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Solution of the density classification problem with two cellular automata rules
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Recently, Land and BelefPPhys. Rev. Lett74, 5148(1995] have shown that no one-dimensional two-state
cellular automaton which classifies binary strings according to their densities of 1's and 0’s can be constructed.
We show that a pair of elementary rules, namely the “traffic rule” 184 and the “majority rule” 232, performs
the task perfectly. This solution employs the second order phase transition between the freely moving phase
and the jammed phase occurring in rule 184. We present exact calculations of the order parameter in this
transition using the method of preimage countif§1063-651X97)50303-5

PACS numbsg(s): 05.70.Fh, 89.80th

I. INTRODUCTION a “dead end” here. In the biological evolution, when the
single-tissue organism cannot be improved any further, the
In recent years, cellular automai@A) [1] have received next step is the differentiation of cells, or aggregation of cells
considerable attention as models of natural systems in whictito organs adapted to perform a specific function. In a
simple local interactions between components give rise to §olony of insects, this can be interpreted as a “division of
complex global behavior. Such systems have the ability ofabor,” when separate groups of insects perform different
coordinated global information processing, often calledpartial tasks. For cellular automata, this could be realized as
“emergent computation,” which could not be achieved by aan “assembly line,” with two(or morg different CA rules:
single component. Since emergent computation occurs ithe first rule is iterated, times, and then the resulting con-
many biological systems such as the brain, the immune sydiguration is processed by another rule iteratetimes. Each
tem, or insect colonies, it is natural to ask how the evolutiorrule plays the role of a separate “organ,” thus we can expect
produces such complex information processing capabilitieghat such a system will be able to perform complex compu-
in ensembles of simple locally interacting elements. tational tasks much better that just a single rule. In what
To model this process, genetic algorithms have been usdallows, we will show that for the density classification prob-
to evolve cellular automata capable of performing specifidem this is indeed the case, and that the perfect performance
computational tasks, in particular the so-called density clascan be achieved with just two elementary ruld$4 and
sification task2]. The CA performing this task should con- 232 arranged in the “assembly line” described above.
verge to a fixed point of all 1's if the initial configuration
contains more 1's than 0’s, and to a fixed point of all 0's if Il. RULE 184
the initial configuration contains more 0’s than 1's. This
should happen withirM time steps, where, in genera¥] Let G={0,1} be calleda symbol setand letS be the set of
can depend on the lattice sigfassuming periodic boundary 2!l bisequences ovey, where by a bisequence we mean a
conditions. function onZ to G. The setS.WHI be calledthe configuration
The earliest proposed solution to this problem was thesPace A block of length nis an ordered seb;b, ... Dby,
two-state radius-3 rule constructed by Gacs, KurdyumovWhereneN,b;jed. B, denotes the set of all blocks of length
and Levin(GKL) [3]. According to this rule, if the state of a N- The number of elements af, (denoted by cards;)
cell is 0, its new state is determined by a majority vote€quals 2. _ _
among itself, its left neighbor, and its second left neighbor. If A mappingf:{0,1}*~{0,1} will be calledan elementary
the state of the cell is 1, its new state is given by the majority:ellular automaton ruleAlternatively, the functiorf can be
vote among itself, its right neighbor, and its second rightconsidered as a mapping oB; into By=G={0,1.
neighbor. It has been demonstrated that the GKL rule perCorresponding tof (also calleda local mapping we
forms the density classification task only approximately, i.e.define a global mapping ES—S such that [F(s)];
not all initial configurations are classified correctly. In par- = f(Si-1,Si,Si+1) for anyseS.
ticular, when the initial density is close to 1/2, approximately A block evolution operatocorresponding to the local rule
30% of the initial configurations are misclassified. Attemptsf is @ mapping:B,— B, defined as
to evolve CA that perform density classification tasks re-
sulted in rules comparable to GKL in terms of proficiency, f(bybz . .. by) =1(by,b;,bg)(D2,03,b4) . ..
but not better, typically classifying correctly about 80% of XF(Dy_0,00_1,b,), 1)
all possible initial configuration$2]. In fact, it has been
recently proved by Land and Beld#] that the perfect two- \wheren>2.
state rule performing this task does not exist. Rule 184 has been studied as a simplest model for the
If we think about the cellular automaton as a model of aroad traffic flow[5]. Its rule table
multicellular organism composed of identical cells, or a
single kind of “tissue,” we could say that evolution reached 000—0, 001-0, 010-0, 011-1,
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100-1, 101-1, 110-0, 111-1

can be interpreted in terms of “cars(ones and “empty
spaces” (zerog. “Cars” are moving to the right. If the
“car” has an “empty space” in front of it, it will move
there, i.e., it will move one unit to the right. Under this rule,

the number of “cars” does not change, or in other words, the

density of 1's is conserved.

