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Distribution of sizes of erased loops for loop-erased random walks
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We study the distribution of sizes of erased loops for loop-erased random walks on regular and fractal
lattices. We show that for arbitrary graphs the probabHty) of generating a loop of perimetélis express-
ible in terms of the probabilityP.(l) of forming a loop of perimetet when a bond is added to a random
spanning tree on the same graph by the simple rel&idh= P(1)/I. Ond-dimensional hypercubical lattices,
P(l) varies asl™“ for large |, where c=1+2/z for 1<d<4, wherez is the fractal dimension of the
loop-erased walks on_the graph. On recursively constructed fractalsdwith this relation is modified to
o=1+2d/(dz), whered is the Hausdorff andl is the spectral dimension of the fractal.
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The loop-erased random walkERW) is a simpler vari- Bounds on the expected number of erased steps have been
ant of the well-known self-avoiding walkSAW) problem,  obtained by Lawlef8], and it was found that is<4 dimen-
which retains the no self-intersection property of SAWSs, butsions the fraction of steps remaining unerase® as the
is closer to the ordinary random walk problem. In this paperpnumber of stepdl— . Duplantier obtained exact exponents
we study the distribution of sizes of erased loops for LERWsior the behavior of the probability th&t LERWSs of length
on arbitrary graphs and relat_e it to the distribution of sizes _oﬂq starting at neighboring points do not intersect and also the
loops formed when a bond is added to a random spanning;nging number distribution of a LERV8]. Lawler has also

tree on the same graph. In the themodynamic limit this disgpo\yn[10] that the LERW is equivalent to the Laplacian
tribution has a power law tail, and we express the exponenf, - 4" \valk model studied by Lyklema and Evert3]
in terms of the fractal dimension of the chemical paths on Our interest in this paper is the distribution of sizes of

fscﬁaggggf]n]ﬁgﬁé\]{\r/aecg{lsso show how this relation is mOdIﬁederased loops for the LERW problem. The corresponding

In spite of the fact that the LERW model is somewhatqueStion for the totally random walks is the well-known

more tractable analytically than the SAW problem, the numF0lya problen{12]. For SAWs the problem is also the well-

ber of papers devoted to this problem has remained rathéfudied question of enumeration of polymer rirdss]. A
small. The model was defined by Lawlgt], who called it ~ Similar problem is encountered in the context of the self-
the loop-erased self-avoiding walkESAW). This terminol- organized Eulerian walkers model and has been studied re-
ogy is somewhat inappropriate, and we prefer to use the ter@ently by Shcherbakoet al. [14]. We show that the prob-
LERW in this papef2]. Lawler showed that for space di- ability P(l) that an erased loop has perimeter equals
mensionalityd>4, the large length scale properties of the Psi(1)/I wherePg(1) is the probability that a loop of perim-
LERWSs are the same as those of simple random walks. Thusterl is formed when a bond is added to a random spanning
if r,, is the end-to-end distance of anstep LERW and we tree. For largé, P(l) andP(l) are expected to show power
define the exponent such that(r2)~n?’, thenv has the law behaviors, saP(l)~1~7 andPg(I)~1~". Then our re-
value 1/2 ind>4. For d<4, Lawler derived the rigorous sult implies that
bound thatv= the flory value 3/¢1+2) for SAW [3]. From
numerical simulations, Guttman and Bur$#l] obtained the
values »=0.800-0.003 in two dimensions and o=71+1. (1)
v=0.6160.004 in three dimensions. The corresponding
values for SAWS ares=0.750 andv=0.59+0.004 in two
and three dimensions, respectively. This shows that LERWVe give scaling arguments to derive the exponeiri terms
and SAW are in different universality classes. Guttman andf the fractal dimensioa of chemical paths on random span-
Bursill conjecturedv=4/5 in two dimensiongsee, however, ning trees. For deterministic fractals, this expression is modi-
[5]). This was proved by Majumdal6] by relating the fied, and also involves the ratio of Hausdorff and spectral
LERW problem to that of random spanning trees and showdimensions of the fractal. As a simple illustrative example
ing that the fractal dimension of LERWSs is the same as thawe consider the Sierpinski gasket, and calculate the expo-
of chemical paths in random spanning trees. In two dimennentsz and 7 directly from first principles.
sions the latter is known using the equivalence of spanning Consider an N step simple random walk »
trees to theg— 0 limit of the g-state Potts model from con- =[w(0),w(1), ...,0(N)], where w(k) is the position of
formal field theory[7]. the random walker on the lattice aftkrsteps. Letj be the
smallest value such that(j)=w(i) for 0<i<j<N.
We then obtain a new walk, w=[w(0),w(l),...,
*Electronic address: ddhar@theory.tifr.res.in o(i),0(j+1), ... w(N)], by deleting all steps between
"Electronic address: abhi@theory.tifr.res.in andj. This process, corresponding to the removal of loops
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= probability P(O|£,bj) that (i) occurs given that loog is
0 formedon the spanning trewith b; as the last bond. Thus,
we have
bg Ix
P(L,b))=Pg(L,b;).P(O|L,b)). 4
b b7 b6
As for any spanning tre&, with end point of walk on%,
by bs the directed path fron® must lead to one of the sites in the
by o] b loop %, we must have
3
1 - |
’ > P(O|L,b)=1. 5
i=1
Summing Eq(4) overj from 1 tol, and using Eq(5) we get
[
FIG. 1. A spanning tred@y with the end point of walk aX. The 2 P(L,bj)=Ps(L)/1. (6)
loop £ (shown in bold of ten directed bonds is formed if the bond =1

bg, denoted by the white arrow, is addedTtg. In this case thereis ) o
a directed path from the origi® to the head obs. Finally, we sum over different shapes and positions of loop

