
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Distribution of sizes of erased loops for loop-erased random walks

Deepak Dhar* and Abhishek Dhar†

Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
~Received 19 December 1996!

We study the distribution of sizes of erased loops for loop-erased random walks on regular and fractal
lattices. We show that for arbitrary graphs the probabilityP( l ) of generating a loop of perimeterl is express-
ible in terms of the probabilityPst( l ) of forming a loop of perimeterl when a bond is added to a random
spanning tree on the same graph by the simple relationP( l )5Pst( l )/ l . Ond-dimensional hypercubical lattices,
P( l ) varies asl2s for large l , where s5112/z for 1,d,4, wherez is the fractal dimension of the
loop-erased walks on the graph. On recursively constructed fractals withd̃,2 this relation is modified to
s5112d̄/(d̃z), whered̄ is the Hausdorff andd̃ is the spectral dimension of the fractal.
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The loop-erased random walk~LERW! is a simpler vari-
ant of the well-known self-avoiding walk~SAW! problem,
which retains the no self-intersection property of SAWs, b
is closer to the ordinary random walk problem. In this pap
we study the distribution of sizes of erased loops for LER
on arbitrary graphs and relate it to the distribution of sizes
loops formed when a bond is added to a random span
tree on the same graph. In the themodynamic limit this d
tribution has a power law tail, and we express the expon
in terms of the fractal dimension of the chemical paths
spanning trees. We also show how this relation is modifi
for deterministic fractals.

In spite of the fact that the LERW model is somewh
more tractable analytically than the SAW problem, the nu
ber of papers devoted to this problem has remained ra
small. The model was defined by Lawler@1#, who called it
the loop-erased self-avoiding walk~LESAW!. This terminol-
ogy is somewhat inappropriate, and we prefer to use the t
LERW in this paper@2#. Lawler showed that for space d
mensionalityd.4, the large length scale properties of t
LERWs are the same as those of simple random walks. T
if r n is the end-to-end distance of ann step LERW and we
define the exponentn such that^r n

2&;n2n, then n has the
value 1/2 ind.4. For d,4, Lawler derived the rigorous
bound thatn> the flory value 3/(d12) for SAW @3#. From
numerical simulations, Guttman and Bursill@4# obtained the
values n50.80060.003 in two dimensions and
n50.61660.004 in three dimensions. The correspond
values for SAWS aren50.750 andn50.5960.004 in two
and three dimensions, respectively. This shows that LE
and SAW are in different universality classes. Guttman a
Bursill conjecturedn54/5 in two dimensions~see, however,
@5#!. This was proved by Majumdar@6# by relating the
LERW problem to that of random spanning trees and sh
ing that the fractal dimension of LERWs is the same as t
of chemical paths in random spanning trees. In two dim
sions the latter is known using the equivalence of spann
trees to theq→0 limit of the q-state Potts model from con
formal field theory@7#.
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Bounds on the expected number of erased steps have
obtained by Lawler@8#, and it was found that in<4 dimen-
sions the fraction of steps remaining unerased→0 as the
number of stepsN→`. Duplantier obtained exact exponen
for the behavior of the probability thatk LERWs of length
n starting at neighboring points do not intersect and also
winding number distribution of a LERW@9#. Lawler has also
shown @10# that the LERW is equivalent to the Laplacia
random walk model studied by Lyklema and Evertsz@11#.

Our interest in this paper is the distribution of sizes
erased loops for the LERW problem. The correspond
question for the totally random walks is the well-know
Polya problem@12#. For SAWs the problem is also the wel
studied question of enumeration of polymer rings@13#. A
similar problem is encountered in the context of the se
organized Eulerian walkers model and has been studied
cently by Shcherbakovet al. @14#. We show that the prob-
ability P( l ) that an erased loop has perimeterl , equals
Pst( l )/ l wherePst( l ) is the probability that a loop of perim
eter l is formed when a bond is added to a random spann
tree. For largel , P( l ) andPst( l ) are expected to show powe
law behaviors, sayP( l ); l2s andPst( l ); l2t. Then our re-
sult implies that

s5t11 . ~1!

