Aq72), and the self-energ§l?) is changed into

MA? 2e=—1, 13 = exf—(N+AJ2)T

(MA) (13 z(m:mef ! 2 )7]
and put 0 (@7

— —2€
a=1/2—¢, |e<1. (14) =Ae(MAeH12) 77 17

With the regularized self-energiL7), the pole condition

For e>0 (a«<1/2), insertion of the ansatz
now reads

MA=—1+eu*iev+0(e?) N(L24 N A% = — A,

into Eq. (13) yieldsu=0 andv=27. Hence, in the NIBA
the damping rat& and the oscillation frequendy are up to
corrections of ordeg?,

This yields the exact decay rate and oscillation frequency up
to corrections of ordee?,

T/A,=1-2eIn2, Q/A=2me.
T/A,=1, QIA.=27me. (15) e €n = ome

) ) o ) Compared to the NIBA resultl5), the rate acquires a cor-
This results in damped oscillations with frequen®y In  raction in ordere. However, the oscillation frequency re-
contrast, fore<0 (a>1/2), the poles are not in the cut plane ains completely unchanged. Therefore, the NIBA value
and therefore give no contribution 1(t). In that case, . _1/5 for the location of the coherent-incoherent transi-
P'(t) is completely given by the mc.oherent branCh-C_ut CONion turns out to be thexact result. This implies the critical
tribution. Thus the critical damping strength is indeed .o
at=1/2.

Remarkably, exactly at the special value=1/2, NIBA aclag =213,
becomes exadi5], while it is only an approximation fow
#1/2. One serious deficiency comes from the branch-cuwhich is slightly smaller than the respective rat@® for the
contribution, which would imply the existence of an alge- damped harmonic oscillator.

braic long-time tail. From Eq(12), for a=1/2—€ and The exact self-energy17) shifts the branch point of
A—0, one findsP(\) ~\?¢. The asymptotic branch-cut con- P(\) and thereby removes the spurious algebraic long-time
tribution is therefore tails (16). For e>0, the leading branch-cut contribution at
long times is now given by
P(t)=—2¢€l(Agt) 12, (16)
exp(—Act/2)
This term, decaying slower than ti/ contradicts the P(t)= _ZGW’
fluctuation-dissipation theorem. Hence, the long-time tail €
(16) is an unphysical artifact of NIBA5]. Such a failure  while for e<0, we obtain
raises the question of whether the NIBA valag=1/2 for
the coherent-incoherent transition remains correct. exp(—Act/2)
To investigate the coherent-incoherent transition beyond P(t)=8]e] (Agt)LH2le -

NIBA, we now systematically expand around the exactly
solvable caser=1/2. In diagrammatic terms, the exact self- Thus, the unphysical algebraic long-time tails are suppressed
energy> (\) is the sum over all irreducible arrangements ofby an exponential decay factor. It is straightforward to see
“blips” and “sojourns.” A blip (sojourn refers to the time that fore>0 (a<1/2), the full cut contribution is negative,
spent in an off-diagongdiagona) state of the reduced den- while it becomes positive foe<0 (a>1/2). Indeed, for
sity matrix[5,6]. For instance, the NIBA expressi@th2) is  «=1/2, the functionP(t) is positive and monotonically de-
just given by the single-blip contribution, thereby effectively caying; i.e., the dynamics is fully incoherent. In marked con-
disregarding all interblip interactions iA(\). The fact that trast to the NIBA result(16), the power of the algebraic
NIBA becomes exact forv=1/2 is explained simply by the decay factor does not depend on the sigre.of
concept ofcollapsed blipg6]. In view of Eq.(14), there is a The remarkable success of NIBA in predicting the correct
factor cosra)=me in Eq. (12). This O(e) factor must be value ofa} provokes questions about the general quality of
canceled by a ¥ short-time contribution of the integral  such a simple approximation for the full range®f A con-
over the length of the blip such that a finite result can arisevenient tool to investigate this issue is the real-time quantum
Therefore, fora— 1/2, only blips of effectively vanishing Monte Carlo simulation methdd 1]. This technique permits
length, that is, “collapsed” blips, contribute. Since interac- a numerically exact calculation of both dynamical quantities
tions among different collapsed blips vanish, NIBA becomesC(t) andP(t) by stochastic evaluation of the respective real-
exact[6]. time path-integral representations. The dynamical sign prob-
For nonzerce, the blip length is finite, and one has to take lem arising from the interference between different real-time
into account all sequences obllapsed sojournsvithin an  paths can be largely circumvented by a partial summation
extended blip of lengthr. Their presence crucially modifies scheme, and stable simulations can be carried out for rather
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represent universal scaling curves in the sense that they can

! be obtained from differentv, and/or A by employing the
0.8 a=04 effective frequency scaled.. Apparently, on short-to-
: intermediate time scales, NIBA yields a very accurate pre-
0.6 diction forP(t). However, the predictioﬁ_:(_t)=.P(t) as well
‘ \ as the ang-tlme tail$16) are clear deficiencies of this ap-
T o4 \ prOX|mat|on[1_1]. o
A \\ In conclusion, we have demonstrated that the initial
02 N preparation of a dissipative quantum system leads to drastic
‘ N changes regarding the transition from coherence to incoher-
0 ence as the damping strength is increased. Both the damped
harmonic oscillator and the dissipative two-state system
02 show that the two coherence criteria previously employed in
o 1 2 3 4 5 the literature lead to a factor\[2 and 2/3 difference in the

At critical damping strengths, respectively. Any investigation of
the environmental destruction of quantum coherence thus ne-
FIG. 1. Monte Carlo data foP(t) at«=0.4 andT=0. Circles  cessitates a clear specification of the physical quantities un-
are data points foA/w.=1/6, the solid curve connecting them is a der study.
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