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Physical symmetry and lattice symmetry in the lattice Boltzmann method
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The lattice Boltzmann method~LBM ! is regarded as a specific finite difference discretization for the kinetic
equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models,
such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equa-
tions. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the
lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the
property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing
the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct
hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermo-
hydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-
Lewey condition and using the semi-implicit collision scheme.@S1063-651X~97!50501-0#

PACS number~s!: 47.10.1g
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In recent years, the lattice Boltzmann method~LBM ! has
attracted attention as an alternative numerical scheme
simulation of fluid flows@1#. Unlike traditional numerical
methods which solve for macroscopic variables, LBM
based on the mesoscopic kinetic equation for the part
distribution function. The macroscopic quantities, such
density and velocity, are then obtained through moment
tegrations of the distribution function. The kinetic nature
LBM introduces a number of advantages, such as linearit
the convection operator~the nonlinear macroscopic term
obtained through a multiscale expansion, avoiding solv
the nonlinear Riemann problem! and the recovery of the
Navier-Stokes~NS! equations in the nearly incompressib
limit, thus avoiding solving difficult Poisson equations f
the pressure. In addition, since LBM seeks the minimum
of velocities in phase space, only one or two speeds an
few moving directions are used in LBM, and the numeric
solution of the kinetic equation is very simple.

The lattice Boltzmann method starts from the followin
Boltzmann equation for the discrete velocity distribution
two and three dimensions@2#:

] f i
]t

1ei•“ f i5V i ~ i51,2, . . . ,N!, ~1!

wheref i is the particle velocity distribution function,ei is the
velocity along thei th direction,N is the number of different
velocities in the model, andV i is the collision operator. It
should be pointed out that in the phase space, the space
able x and the velocity variableei are independent. While
only a small set of discrete velocities are used in LBM
approximate the Boltzmann kinetics of the continuum vel
ity, the Boltzmann equation is valid for continuum variabl
x and t.

For the single time relaxation approximation or the latt
BGK @3#, V i52(1/«t)( f i2 f i

eq), where f i
eq is the local

equilibrium distribution,t is the relaxation time, and« is
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a small parameter, proportional to the Knudsen number@4#.
Density and momentum are defined as velocity mome
of the distribution function,f i , r5( i f i , and ru5( i f iei .
For thermal problems, an internal energyE can be defined
as 1

2( i f iei
25rE1(r/2)uuu2. The equilibrium distribution

function f i
eq depends on density, momentum, energy, and

specific lattice used. Its functional form can be tuned so t
the appropriate macroscopic equations are obtained.
macroscopic equations are derived from Eq.~1! by means of
a multiscale Chapman-Enskog expansion@4#.

A commonly used lattice Boltzmann method, the s
called lattice BGK model@3#, is a specific discretization o
Eq. ~1!. If we replace the time derivative by a first order tim
difference, use a first order upwind space discretization
the convective termei•“ f i , and use a downwind collision
term V(x2ei ,t) for V(x,t), we have a finite difference
equation forf i :

f i~x,t1Dt !5 f i~x,t !2a@ f i~x,t !2 f i~x2eiDx,t !#

2
b

t
@ f i~x2eiDx,t !2 f i

eq~x2eiDx,t !#, ~2!

wherea5Dt/Dx, b5Dt/«, andDt andDx are the time step
and the grid step, respectively. ChoosingDt5Dx5Dy5«
we then obtain the following standard LBM equation@3#:

f i~x1ei ,t11!2 f i~x,t !52
f i~x,t !2 f i

eq~x,t !

t
. ~3!

The above discretization to Eq.~1! only has first order
convergence in space and time. However, it has been sh
@4# that since Eq.~3! has a Lagrangian nature in space d
cretization, the discretization error has a special form wh
can be included in viscous terms, resulting in second or
accuracy both in space and time. For the seven-speed
agonal LBM model@3#, the kinematic viscosity for Eq.~2!
R21 © 1997 The American Physical Society
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R22 55CAO, CHEN, JIN, AND MARTÍNEZ
can be obtained analytically:n5ueu2«t/42ueu2Dt/8. For Eq.
~3!, we haven5t/421/8. The first part inn is the physical
viscosity and the negative part of the viscosity is the con
quence of taking account of discretization error and replac
V by the downwind operator@5#.

