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Solution of the density classification problem with two cellular automata rules

Henryk Fukś
Department of Physics, University of Illinois, Chicago, Illinois 60607-7059

~Received 6 December 1996!

Recently, Land and Belew@Phys. Rev. Lett.74, 5148~1995!# have shown that no one-dimensional two-state
cellular automaton which classifies binary strings according to their densities of 1’s and 0’s can be constructed.
We show that a pair of elementary rules, namely the ‘‘traffic rule’’ 184 and the ‘‘majority rule’’ 232, performs
the task perfectly. This solution employs the second order phase transition between the freely moving phase
and the jammed phase occurring in rule 184. We present exact calculations of the order parameter in this
transition using the method of preimage counting.@S1063-651X~97!50303-5#

PACS number~s!: 05.70.Fh, 89.80.1h
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I. INTRODUCTION

In recent years, cellular automata~CA! @1# have received
considerable attention as models of natural systems in w
simple local interactions between components give rise
complex global behavior. Such systems have the ability
coordinated global information processing, often cal
‘‘emergent computation,’’ which could not be achieved by
single component. Since emergent computation occur
many biological systems such as the brain, the immune
tem, or insect colonies, it is natural to ask how the evolut
produces such complex information processing capabili
in ensembles of simple locally interacting elements.

To model this process, genetic algorithms have been u
to evolve cellular automata capable of performing spec
computational tasks, in particular the so-called density c
sification task@2#. The CA performing this task should con
verge to a fixed point of all 1’s if the initial configuratio
contains more 1’s than 0’s, and to a fixed point of all 0’s
the initial configuration contains more 0’s than 1’s. Th
should happen withinM time steps, where, in general,M
can depend on the lattice sizeL ~assuming periodic boundar
conditions!.

The earliest proposed solution to this problem was
two-state radius-3 rule constructed by Gacs, Kurdyum
and Levin~GKL! @3#. According to this rule, if the state of
cell is 0, its new state is determined by a majority vo
among itself, its left neighbor, and its second left neighbor
the state of the cell is 1, its new state is given by the majo
vote among itself, its right neighbor, and its second rig
neighbor. It has been demonstrated that the GKL rule p
forms the density classification task only approximately, i
not all initial configurations are classified correctly. In pa
ticular, when the initial density is close to 1/2, approximate
30% of the initial configurations are misclassified. Attemp
to evolve CA that perform density classification tasks
sulted in rules comparable to GKL in terms of proficienc
but not better, typically classifying correctly about 80%
all possible initial configurations@2#. In fact, it has been
recently proved by Land and Belew@4# that the perfect two-
state rule performing this task does not exist.

If we think about the cellular automaton as a model o
multicellular organism composed of identical cells, or
single kind of ‘‘tissue,’’ we could say that evolution reache
551063-651X/97/55~3!/2081~4!/$10.00
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a ‘‘dead end’’ here. In the biological evolution, when th
single-tissue organism cannot be improved any further,
next step is the differentiation of cells, or aggregation of ce
into organs adapted to perform a specific function. In
colony of insects, this can be interpreted as a ‘‘division
labor,’’ when separate groups of insects perform differe
partial tasks. For cellular automata, this could be realized
an ‘‘assembly line,’’ with two~or more! different CA rules:
the first rule is iteratedt1 times, and then the resulting con
figuration is processed by another rule iteratedt2 times. Each
rule plays the role of a separate ‘‘organ,’’ thus we can exp
that such a system will be able to perform complex com
tational tasks much better that just a single rule. In w
follows, we will show that for the density classification pro
lem this is indeed the case, and that the perfect performa
can be achieved with just two elementary rules~184 and
232! arranged in the ‘‘assembly line’’ described above.

II. RULE 184

Let G5$0,1% be calleda symbol set, and letS be the set of
all bisequences overG, where by a bisequence we mean
function onZ to G. The setS will be calledthe configuration
space. A block of length nis an ordered setb1b2 . . .bn ,
wherenPN, biPG. Bn denotes the set of all blocks of lengt
n. The number of elements ofBn ~denoted by cardBn)
equals 2n.

A mapping f :$0,1%3°$0,1% will be calledan elementary
cellular automaton rule. Alternatively, the functionf can be
considered as a mapping ofB3 into B05G5$0,1%.
Corresponding to f ~also called a local mapping! we
define a global mapping F:S→S such that @F(s)# i
5 f (si21 ,si ,si11) for any sPS.

