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Crossover from coherent to incoherent dynamics in damped quantum systems
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The destruction of quantum coherence by environmental influences is investigated by taking the damped
harmonic oscillator and the dissipative two-state system as prototypical examples. It is shown that the location
of the coherent-incoherent transition depends to a large degree on the dynamical quantity under consideration.
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The destruction of quantum coherence by dissipative
fluences continues to be a problem of central interes
atomic physics, condensed matter physics, and chem
physics. It is relevant to phenomena as diverse as w
packet dynamics in atoms@1#, defect tunneling in solids@2#,
electron transfer in chemical and biological reactions@3#, or
quantum computers@4#. Important insight into the effects o
an environment on quantum coherence was obtained in
last decade based on studies of simple quantum system
contact with a heat bath@5,6#. Very recently, focusing on the
archetypical two-state system, two groups@7,8# arrived at a
result that, at first glance, seems to invalidate earlier stud
They found that quantum coherence is destroyed at sig
cantly smaller damping strengths than thought previou
typically differing by a factor 2/3.

In this paper, we show that the coherent-incoherent tr
sition depends on the particular dynamical quantity un
consideration~e.g., correlation function, occupation pro
ability, etc.!. Since different dynamical quantities may b
associated with different initial preparations of the syste
quantum coherence may be more or less sensitive to dis
tion. The resulting critical value of the damping strength th
changes to a surprisingly large degree with the respec
coherence criterion. This will be explicitly demonstrated f
the two fundamental dissipative quantum systems, nam
the damped harmonic oscillator and the dissipative two-s
system. As the differences are most pronounced at zero
perature, we confine ourselves to this limit.

We start with the exactly solvable case of aharmonic
oscillator subject to Ohmic damping@6#. The respective
classical equation of motion for the positionq(t) is

q̈~ t !1gq̇~ t !1v0
2q~ t !5F~ t !/M , ~1!

whereg is the usual Ohmic damping rate,v0 the frequency
of the bare oscillator, andM the mass of the particle. Th
response to the external forceF(t) is described by

^q~ t !&5
1

Mv0
E

2`

t

dt8xosc~ t2t8!F~ t8!, ~2!

where ^q(t)& denotes the expectation value, andxosc(t) is
the linear response function, which for the harmonic osci
tor coincides with the classical response function.
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One dynamical quantity of interest is theequilibriumcor-
relation function

Cosc~ t !5Rê q~ t !q~0!&, ~3!

where the brackets denote a ground-state average. Con
now the associated spectral function@7#

Sosc~v!5Cosc~v!/uvu,

which atT50 is related to the absorptive part of the dynam
cal susceptibility by~we set\51)

Sosc~v!5Imxosc~v!/v.

It is an even function ofv, and the second form follows from
the fluctuation-dissipation theorem. From Eq.~1!, we have
the dynamical susceptibility

xosc~v!5
v0

v0
22v22 igv

, ~4!

and hence the spectral function

Sosc~v!5
gv0

~v0
22v2!21g2v2 . ~5!

Another problem of interest is the relaxation of the expe
tation value ^q(t)& starting from anonequilibrium initial
state. Applying the forceF(t)5Mv0

2q0Q(2t), the initial
condition ^q(0)&5q0 is prepared@cf. Eq. ~2!#, and the rel-
evant dynamical quantity is

Posc~ t !5^q~ t !&/q0 . ~6!

With the Fourier transform~4! of the response function, on
obtains from Eq.~2!

Posc~ t !5cos~Vt2f!exp~2gt/2!/cos~f!, ~7!

whereV5Av0
22g2/4 andf5arctan(g/2V).