In order to understand the dynamics of rule 184, let us

define apreimageof a finite blockae 5, as a blockb

€ By, such thatf(b)=a. Similarly, an-step preimagef
the blockae By is a blockbe By, 5, such thatf"(b)=a,
where the superscript denotes multiple composition d&f
i.e., iteratingf n times. For a given elementary rule, the
number ofn-step preimages of a given blodk [we will
denote this number by carfi" "(b)] can be anything from 0
to 2272" For many rules, an exact expression for card
f~"(b) can be found6], and the “traffic” rule 184 is among
such exactly solvable cases.

For convenience, let us consider the preimages of the

block 00 undefg,. We will first prove the following propo-
sition:

Proposition 1 The blocks;s, . . .Sy,4 2 IS ann-step pre-
image of 00 under rule 184 if and only $f=0, s,=0 and
2+3K ,£(s)>0 for every 3<k=2n+2, where£(0)=1,
&1)=—-1.
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subblock s3s5 . . .s? is smaller than the number af’s.
Translating this back to the original notatidre., using 0’s
and 1'9 we obtain the conclusion of Proposition 1.

Theszs, . . .Syn4» part of the preimage of 00 can there-
fore be constructed by using the following algorithm: we
start with an initial “capital” equal to 2. Every time we
choose 0, our “capital” increases by 1, and when we choose
1, it decreases by 1. We have to find a path such that the
‘capital” never reaches zero, the problem known in prob-
ability theory as the “gambler’s ruin problem[11]. Let us
denote the “capital” at timet by c(t)==!_5&(s;), and let
c(2)=2. Our stringsss, . . - S+ 2 €an be now represented
by a pathc(2)c(3) ...c(2m+2). Geometrically, this can
be viewed as a two-dimensional polygonal line joining
points [t,c(t)] starting at (2,2) and ending at if-2.y),
which neither touches nor crosses the horizontal axis. The
number of all such paths can be computed using well known
combinatorial theorem&ee, for exampld,11]) and is equal
t0 Nopy— 2= Nomy+2, Where

a

3 (a+b)

Na,b (2)

andN, ,=0 if b>a.
In the path from (2,2)
(2m+y—2)/2 zeros and (&—y+2)/2 ones. If we ran-

to (&h+2y) we have

We will present only a sketch of the proof here, based oryom|y choose 1's with probabilitg and 0’s with probability

the concept of “defects’|7—10]. Since the dynamics of rule
184 can be viewed as “particles” or “defects(blocks of

two or more O's or 1's propagating in the regular back-
ground (periodic pattern of alternating 1 and O,
...1010101@...), it will be useful to introduce a trans-

1-p, then the probability of selecting admissible path with a
given “finite capital” y is

(Nomy—2=Nomy+2) p(Zm=y*+2)/2(1 — p)Zmry=2/2 - (3)

L(Trml?ti?r? elimhir;?tinzg thz Ibackgr?]undk. Lhet hus .cc')nsider aTaking into account the fact thgtmust be even and that the
pI0cK O ength 21+ 2, an I_et_ us ¢ ﬁc bW Ift er 'td's a Pre- first two digits of the preimage must be 00, we conclude that
image of 00 or not. To eliminate the background, we firSty\o b ohapility that a randomly selected strifigwe select
identify all continuous clusters of at least two zeros. Eacrbnes with probabilityp and zeros with probability % p) of

site in such a cluster is replaced by the symbpkexcept the
leftmost 0, which is replaced by. Similarly, in every cluster
of at least two ones, every 1 is replaced by the sym®ol
except the rightmost 1, which is replaced yAll remain-
ing sites are replaced bw. For example, the string
1010001011000010 will be transformed into
**xk qgax*x Bx*aaaxx. The dynamics of the rule can
now be understood as a motion of blocksad$ and 8’s in
the background ok’s. Every time step, each block af’s
moves one unit to the right, and each block3d one unit to
the left. Whena and 8 blocks collide, each block decreases
its length by one per time step, until one of théar both
disappear. Let us now consider the blagls, . . . Sy, 4 it-
eratedn times with rule 184. The state of the celht time

t will be denoted bys! . Block s9s3 . ..s, ., can be a pre-
image of 00 whers;s/, ; =00, or using our transformation,
spsn.1=*a. Since all blocks ofa’s are moving with con-
stant speed, this means that &0 we must have
s{s9=xa or, using the original notatiorssa=00, which
means that travels fromi=2 toi=n+1 inn time steps. It
can travel this distance “safely,” if and only if it does not
collide with anotheiB block. This can happen if ap blocks
are annihilated before they hit out, or in other words, if for
every k such that Z2k=<2n+2 the number ofg8’s in the

length 2n+2 is anm-step preimage of 00 is

m+1

Pr(00)=(1— p)2k21 (Nom,2c— 2= Nom 2+ 2)