A block evolution operatorcorresponding to the local rule
f is a mappingf:Bn°Bn22 defined as

f~b1b2 . . .bn!5 f ~b1 ,b2 ,b3! f ~b2 ,b3 ,b4! . . .

3 f ~bn22 ,bn21 ,bn!, ~1!

wheren.2.
Rule 184 has been studied as a simplest model for

road traffic flow@5#. Its rule table

000→0, 001→0, 010→0, 011→1,
R2081 © 1997 The American Physical Society
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100→1, 101→1, 110→0, 111→1

can be interpreted in terms of ‘‘cars’’~ones! and ‘‘empty
spaces’’ ~zeros!. ‘‘Cars’’ are moving to the right. If the
‘‘car’’ has an ‘‘empty space’’ in front of it, it will move
there, i.e., it will move one unit to the right. Under this rul
the number of ‘‘cars’’ does not change, or in other words,
density of 1’s is conserved.

In order to understand the dynamics of rule 184, let
define apreimageof a finite block aPBk as a blockb
PBk12 such thatf(b)5a. Similarly, a n-step preimageof
the blockaPBk is a blockbPBk12n such thatf n(b)5a,
where the superscriptn denotes multiple composition off,
i.e., iterating f n times. For a given elementary rule, th
number ofn-step preimages of a given blockb @we will
denote this number by cardf2n(b)] can be anything from 0
to 2212n. For many rules, an exact expression for ca
f2n(b) can be found@6#, and the ‘‘traffic’’ rule 184 is among
such exactly solvable cases.

For convenience, let us consider the preimages of
block 00 underf184. We will first prove the following propo-
sition:

Proposition 1. The blocks1s2 . . . s2n12 is ann-step pre-
image of 00 under rule 184 if and only ifs150, s250 and
21( i53

k j(si).0 for every 3<k<2n12, wherej(0)51,
j(1)521.

We will present only a sketch of the proof here, based
the concept of ‘‘defects’’@7–10#. Since the dynamics of rule
184 can be viewed as ‘‘particles’’ or ‘‘defects’’~blocks of
two or more 0’s or 1’s! propagating in the regular back
ground ~periodic pattern of alternating 1 and 0
. . . 101010101 . . . ), it will be useful to introduce a trans
formation eliminating the background. Let us consider
block of length 2n12, and let us check whether it is a pr
image of 00 or not. To eliminate the background, we fi
identify all continuous clusters of at least two zeros. Ea
site in such a cluster is replaced by the symbola, except the
leftmost 0, which is replaced by!. Similarly, in every cluster
of at least two ones, every 1 is replaced by the symbolb,
except the rightmost 1, which is replaced by!. All remain-
ing sites are replaced by!. For example, the string
1010001011000010 will be transformed in
!!!!aa!!b!!aaa!!. The dynamics of the rule ca
now be understood as a motion of blocks ofa ’s andb ’s in
the background of! ’s. Every time step, each block ofa ’s
moves one unit to the right, and each block ofb ’s one unit to
the left. Whena andb blocks collide, each block decreas
its length by one per time step, until one of them~or both!
disappear. Let us now consider the blocks1s2 . . . s2n12 it-
eratedn times with rule 184. The state of the celli at time
t will be denoted bysi

t . Block s1
0s2

0 . . . s2n12
0 can be a pre-

image of 00 whensn
nsn11

n 500, or using our transformation
sn
nsn11

n 5!a. Since all blocks ofa ’s are moving with con-
stant speed, this means that att50 we must have
s1
0s2

05!a or, using the original notation,s1
0s2

0500, which
means thata travels fromi52 to i5n11 in n time steps. It
can travel this distance ‘‘safely,’’ if and only if it does no
collide with anotherb block. This can happen if allb blocks
are annihilated before they hit oura, or in other words, if for
every k such that 2<k<2n12 the number ofb ’s in the
e

s

e

n

a

t
h

subblock s3
0s4

0 . . . sk
0 is smaller than the number ofa ’s.

Translating this back to the original notation~i.e., using 0’s
and 1’s! we obtain the conclusion of Proposition 1.

The s3s4 . . . s2n12 part of the preimage of 00 can there
fore be constructed by using the following algorithm: w
start with an initial ‘‘capital’’ equal to 2. Every time we
choose 0, our ‘‘capital’’ increases by 1, and when we cho
1, it decreases by 1. We have to find a path such that
‘‘capital’’ never reaches zero, the problem known in pro
ability theory as the ‘‘gambler’s ruin problem’’@11#. Let us
denote the ‘‘capital’’ at timet by c(t)5( i53

t j(si), and let
c(2)52. Our strings3s4 . . . s2m12 can be now represente
by a pathc(2)c(3) . . .c(2m12). Geometrically, this can
be viewed as a two-dimensional polygonal line joinin
points @ t,c(t)# starting at (2,2) and ending at (2m12,y),
which neither touches nor crosses the horizontal axis.
number of all such paths can be computed using well kno
combinatorial theorems~see, for example,@11#! and is equal
to N2m,y222N2m,y12, where

Na,b5S a

1
2 ~a1b!