It should be pointed out, however, that this particular d
cretization and the conditionDt5Dx are not necessary. Ac
tually, any standard finite difference~FD! scheme@4,6–8#
will serve the purpose of solving Eq.~1! as well. The use of
Eq. ~3! reflects the historical fact that LBM came about as
refinement, or a by-product of the lattice gas automa
method~LGA! @9#. In the latter, ‘‘Boolean’’ particles reside
in a discrete lattice, subject to the automaton dynamics
streaming and collision. One of the main ideas driving
initial LGA efforts was to produce thesimplestmicrodynam-
ics that would yield hydrodynamics behavior. Recoveri
rotational invariant macroscopic equations from a discr
finite velocity microscopic dynamics imposes constraints
the symmetry of the lattice used, unlike the continuum Bo
zmann equation with infinite velocities, for which rotation
invariance is automatically recovered. For LBM this is o
tained from physical symmetry and lattice symmetry. By t
physical symmetry we mean the symmetry attached to
velocity space and the equilibrium distribution for velocitie
including the combination of specific weights in equilibriu
distribution functions for different speeds, the choice of p
rameters in the equilibrium distribution function, and a s
ficient number of moving velocity directionsN. The lattice
symmetry requirements are that the number of lattice dir
tions~in x space! and the number of lattice links are the sam
as those for the particle distribution functions@10#. One of
the fundamental differences between LGA and LBM is th
while in LGA individual particles are followed, in LBM the
‘‘molecular chaos’’ assumption is used, leading to the loss
particle-particle correlations. At this point it is important
distinguish between the symmetry needed to recover the
rect macroscopic equations~physical symmetry!, and the
symmetry that is required from the lattice~lattice symmetry!.
Because of the ‘‘streaming’’ step~particle or distribution
functions hopping between neighboring cells! the two sym-
metries go together. While the streaming of particles is
essential part of LGA dynamics, it is not crucial for LBM
Any discretization of Eq.~1!, such as FD or finite elemen
method will suffice to get the Navier-Stokes equations.
this way, what we termed thephysical symmetry can be
separated from the lattice symmetry.

Once this is recognized, a variety of options beco
available for the method. For example, introducing no
uniform meshes~or any non-Cartesian coordinates, su
as cylindrical or spherical! would be as easy as in othe
conventional schemes, such as FD. All existing LB
models could be extended to this approach. This could
accomplished with the present approach by simply discre
ing the gradient operator in the convection term in the
propriate coordinates. One possible way to release the
straint of the lattice symmetry is to use the finite differen
scheme for the lattice Boltzmann equation~FDLBE!. For
example, the central difference scheme for smooth solut
can be utilized to calculate the spatial gradient in E
~1!, ] f i /]x5Dxf i5@ f i(x1Dx,y)2 f i(x2Dx,y)#/(2Dx),
] f i /]y5Dyf i5@ f i(x,y1Dy)2 f i(x,y2Dy)#/(2Dy).
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The temporal discretization is obtained using second
der Runge-Kutta~modified Euler! method. The time evolu-
tion of particle distribution functions is then derived b
f i

@n1(1/2)#5 f i
(n)2Dt/2Ri

(n) and f i
(n11)5 f i

(n)2DtRi
@n1(1/2)# ,

whereRi52(eixDx1eiyDy) f i2( f i2 f i
eq)/«t. Thus, combi-

nation of these specific space and time discretizations res
in a second order in both time and space. Only the phys
viscosity will survive in this approach.

As the first example, we apply the FDLBE scheme
simulate the evolution of the two-dimensional Taylor vort
flow in a square periodic domain using a nonuniform me
Eight moving velocities and one rest velocity (N59) are
used@3,11#, but the diagonal spatial links are not needed. F
this system, the kinematic viscosity,n, is «t/3. 323128 grid
points are used, i.e.,Dx54Dy. Numerical and analytical so
lutions for this decaying flow are presented in Fig. 1, sho
ing excellent agreement.