We give scaling arguments to derive the exponents in terms
of the fractal dimensionz of chemical paths on random spa
ning trees. For deterministic fractals, this expression is mo
fied, and also involves the ratio of Hausdorff and spec
dimensions of the fractal. As a simple illustrative examp
we consider the Sierpinski gasket, and calculate the ex
nentsz andt directly from first principles.

Consider an N step simple random walk v
5@v(0),v(1), . . . ,v(N)#, wherev(k) is the position of
the random walker on the lattice afterk steps. Letj be the
smallest value such thatv( j )5v( i ) for 0< i, j<N.
We then obtain a new walk, v̄5@v~0!,v~1!, . . . ,
v( i ),v( j11), . . . ,v(N)], by deleting all steps betweeni
and j . This process, corresponding to the removal of loo
R2093 © 1997 The American Physical Society
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from v in chronological order, is repeated until aj can no
longer be found. The resulting walk is a LERW of leng
n<N.

Consider a LERW, on ad-dimensional hypercubicalLd

torus, formed from anN step simple random walk by erasin
loops. We defineP( l ,N,L) to be the probability that the
(N11)th step results in erasing a loop of perimeterl . Let

P~ l !5 lim
L→`

lim
N→`

P~ l ,N,L !. ~2!

Consider the random walk starting atO. After N steps of
the walk, we consider the directed tree that is formed us
last exit bonds from all the sites visited by the walk, exce
the end point of the walk. This is called the last exit tr
TN afterN steps. ForN@Ld, all sites of the lattice are visited
at least once, andTN is a spanning tree. It was proved b
Broder @15# that in the steady state all such spanning tr
occur with equal probability. The LERW afterN steps is just
the directed path fromO to the end point of the walk along
TN .

Now, consider a particular loopL of l directed bonds
b1 ,b2 , . . . ,bl ~see Fig. 1!. Let P(L,bj ) be the probability
that the (N11)th step of the walk will result in formation o
the loopL in the LERW problem, with the (N11)th step
being along the bondbj . This occurs if and only if~i! the
(N11)th step forms the loopL on TN , with bj as the last
step,~ii ! there is a directed path inTN fromO to the head site
of bj , which does not include any bonds inL.

Let Pst(L,bj ) denote the probability that~i! occurs. This
probability is easy to compute using the break-collap
method @16#, which collapses loopL to a single point.
Hence, it is easy to to see thatPst(L,bj ) is the same for all
j from 1 to l . Thus,

Pst~L,bj !5Pst~L!/ l , ~3!

wherePst(L) denotes the probability that loopL is formed
on TN , whatever the position of the last step. To calcul
P(L,bj ), we have to multiplyPst(L,bj ) by the conditional

FIG. 1. A spanning treeTN with the end point of walk atX. The
loopL ~shown in bold! of ten directed bonds is formed if the bon
b8, denoted by the white arrow, is added toTN . In this case there is
a directed path from the originO to the head ofb8.
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probability P(OuL,bj ) that ~ii ! occurs given that loopL is
formedon the spanning treewith bj as the last bond. Thus
we have

P~L,bj !5Pst~L,bj !.P~OuL,bj !. ~4!

As for any spanning treeTN with end point of walk onL,
the directed path fromO must lead to one of the sites in th
loopL, we must have

(
j51

l

P~OuL,bj !51. ~5!

Summing Eq.~4! over j from 1 to l , and using Eq.~5! we get

(
j51

l

P~L,bj !5Pst~L!/ l . ~6!

Finally, we sum over different shapes and positions of lo
L having the same perimeterl , to get

P~ l !5Pst~ l !/ l . ~7!

In deriving this result we have used the fact that t
N→` limit is taken before theL→` limit. It seems reason-
able that the order of limits in definition~1! can be inter-
changed without affecting the valueP( l ). However, our
proof uses the spanning tree property, and hence needs m
fication if theL→` limit is taken before theN→` limit.