D , ~2!

andNa,b50 if b.a.
In the path from (2,2) to (2m12,y) we have

(2m1y22)/2 zeros and (2m2y12)/2 ones. If we ran-
domly choose 1’s with probabilityp and 0’s with probability
12p, then the probability of selecting admissible path with
given ‘‘finite capital’’ y is

~N2m,y222N2m,y12!p
~2m2y12!/2~12p!~2m1y22!/2. ~3!

Taking into account the fact thaty must be even and that th
first two digits of the preimage must be 00, we conclude t
the probability that a randomly selected string~if we select
ones with probabilityp and zeros with probability 12p) of
length 2m12 is anm-step preimage of 00 is

Pm~00!5~12p!2 (
k51

m11

~N2m,2k222N2m,2k12!

3pm2k11~12p!m1k21. ~4!

Note that if we start from an infinite random initial configu
ration with the density of onesp, then the probability of the
occurrence of the block 00 afterm iterations of rule 184 will
also be given byPm(00).

Although Eq.~4! is rather complicated, asymptotic expa
sion for larget is possible. Using the Stirling formula to
approximate binomial coefficients, after some algebra o
obtains

Pt~00!.5 122p1p
@4p~12p!# t

Apt
if p, 1

2 ,

~12p!
@4p~12p!# t

Apt
otherwise,

~5!

and therefore
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P`~00!5H 122p if p, 1
2 ,

0 otherwise.
~6!

As we can see,P`(00) plays here a role of the order param
eter in a second order kinetic phase transition, with the c
trol parameterp. The critical point is exactly atp51/2, and
at the critical pointPt(00) approaches its stationary value
t21/2. Away from the critical point, the approach is expone
tial, and it slows down asp comes closer to 1/2. For finite
configurations~with periodic boundary condition! the perfor-
mance of rule 184 in eliminating 00 blocks forp.1/2 is
even better.

Proposition 2. If the finite initial configuration consists o
N0 zeros andN1 ones, andN0,N1, then after at most
b(N01N122)/2c time steps all 00 blocks disappear (bxc de-
notes the largest integer less or equal tox).

To see this, let us first considerN01N1 even, so that
N12N0>2. Let us further assume that afte
(N01N122)/2 time steps we still have at least one
block. This means that we can write our entire initial co
figuration asa1a2 . . .aN01N1

, satisfying the hypothesis o

Proposition 1, i.e.,a150, a250 and 21( i53
k j(ai).0 for

every k such that 3<k<N01N1. Note, however, that if
a150, a250, then 21( i53

N01N1j(ai)<0, and since it contra-
dicts the previous statement,a1a2 . . .aN01N1

cannot be a

preimage of 00. The proof for oddN01N1 is similar. Also,
due to the self-duality of rule 184, the same theorem ho
for the block 11 whenN0.N1. WhenN05N1, both 00 and
11 blocks disappear after (N01N122)/2 time steps, and the
configuration becomes an alternating sequence of 0 an
. . . 01010101 . . . .
To summarize, we found that for a finite lattice of leng

L and the densityr, after b(L22)/2c iterations of rule 184
the resulting configuration~i! contains no 00 blocks if
r.1/2, ~ii ! contains no 11 blocks ifr,1/2, ~iii ! contains
neither 00 nor 11 blocks ifr51/2.

III. RULE 232

Rule 232, also called the ‘‘majority rule,’’ has the follow
ing rule table:

000→0, 001→0, 010→0, 011→1,

100→0, 101→1, 110→1, 111→1,

which could be also written as

si
t11→ majority~si21

t ,si
t ,si11

t !. ~7!