To demonstrate the flexibility of LBE with the lattic
symmetry released, we present an example of a LBE ap
cation in cylindrical coordinates. Consider the fluid flow b
tween two coaxial cylinders. The fluid is at rest initially. Th
outer cylinder suddenly starts to rotate with a constant ve
ity V, while the inner cylinder is kept still all the time. Fo
this classic problem, an analytical solution can be deriv
based on the Fourier-Bessel expansion@12#. It is convenient
to describe this problem in cylindrical coordinates, in whi
the only nonzero angular component of velocityvu de-
pends on the radial coordinater . Here, the origin of the

FIG. 1. Simulation of 2D Taylor vortex with FDLBE att
510 ~h! and 50 ~n!. The analytical solution~solid lines! for
the velocity is u(x,y,t)52u0exp@2nt(k1

21k2
2)#cos(k1x)sin(k2y)

and v(x,y,t)5u0(k1 /k2)exp@2nt(k1
21k2

2)#sin(k1x)cos(k2y), where
u050.01, andk151 andk254 are the wave numbers in thex and
y directions, respectively.~a! v(x)uy5p /u0 vs x; ~b! u(y)ux5p vs
y. The relaxation time«t is 0.0018.
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coordinater50 coincides with the center of the geometr
r5a and r5b correspond to the inner and outer cylinde
respectively. The time-dependent velocity,vu(r ,t), can be
written as vu(r ,t)5A(r /a2a/r )1A(n51

` AnZn(r /
a)exp(2nln

2t), where A5abV/(b22a2) is a constant,
Zn(r /a)5J1(lnr /a)2@J1(ln)/Y1(ln)#Y1(lnr /a) areeigen-
functions, and eigenvaluesln with n51,2, . . . areroots of
equation J1(lnb/a)2J1(ln)/Y1(ln)Y1(lnb/a)50. An’s
are constant coefficients determined
An5*a

br (r /a2a/r )Zn(r /a)dr/*a
br @Zn(r /a)#

2dr.
LBE simulation is performed in the domaina<r<b,

and 0<u<2p. The numerical grid is defined on th
cylindrical coordinates (rm ,un), where rm5a1(m
21)(b2a)/(M21) andun52p(n21)/N, with M andN
being numbers of grid points in radial and angular directio
respectively. The particle distribution functionf i(rm ,un) is
defined along nine directionsei as those of regular squar
lattice in Cartesian space in the velocity space, but oncylin-
drical grid pointsin physical coordinate space. The collisio
operator can be easily processed using velocity compon
vx , vy in the Cartesian coordinates as intermedi
quantities. The cylindrical velocity componentsv r and vu
can be obtained by projectingvx and vy onto radial and
angular unit vectorser andeu . Nevertheless, the convectio
term is now calculated in cylindrical coordinates, i.
ei•¹ f i5ei•er] f i /]r1ei•eu] f i /r ]u. Again, using the cen-
tral difference scheme for the spatial discretization and
second order Runge-Kutta scheme for time advance re
in a second order scheme in both space and time. The
trapolation method@13# has been adopted to treat the wa
boundary on the cylinders to achieve second order accu
for the boundary conditions. In the angular direction, t
periodic boundary condition is naturally applied. In Fig. 2 w
present the angular velocity as a function ofr at different
time steps, compared with those from the analytical solut
The agreement is excellent. It should be mentioned that
unidirectional feature of the rotating cylinder problem is n

FIG. 2. Normalized numerical velocity profiles~solid lines!
as functions ofr for t510, 20, 30, 40, 50, 60, and 200, compar
with those of analytical solution~dots!. The radius ratiob/a52.
The relaxation time«t equals 0.001. 5331000 grid points in
radial and angular directions have been used in the numerical s
lation.
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preassumed in our numerical method. Therefore, the LBE
cylindrical coordinates presented here is applicable to m
general problems.