On a square lattice it is easy to calculatePst( l ) exactly for
small values of l @17#. We thus find P(2)50.25,
P(4)'0.03681, andP(6)'0.01034. We have done Mont
Carlo simulations and verified these figures to very high
curacy. In two dimensions,t58/5 @17#, and this implies that
s513/5 for d52. This is also in good agreement with ou
simulations.

For d<4, the number of steps of the random walk ofN
steps that are still not erased is a negligible fraction ofN @8#.
Then the expected number of erased steps per step o
random walk is

(
l52

`

lP~ l !51 for d<4. ~8!

For d.4, there is a finite probability that a bond of th
random walk which is generating the LERW will not b
erased at any future time. Let this probability be call
P` . Then ford.4, the average length of loop erased wa
for a random walk ofN steps increases asNP` . Since the
average lengh erased isN( l52

` lP( l ), this implies that

(
l52

`

lP~ l !512P` . ~9!

Thus, by using our relation between the LERWs and sp
ning trees, we are led to the interesting and paradoxical re
that P` can be thought of as the probability that adding
bond at random to a random spanning tree will not form
loop of finite perimeter, and this is nonzero if the dimensi
d of the space in which the spanning tree is embedde
greater than 4. This result clearly depends on the fact tha
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thermodynamic limit of large system size is takenbeforethe
limit l →` in the summation. For finite lattices, adding
bond to a spanning tree must lead to the formation of a lo

We now present a scaling argument to determines in
terms of the fractal dimension of the LERW (z51/n). Let
n( l ,N)5 no. of loops of lengthl generated when the rando
walk is of N steps. The typical excursion of a random wa
of N stepsR varies asN1/2.

For 1,d,4, the linear size of the largest loop that
generated is expected to be of the order ofR. Sincel;Rz the
perimeter of the largest loop;Nz/2. For largeN, n( l ,N)
grows asNP( l ). From finite size scaling theory, we expe
that for largel andN, n( l ,N) satisfies the scaling form

n~ l ,N!;
N

l s
f S l

Nz/2D , ~10!

where f (x) is a scaling function. For the cumulative distr
bution ~no. of loops of size> l !

c~ l ,N!;
N

l s21gS l

Nz/2D . ~11!

The scaling functiong(x) is assumed to be finite at sma
x and decay rapidly for largex, i.e., for l larger than the
cutoff lengthNz/2. For l5kNz/2, wherek is a finite constant
of order 1 we must havec( l ) of order 1. This gives

s511
2

z
. ~12!

In one dimension, the scaling argument given above bre
down. On a linear chain, the erased loops can only be of
l52. On more complicated but linear graphs, such as
ders, we can have loops of arbitrarily large values ofl , but
P( l ) decays exponentially withl , and the size of the larges
loop generated does not scale asR, as assumed in the scalin
argument. Ford.4, the LERW is approximately a random
walk ands5d/2.

Note that the scaling relation Eq.~12! does not involve
the dimension of spaced explicitly, but still is valid only for
d less than the the upper critical dimension 4. It is interest
to ask how this relation needs to be modified to remain va
for noninteger values ofd. We confine our arguments t
recursively defined fractals, which are explicitly construct
spaces having a nonintegerd.

The scaling argument above is easily extended to w
for deterministic fractals. In this case, for a random walk

N steps,R;Nd̃ /2d̄ ~for d̃<2), whered̃ andd̄ are the spectra
and Hausdorff dimensions of the fractal. Repeating the ab
argument, we then obtain

s511
2d̄

zd̃
for d̃<2. ~13!