L having the same perimetérto get

from w in chronological order, is repeated untiljacan no P(1) =P (/] )

longer be found. The resulting walk is a LERW of length st :

n<N. , . , g In deriving this result we have used the fact that the
Consider a LERW, on a-dimensional hypercubicdl® N _, . jimit is taken before thé. — o limit. It seems reason-

torus, formed from al step simple random walk by erasing gpje that the order of limits in definitiofl) can be inter-

loops. We defineP(I,N,L) to be the probability that the changed without affecting the valug(l). However, our

(N+1)th step results in erasing a loop of perimdteket proof uses the spanning tree property, and hence needs modi-
fication if theL—oo limit is taken before théN— oo limit.
P(l)=1lim lim P(I,N,L). 2 On a square lattice it is easy to calcul&g(l) exactly for
L= N small values of | [17]. We thus find P(2)=0.25,

P(4)~0.03681, and?(6)~0.01034. We have done Monte
Consider the random walk starting @t After N steps of  Carlo simulations and verified these figures to very high ac-

the walk, we consider the directed tree that is formed usinguracy. In two dimensions;=8/5[17], and this implies that
last exit bonds from all the sites visited by the walk, excepty=13/5 ford=2. This is also in good agreement with our
the end point of the walk. This is called the last exit treesjmulations.
Ty afterN steps. FoN>L¢, all sites of the lattice are visited For d<4, the number of steps of the random walkNf
at least once, andy is a spanning tree. It was proved by steps that are still not erased is a negligible fractiohl ¢8].
Broder[15] that in the steady state all such spanning treeshen the expected number of erased steps per step of the
occur with equal probability. The LERW aftél steps is just  random walk is
the directed path fron® to the end point of the walk along
TN .
Now, consider a particular loog of | directed bonds 22 IP(1)=1 for d=4. ®
by,by, ... b (see Fig. 1L Let P(L,b;) be the probability
that the (N+1)th step of the walk will result in formation of For d>4, there is a finite probability that a bond of the
the loop £ in the LERW problem, with theN+1)th step  random walk which is generating the LERW will not be
being along the bond; . This occurs if and only ifii) the  erased at any future time. Let this probability be called
(N+1)th step forms the loof on Ty, with b; as the last p_ . Then ford>4, the average length of loop erased walk
step,(ii) there is a directed path ify, from O to the head site  for a random walk ofN steps increases a$P... Since the

of bj, which does not include any bonds ~average lengh erased NS} ,IP(1), this implies that
Let Pg(L,b;) denote the probability thdt) occurs. This

probability is easy to compute using the break-collapse -

method [16], which collapses loopl to a single point. > IP(H=1-P... 9)
Hence, it is easy to to see thag(L,b;) is the same for all =2
j from 1 tol. Thus,

©

Thus, by using our relation between the LERWs and span-
ning trees, we are led to the interesting and paradoxical result

Psi( £,bj)=Pg(L)/1, (3 that P, can be thought of as the probability that adding a

bond at random to a random spanning tree will not form a

whereP¢(£) denotes the probability that loap is formed loop of finite perimeter, and this is nonzero if the dimension
on Ty, whatever the position of the last step. To calculated of the space in which the spanning tree is embedded is
P(L,b;j), we have to multiplyP¢(L,b;) by the conditional ~greater than 4. This result clearly depends on the fact that the
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limit /—oo in the summation. For finite lattices, adding a
bond to a spanning tree must lead to the formation of a loop.

We now present a scaling argument to determinén "'a\
terms of the fractal dimension of the LERW = 1/v). Let
n(l,N)= no. of loops of lengtt generated when the random A B C
walk is of N steps. The typical excursion of a random walk
of N stepsR varies asN*2, FIG. 2. Diagrams representing the generating functions for

For 1<d<4, the linear size of the Iargest IOOp that is spanning trees on the Sierpinski gasket.
generated is expected to be of the ordeRoSincel ~R? the
perimeter of the largest loop-N?2. For largeN, n(I,N)  from the general recursion equations for thestate Potts
grows asNP(l). From finite size scaling theory, we expect model in the limitg— 0 [18]. However, for our purpose here,
that for largel andN, n(l,N) satisfies the scaling form it is more convenient to use the recursion equations written

down by Knezevic and Vannimend§V) [19] in the context
(10) of studying collapse transition of branched polymers on the
SG. Only three of the six graphs studied by KV have no
vacant sites, and thus only these have nonzero weights for
wheref(x) is a scaling function. For the cumulative distri- the problem of spanning tredwith no other interactions

thermodynamic limit of large system size is takssforethe % é

n(l,N)~

W—

bution (no. of loops of size=1) These correspond to the cases where all the three vertices of
N | the rth order triangle are connected to each other using
c(I,N)~ ﬁg( . ) (11)  bonds within the tree, two are connected to each other and
| N not to the third, and all three are unconnected. 2). Let

these weights be callei”, B(", andC(", respectively. By
definition A(") gives the number of spanning trees on the
rth order gasketB(") gives the number of two-rooted trees
with two vertices connected, ar@” gives the number of
three-rooted spanning trees with all vertices unconnected.
From KV, or directly, the recursion equations f&r B, and