The standard lattice Boltzmann discretization in Eq.~3!
often encounters numerical instability for high Reynol
number flows@4# and for thermal problems. In general, n
merical stability requires that the time step and spatial s
satisfy the Courant-Friedricks-Lewey~CFL! condition
@14,4#: uei uDt/Dx<1. The standard LBE assumesDt5Dx,
leading touei u<1. For the seven-velocity hexagonal mod
this condition is marginally satisfied. That is the reas
why the scheme is often unstable when viscosity g
small (t→1/2). For the 13-velocity thermal model@15#, the
standard LBM does not satisfy this CFL condition for th
velocity distribution function with speed 2. For this syste
only a very narrow temperature range can be simulated. W
FDLBE, the stability can be ensured by relaxing t
Lagrangian particle convection and by adjusti
Dt(<Dx/uei u). To demonstrate this idea, we simulate t
thermal conduction in a channel with the top wall movin
at a constant speedU0 @15#. The analytical solution for
the temperature distribution can be written
T!5(T2T0)/(T12T0)5

1
2(11y!)1(Br /8)(12y!2), where

y!5y/L, Br is the Brinkman number,U0
2/(T12T0)

2, L
is the channel width, andT0 andT1 are temperatures at th
top and the bottom wall, respectively. The FDLBE meth
has been used to discretize the 13-velocity thermal mo
equation as proposed in Ref.@15#. The agreement betwee
theory and simulation shown in Fig. 3. We emphasize t
the results are obtained on arectangularmesh using the
13-velocity model~three speeds!. In addition, since the CFL
condition is satisfied (a50.2), we did not encounter an
numerical stability problem here, as often occurred in pre
ous numerical simulations@15#. In fact, using the FDLBE the
range of the particle speed can be extended, which help
simulating problems with a broad range of temperature.

The use of semi-implicit schemes may be another solu

u-

FIG. 3. Normalized temperatureT!5(T2T0)/(T12T0) for
Couette flow with heat transfer for Brinkman numbersBr55 ~L!
andBr510 ~1!. Solid line is the analytical solution as given in th
text. The top wall moves with speedu050.1, and the bottom
wall is at rest.
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R24 55CAO, CHEN, JIN, AND MARTÍNEZ
for improving numerical stability without much additiona
computational work. Actually Eq.~2! can be solved by the
following scheme: f i(x,t1Dt)5 f i(x,t)2a@ f i(x,t)
2 f i(x2eiDx,t)#2b/t@ f i(x,t1Dt)2 f i

eq(x,t1Dt)#. In this
equation, the unknown density and momentum
f i
eq(x,t1Dt) can easily be obtained through moment eq
tions, preventing one from solving a tridiagonal matrix. T
implicit method will allow a larger time step (Dt@«t) in the
integration of Eq.~2! for simulating flows at high Reynold
numbers, where«t is small.

We point out that for interface problems, such as sho
waves and two-phase flows, an upwind finite difference
Eq. ~1! might have some advantages. This is so becaus
upwind scheme is more capable of capturing steep gradi
than the second order central-difference discretization. T
is also one of reasons why the LBM is a good scheme
two-phase fluid flows. Accordingly, a possible extension
to combine a second-order upwind method with a slope l
iter @16# that will make the discretization become first ord
where the gradient is greater than a certain threshold,
d
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allowing for a better capture of the interface. We are pr
ently exploring this possibility.

Other similar kinetic approaches to the NS equations
ist. For example, the gas-kinetic finite volume method@17# is
a kinetic method that uses a relaxation operator as an
proximation to the collision term in the Boltzmann equatio
The scheme, however, also makes use of an infinite velo
space, unlike LBM and FDLBE, which are characterized
using only a small set of velocities. The kinetic-type rela
ation method for solving the hyperbolic conservation syst
has been proposed by Jin and Xin@16#. This approach uses
the relaxation approach to model the nonlinear terms,
thus, it is free of nonlinear Riemann solvers. Both of the
models were developed mainly for shock capture in Eu
systems, whereas the lattice Boltzmann method is more
cused on viscous complex flows in the nearly incompress
limit @1,11#.
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