Calculation of the chemical distance exponentz for span-
ning trees is quite straightforward for simple determinis
fractals of finite ramification index. Since this calculation h
not appeared so far in the literature we describe it brie
below for the Sierpinski gasket~SG!. The exact renormaliza
tion equations for spanning trees on the SG may be dedu
p.
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from the general recursion equations for theq-state Potts
model in the limitq→0 @18#. However, for our purpose here
it is more convenient to use the recursion equations writ
down by Knezevic and Vannimenus~KV ! @19# in the context
of studying collapse transition of branched polymers on
SG. Only three of the six graphs studied by KV have
vacant sites, and thus only these have nonzero weights
the problem of spanning trees~with no other interactions!.
These correspond to the cases where all the three vertice
the r th order triangle are connected to each other us
bonds within the tree, two are connected to each other
not to the third, and all three are unconnected~Fig. 2!. Let
these weights be calledA(r ), B(r ), andC(r ), respectively. By
definition A(r ) gives the number of spanning trees on t
r th order gasket,B(r ) gives the number of two-rooted tree
with two vertices connected, andC(r ) gives the number of
three-rooted spanning trees with all vertices unconnec
From KV, or directly, the recursion equations forA, B, and
C are easily written as

A~r11!56A~r !2B~r !,

B~r11!57A~r !B~r !21A~r !2C~r !, ~14!

C~r11!512A~r !B~r !C~r !114B~r !3.

The initial values are given byA(1)53, B(1)51, C(1)51.
We define a new variableX(r )5A(r )C(r )/B(r )2. It is easy to
see thatX(r ) satisfies the following recursion equation:

X~r11!5
2X~r !17/3

49/361X~r !2/3617X~r !/18
. ~15!

This equation has the fixed pointX*53. Let l a andl b be the
average lengths of the chemical paths connecting the lo
two vertices of ther th order generating functionsA andB,
respectively. To find the recursions forl a andl b consider, for
example, the graph of order (r11) and typeB shown in
Fig. 3~a!. The probability of this graph isA(r )B(r )2/B(r11)

FIG. 2. Diagrams representing the generating functions
spanning trees on the Sierpinski gasket.

FIG. 3. Formation of a loop of perimeter of the order ofRz on
addition of a bond.
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51/(71X!)51/10.The length of the chemical path conne
ing the vertices isl a12l b . Thus, the contribution of this
graph tol b

(r11) is (l a12l b)/10. Summing up over all relevan
graphs we get

l a
~r11!55l a/312l b/3,

l b
~r11!56l a/51 l b . ~16!

We thus obtainl a ,l b;l r , l5(201A205)/15 being the larg-
est eigenvalue in Eq.~16!. Thusl;Rz, whereR is the linear
size of the gasket andz5 lnl/ln2. Putting in the value ofl
we getz51.1939 . . . .

We now find the exponentt. We show in Fig. 3 how a
loop of the order ofRz may be obtained by adding a bond
that the one of the lower orderB type graph becomes anA
type graph. Supposing there areRb positions where we could
have added the bond in order to get the loop. Then the p

ability of this event;Rb/Rd̄. Hence, we obtain

R2z~t21!5R~b2 d̄ !. ~17!

Thus, we can findt if we can determine the exponentb,
which gives the fractal dimension of the boundary betwe
the two constituting subtrees of theB type graph. We note
that Rb timesB(r ) gives the number of ways of getting a
lf
m
or
to
ty

. E
-

b-

n

A graph by the addition of a bond to aB graph with the
added bond labeled. But for every resultingA graph the la-
beled bond could be anywhere on the backbone~path joining
the three corner vertices! of length of orderRz. This gives us

B~r !Rb5A~r !Rz. ~18!

Now we note that the resistance between two points o
lattice with unit resistances on all bonds is given by the ra
of number of two-rooted spanning trees, with roots at the t
given points, to the number of single-rooted spanning tre
It follows then that the ratioB/A gives the resistance be
tween the corner points of a triangle, which scales asRa and
so is related to the spectral dimension of the lattice. It can
shown easily thata52d̄/d̃2d̄. Thus from Eq.~18! we get

b5z2a5z22d̄/d̃1d̄ . ~19!

Using this in Eq.~17! we get

t52d̄/zd̃. ~20!

From Eq.~7! the LERW exponents5t11 and we verify
the result Eq.~13! obtained by simple scaling arguments.

We thank S. N. Majumdar and M. Barma for criticall
reading the manuscript.
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