Let us assume that the initial configuration includes no
blocks, but at least one 00 block. It is easy to check that
only preimages of 11 underf232 are 0110, 0111, 1011
1101, 1110, and 1111, and all of them contain at least
subblock 11. This means that if the initial configuration co
tains no 11 block, then all subsequent configurations con
no block 11 either. Consequently, all entries in the rule ta
which contain 11~i.e., 110, 111, and 011) do not matter, a
n-

-

-

s

1,

1
e

e
-
in
e

we can change them without affecting the dynamics. Assu
ing that they are mapped to zero we obtain a ‘‘simplified
rule

000→0, 001→0, 010→0, 011→0,

100→0, 101→1, 110→0, 111→0,

which has the code number 32. The following property
rule 32 can be easily proved by induction:

Proposition 3. The blockbPB2n11 is then-step preimage
of 1 if and only if b5101 . . . 01,i.e., it is an alternating
sequence of 1’s and 0’s starting with 1 and ending with

Now, if L is odd, the@(L21)/2#-step preimage of 1 ha
to have the lengthL, so it has to be the entire initial configu
ration. If the entire initial configuration does not have t

FIG. 1. Spatiotemporal diagrams for the~184, 232! pair for
lattice sizeL5100 and the initial density~a! 0.52, ~b! 0.5, and~c!
0.48. An example of twoa defects colliding with theb defect is
shown in~a!. Both rules were iterated 50 time steps~open arrows
indicate where the iteration of rule 232 starts!.
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form required by Proposition 3, it cannot be th
@(L21)/2#-step preimage of 1. Therefore, after@(L21)/2#
iterations of rule 232 the system converges to a state o
zeros. For evenL this happens after (L22)/2 iterations.
Similarly, if the initial configuration includes no 00 block
but at least one 11 block, the system converges to a sta
all ones. If the initial configuration contains neither 00 n
11, it stays in this state forever.

Using Propositions 2 and 3, our final results follow im
mediately:

Proposition 4. Let s be a configuration of lengthL and
density r, and let n5 b(L22)/2c, m5 b(L21)/2c. Then
F232
m @F184

n (s)# consists of only 0’s ifr,1/2 and of only 1’s
if r.1/2. If r51/2,F232

m @F184
n (s)# is an alternating sequenc

of 0 and 1, i.e.,. . . 01010101 . . . .
As we showed, firstn iterations of rule 184 eliminate al

blocks 11 if r,1/2 ~or 00 if r.1/2), and the subsequen
m iterations of rule 232 produce homogeneous configura
of all 0’s ~or all 1’s!. Configurations withr51/2 are also
treated properly, i.e., their density remains conserved
the converge to. . . 01010101 . . . . Examples are shown in
Fig. 1.

IV. REMARKS

In conclusion, we have demonstrated that the density c
sification task can be performed perfectly inL time steps
with two cellular automata rules, rule 184 used in the fi
L/2 steps and rule 232 used in the remaining time steps.
advantage of this ‘‘assembly line’’ processing over a sin
rule is evident, as the single rule can never be 100% succ
ful in density classification.

The existence of this perfect solution does not mean
course, that the evolutionary process could~or could not!
produce such a pair of rules. Therefore, it would be intere
ing to design a genetic algorithm experiment in which pa
of CA rules are evolved, and find out how easy~or difficult!
it is to produce pairs of ‘‘cooperating’’ rules performing be
st
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e
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ter than single rules evolved in earlier experiments. Since
exact solution exists, we may speculate that the average
formance of a pair obtained in such an experiment should
significantly better.

Although the solution proposed here performs the task
L time steps, it is straightforward to construct a faster alg
rithm, providing that we allow rules of larger radius. Iff is a
radius-1 rule, thenf n, the rule iteratedn times, is itself a CA
rule of radiusn. Therefore, the pair (g,h), whereg5 f 184

n

and h5 f 232
n , performs the classification task inL/n time

steps, assuming that we iterate bothg andh for L/2n time
steps.

Another interesting question is the possibility of co
structing a general algorithm to discriminate configuratio
according to an arbitrary critical densityrc . One promising
approach to this problem involves generalized traffic rul
for example, rules with higher ‘‘speed limits’’@5#, where the
occupied site can move to the right by up tom units if the
sites in front of it are empty. Rules of this type exhibit
phase transition atrc51/(m11) similar to the phase transi
tion in rule 184. Any configuration withr5rc converges to
the periodic state of isolated 1’s separated by blocks om
zeros. Blocks of zeros longer thanm are a-type defects,
propagating to the right, while blocks of 1’s longer than 1 a
defects ofb type, propagating to the left. As in rule 184,b
defects are eliminated whenr,rc , anda defects disappea
whenr.rc . One can also construct an analog of rule 23
which growsa defects ifb defects are not present and co
versely, and such a pair of radius-m rules can perform the
rc51/(m11) classification task for any integerm.0 ~de-
tails of this construction will be presented elsewhere!. It is
not clear, however, how to generalize this method for ar
trary rc .
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