Let us now discuss the coherent-incoherent transition
function of the dimensionless damping strength

a5g/2v0 .
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We first consider the appropriate coherence criterion ba
on the spectral functionSosc(v). For weak damping,
a,ac , the functionSosc(v) exhibits two inelastic peaks a
finite frequency v56vm(a). At the critical damping
strengthac , one hasvm(ac)50, and the two peaks merg
into a single quasielastic peak centered atv50. This quasi-
elastic peak then persists fora.ac . The value ofac can be
determined by inspecting the sign of the curvature
Sosc(v) at zero frequency. From Eq.~5!, we have the small-
v expansion

Sosc~v!52ax0
2@11~224a2!x0

2v21O~v4!#, ~8!

wherex051/v0 is the static susceptibility. Thus the curv
ture of Sosc(v) is positive ~implying coherence! for
a,1/A2, but changes sign at the critical value. Regard
the equilibrium correlationsCosc(t), quantum coherence i
suppressed fora.ac51/A2.

A different coherence criterion can be developed based
the quantityPosc(t). For weak damping, one finds dampe
oscillations such thatPosc(t) changes sign occasionally. A
the damping strengtha is increased,Posc(t) shows a transi-
tion from damped oscillatory to a purely incoherent beh
ior. The coherent-incoherent transition is reached at the c
cal valuea5ac* . For a.ac* , one hasPosc(t)>0 for all
times t. This coherence criterion based on a nonequilibri
initial preparation has been used in most previous work@5,6#.
For the damped harmonic oscillator, we see from Eq.~7! that
Posc(t) becomes overdamped fora.1, while damped oscil-
lations persist fora,1. Regarding the nonequilibrium quan
tity Posc(t), one has destruction of quantum coherence
a.ac*51. The ratio between the critical damping streng
for the two dynamical quantitiesCosc(t) andPosc(t) is then
given by

ac /ac*51/A2. ~9!

We now turn to the case of a symmetrictwo-state system.
Coupling to an Ohmic heat bath is described in terms of
spin-boson Hamiltonian@5,6#

H52~D/2!sx1(
i

S pi
2

2mi
1
miv i

2xi
2

2
2
cixisz

2 D .
The two eigenstates ofsz with eigenvalues61 are coupled
by the transfer matrix elementD representing the tunne
splitting of the free system. The Ohmic bath of harmon
oscillators is fully characterized by the spectral density

J~v!5
p

2(i
ci
2

miv i
d~v2v i !52pavexp~2v/vc!,

wherea is a dimensionless damping strength, andvc is a
high-frequency cutoff.

An important aspect of this model is its corresponden
with the Kondo effect. By writing the partition function in
the Coulomb gas representation, a firm equivalence with
anisotropic Kondo model can be established@9#. This corre-
spondence has been exploited by Costi and Kieffer@7#, who
applied a dynamical version of Wilson’s numerical reno
malization group to the anisotropic Kondo model. Furth
ed
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more, Lesage, Saleur, and Skorik@8# have employed integra
bility and form-factor techniques to study this model as we
Both groups have calculated the ground-state spin-spin
relation function of the Kondo model equivalent to th
T50 equilibrium two-state correlation function

C~ t !5Rê sz~ t !sz~0!&.

This quantity is the direct analog of the harmonic oscilla
correlation functionCosc(t) defined in Eq.~3!.

Another useful quantity, particularly in the context o
macroscopic quantum coherence@4,5#, is the occupation
probability

P~ t !5^sz~ t !&,

corresponding to the harmonic oscillator quantityPosc(t) de-
fined in Eq. ~6!. In contrast toC(t), the functionP(t) is
subject to the nonequilibrium initial preparatio
sz(t50)511. This preparation of the initial state may b
realized by applying a large external bias. Thereby the spi
held fixed in the statesz511 with equilibrated environ-
ment. At time zero, the constraint is released, and the dyn
ics starts out fromP(0)51 with this factorized system
environment initial state.