The scaling functiomg(x) is assumed to be finite at small
x and decay rapidly for large, i.e., for| larger than the
cutoff lengthN?2. For | =kN??, wherek is a finite constant
of order 1 we must have(l) of order 1. This gives

o=1+ = (12)  C are easily written as
2
In one dimension, the scaling argument given above breaks AT =6AB,
down. On a linear chain, the erased loops can only be of size (F+1)— 7 AR AT
I=2. On more complicated but linear graphs, such as lad- B =7ATBY +ATC, (14)
ders, we can have loops of arbitrarily large valued,dfut 3
P(l) decays exponentially with, and the size of the largest Cr*=12AMBCM + 148",

loop generated does not scaleRysas assumed in the scaling L ) (1)_ 1)_ (1)_

argument. Fod>4, the LERW is approximately a random 'he initial values are given bp™'=3, B*/=1, C¥'=1

walk ando=d/2. We define a new variablg(?=AMCO/BM”, |t is easy to
Note that the scaling relation E¢l2) does not involve see thatx(") satisfies the following recursion equation:

the dimension of spaag explicitly, but still is valid only for -

d less than the the upper critical dimension 4. It is interesting X(r+1) = 2XT 4113 (15)

to ask how this relation needs to be modified to remain valid 49/36+ XV /36+ 7X(M/18

for noninteger values ofl. We confine our arguments to

recursively defined fractals, which are explicitly constructedThis equation has the fixed poiKt' =3. Letl, andl, be the

spaces having a noninteger average lengths of the chemical paths connecting the lower
The scaling argument above is easily extended to workwo vertices of theth order generating functions andB,

for deterministic fractals. In this case, for a random walk ofrespectively. To find the recursions figrandl, consider, for

N stepsR~N%2¢ (for d<2), whered andd are the spectral €xample, the graph of order 1) and typeB shown in

and Hausdorff dimensions of the fractal. Repeating the abov&ig. 3@). The probability of this graph if(NB(O?YBI+D)

argument, we then obtain

o=1+ ﬁ for d=<2. (13 .
zd
Calculation of the chemical distance exponefibr span- J}
ning trees is quite straightforward for simple deterministic 2R
fractals of finite ramification index. Since this calculation has (@) ()
not appeared so far in the literature we describe it briefly
below for the Sierpinski gaské6G). The exact renormaliza- FIG. 3. Formation of a loop of perimeter of the orderRff on

tion equations for spanning trees on the SG may be deducegdidition of a bond.
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=1/(7+ X*)=1/10.The length of the chemical path connect-A graph by the addition of a bond to B graph with the
ing the vertices id,+2l,. Thus, the contribution of this added bond labeled. But for every resultiAggraph the la-
graph tol "V is (I .+ 21,)/10. Summing up over all relevant beled bond could be anywhere on the backbaeh joining

graphs we get the three corner verticesf length of ordelR% This gives us
|1+ =5]./3+21,/3, BRE=AR?, (18
|+ D= 6] /5+1,. (16) Now we note that the resistance between two points on a

lattice with unit resistances on all bonds is given by the ratio
We thus obtair,,I,~\", A =(20+ /205)/15 being the larg- ©0f number of two-rooted spanning trees, with roots at the two
est eigenvalue in Eq16). Thusl ~R?, whereR is the linear ~ given points, to the number of single-rooted spanning trees.

size of the gasket ang=In\/In2. Putting in the value ok It follows then that the ratidB/A gives the resistance be-
we getz=1.1939. .. . tween the corner points of a triangle, which scaleR&sand

We now find the exponent. We show in Fig. 3 how a SO is related to the spectral dimension of the lattice. It can be

loop of the order oR? may be obtained by adding a bond so shown easily thatr=2d/d—d. Thus from Eq.(18) we get

that the one of the lower ordd type graph becomes ah —

type graph. Supposing there && positions where we could B=z—a=z-2d/d+d. 19

have added the bond in order to get the loop. Then the probL-Jsin this in Eq.(17) we get

ability of this event~RP/RY. Hence, we obtain g a g o

R 1_RA—d) 17) 7=2d/zd. (20
From Eq.(7) the LERW exponentr=7+1 and we verify

Thus, we can findr if we can determine the exponept e result Eq(13) obtained by simple scaling arguments.
which gives the fractal dimension of the boundary between

the two constituting subtrees of tiie type graph. We note We thank S. N. Majumdar and M. Barma for critically
that R? times B(") gives the number of ways of getting an reading the manuscript.
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