Let us now discuss the coherent-incoherent transition
the dissipative two-state system, starting with the equi
rium correlations. Similar to Eq. ~8!, the function
S(v)5C(v)/uvu has the low-frequency expansion

S~v!52pax0
2@11k~a!x0

2v21O~v4!#, ~10!

wherex0 is the static susceptibility andk(a) is a dimension-
less parameter. The zero-frequency limit of Eq.~10! is the
generalized Shiba relation for the spin-boson problem@10#.
As a result of this relation, spin-spin correlations decay
ymptotically asC(t)522ax0

2/t2. In Refs. @7,8#, the func-
tion k(a) has been computed and was found to change s
at the critical valueac51/3.

Next we analyze the transition from oscillations to inc
herent relaxation in the quantityP(t). Within the widely
used noninteracting-blip approximation~NIBA !, the critical
value is ac*51/2 @5#. This result can easily be seen b
switching to the Laplace transformP(l) and defining a self-
energyS(l),

P~l!51/@l1S~l!#. ~11!

NIBA gives for the self-energy@5,6#

S~l!5D2cos~pa!E
0

`

dt
exp~2lt!

~vct!2a 5De~De /l!122a,

~12!

with the effective frequency scale

De5D@cos~pa!G~122a!#1/2~12a!~D/vc!
a/~12a!.

In the limit a→1/2, the frequency De approaches
pD2/2vc . Fora.0, the functionP(l) has a branch point a
l50. The complexl plane is cut along the negative re
axis, and in the cut planeP(l) is single valued. The cu
leads to an incoherent contribution toP(t). Moreover, for
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a,1/2, the integrand has a conjugate pair of poles in the
l plane describing damped oscillations.

To study the coherent-incoherent transition, we consi
the pole condition from Eq.~11!,

~l/De!
222a521, ~13!

and put

a51/22e, ueu!1 . ~14!

For e.0 (a,1/2), insertion of the ansatz

l/De5211eu6 i ev1O~e2!

into Eq. ~13! yields u50 andv52p. Hence, in the NIBA
the damping rateG and the oscillation frequencyV are up to
corrections of ordere2,

G/De51, V/De52pe. ~15!

This results in damped oscillations with frequencyV. In
contrast, fore,0 (a.1/2), the poles are not in the cut plan
and therefore give no contribution toP(t). In that case,
P(t) is completely given by the incoherent branch-cut co
tribution. Thus the critical damping strength is inde
ac*51/2.

Remarkably, exactly at the special valuea51/2, NIBA
becomes exact@5#, while it is only an approximation fora
Þ1/2. One serious deficiency comes from the branch-
contribution, which would imply the existence of an alg
braic long-time tail. From Eq.~12!, for a51/22e and
l→0, one findsP(l);l2e. The asymptotic branch-cut con
tribution is therefore

P~ t !522e/~Det !
112e. ~16!

This term, decaying slower than 1/t2, contradicts the
fluctuation-dissipation theorem. Hence, the long-time
~16! is an unphysical artifact of NIBA@5#. Such a failure
raises the question of whether the NIBA valueac*51/2 for
the coherent-incoherent transition remains correct.

To investigate the coherent-incoherent transition bey
NIBA, we now systematically expand around the exac
solvable casea51/2. In diagrammatic terms, the exact se
energyS(l) is the sum over all irreducible arrangements
‘‘blips’’ and ‘‘sojourns.’’ A blip ~sojourn! refers to the time
spent in an off-diagonal~diagonal! state of the reduced den
sity matrix @5,6#. For instance, the NIBA expression~12! is
just given by the single-blip contribution, thereby effective
disregarding all interblip interactions inP(l). The fact that
NIBA becomes exact fora51/2 is explained simply by the
concept ofcollapsed blips@6#. In view of Eq.~14!, there is a
factor cos(pa)5pe in Eq. ~12!. This O(e) factor must be
canceled by a 1/e short-time contribution of thet integral
over the length of the blip such that a finite result can ar
Therefore, fora→1/2, only blips of effectively vanishing
length, that is, ‘‘collapsed’’ blips, contribute. Since intera
tions among different collapsed blips vanish, NIBA becom
exact@6#.

For nonzeroe, the blip length is finite, and one has to ta
into account all sequences ofcollapsed sojournswithin an
extended blip of lengtht. Their presence crucially modifie
ut
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the self-energy in the limitl→0. Since collapsed sojourn
do not interact with blips or other sojourns, a gran
canonical gas of collapsed sojourns merely gives a fa
exp(2Det/2), and the self-energy~12! is changed into

S~l!5D2peE
0

`

dt
exp@2~l1De/2!t#

~vct!122e

5De~l/De11/2!22e. ~17!

With the regularized self-energy~17!, the pole condition
now reads

l~1/21l/De!
2e52De .

This yields the exact decay rate and oscillation frequency
to corrections of ordere2,

G/De5122e ln2, V/De52pe.

Compared to the NIBA result~15!, the rate acquires a cor
rection in ordere. However, the oscillation frequency re
mains completely unchanged. Therefore, the NIBA va
ac*51/2 for the location of the coherent-incoherent tran
tion turns out to be theexact result. This implies the critical
ratio

ac /ac*52/3,

which is slightly smaller than the respective ratio~9! for the
damped harmonic oscillator.

The exact self-energy~17! shifts the branch point of
P(l) and thereby removes the spurious algebraic long-t
tails ~16!. For e.0, the leading branch-cut contribution a
long times is now given by

P~ t !522e
exp~2Det/2!

~Det !
112e ,

while for e,0, we obtain

P~ t !58ueu
exp~2Det/2!

~Det !
112ueu .

Thus, the unphysical algebraic long-time tails are suppres
by an exponential decay factor. It is straightforward to s
that for e.0 (a,1/2), the full cut contribution is negative
while it becomes positive fore,0 (a.1/2). Indeed, for
a>1/2, the functionP(t) is positive and monotonically de
caying; i.e., the dynamics is fully incoherent. In marked co
trast to the NIBA result~16!, the power of the algebraic
decay factor does not depend on the sign ofe.

The remarkable success of NIBA in predicting the corr
value ofac* provokes questions about the general quality
such a simple approximation for the full range ofa. A con-
venient tool to investigate this issue is the real-time quant
Monte Carlo simulation method@11#. This technique permits
a numerically exact calculation of both dynamical quantit
C(t) andP(t) by stochastic evaluation of the respective re
time path-integral representations. The dynamical sign pr
lem arising from the interference between different real-ti
paths can be largely circumvented by a partial summa
scheme, and stable simulations can be carried out for ra
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long times. The simulation code permits a computation
P(t) directly at zero temperature, where the casea51/2
serves as a convenient benchmark that is indeed passe
curately@11#.

Numerical results forP(t) at a50.4 are shown in Fig. 1
and data fora>1/2 can be found in Ref.@11#. These data

FIG. 1. Monte Carlo data forP(t) at a50.4 andT50. Circles
are data points forD/vc51/6, the solid curve connecting them is
guide for the eye only. Statistical errors are well below 5%. T
dashed curve is the NIBA result.
s
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represent universal scaling curves in the sense that they
be obtained from differentvc and/orD by employing the
effective frequency scaleDe . Apparently, on short-to-
intermediate time scales, NIBA yields a very accurate p
diction forP(t). However, the predictionC(t)5P(t) as well
as the long-time tails~16! are clear deficiencies of this ap
proximation@11#.

In conclusion, we have demonstrated that the init
preparation of a dissipative quantum system leads to dra
changes regarding the transition from coherence to inco
ence as the damping strength is increased. Both the dam
harmonic oscillator and the dissipative two-state syst
show that the two coherence criteria previously employed
the literature lead to a factor 1/A2 and 2/3 difference in the
critical damping strengths, respectively. Any investigation
the environmental destruction of quantum coherence thus
cessitates a clear specification of the physical quantities
der study.
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