Xpm—k+1(1_p)m+k—1. (4)
Note that if we start from an infinite random initial configu-
ration with the density of oneg, then the probability of the
occurrence of the block 00 after iterations of rule 184 will
also be given byP,(00).

Although Eq.(4) is rather complicated, asymptotic expan-
sion for larget is possible. Using the Stirling formula to
approximate binomial coefficients, after some algebra one
obtains

_ t
1—2p+p[4p(jﬁp)] if p<1.
P,(00)= do(1 ot ®
(1_p)—[ p(\/ﬁp)] otherwise,

and therefore
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1-2p if p<i,
P..(00)= bz ©)
0 otherwise.

As we can seepR.,(00) plays here a role of the order param-
eter in a second order kinetic phase transition, with the con-
trol parameteip. The critical point is exactly ap=1/2, and

at the critical point?;(00) approaches its stationary value as
t~ 2. Away from the critical point, the approach is exponen-
tial, and it slows down ap comes closer to 1/2. For finite
configurationgwith periodic boundary conditigrthe perfor-
mance of rule 184 in eliminating 00 blocks f@r>1/2 is
even better.

Proposition 2 If the finite initial configuration consists of
No zeros andN; ones, andNyg<N,, then after at most
[(No+N;—2)/2| time steps all 00 blocks disappedx|( de-
notes the largest integer less or equak}o (b)

To see this, let us first consid@&t;+ N; even, so that
Ni—Ng=2. Let wus further assume that after
(No+N;—2)/2 time steps we still have at least one 00
block. This means that we can write our entire initial con-
figuration asa;a, .. .an,+n,, satisfying the hypothesis of
Proposition 1, i.e.a;=0, a,=0 and 2+ =K ,£(a;)>0 for
every k such that 3<k=Ngy+N;. Note, however, that if
a,;=0,a,=0, then %E?jgng(ai)so, and since it contra-
dicts the previous statemerd;a, . . .ayy+N, Cannot be a
preimage of 00. The proof for oddy+ N, is similar. Also,
due to the self-duality of rule 184, the same theorem holds
for the block 11 whemNg>N;. WhenNy=N;, both 00 and (©)
11 blocks disappear afteNg+ N;—2)/2 time steps, and the
configuration becomes an alternating sequence of 0 and 1,
...0101010Q....

To summarize, we found that for a finite lattice of length
L and the density, after|[(L—2)/2] iterations of rule 184
the resulting configuration(i) contains no 00 blocks if
p>1/2, (i) contains no 11 blocks ip<1/2, (iii) contains
neither 00 nor 11 blocks if=1/2.

lll. RULE 232 FIG. 1. Spatiotemporal diagrams for tt{#84, 232 pair for

lattice sizeL =100 and the initial densitya) 0.52,(b) 0.5, and(c)

0.48. An example of twar defects colliding with thes defect is
shown in(a). Both rules were iterated 50 time stefmpen arrows
indicate where the iteration of rule 232 starts

Rule 232, also called the “majority rule,” has the follow-
ing rule table:

000—0, 001-0, 010-0, 011-1,

we can change them without affecting the dynamics. Assum-
100—~0, 101-1, 110-1, 111-1, ing that they are mapped to zero we obtain a “simplified”
rule

which could be also written as 0000 001-0. 010-0, 0110,

+
sitt

— Maority(s{_y,S{,Si+1)- @) 1000, 10i-1, 110-0, 1110,

Let us assume that the initial configuration includes no 1lwhich has the code number 32. The following property of
blocks, but at least one 00 block. It is easy to check that theule 32 can be easily proved by induction:

only preimages of 11 undef,3, are 0110, 0111, 1011, Proposition 3 The blockb € B,,,, 1 is then-step preimage
1101, 1110, and 1111, and all of them contain at least onef 1 if and only if b=101...01,i.e., it is an alternating
subblock 11. This means that if the initial configuration con-sequence of 1’s and 0’s starting with 1 and ending with 1.
tains no 11 block, then all subsequent configurations contain Now, if L is odd, thel (L—1)/2]-step preimage of 1 has
no block 11 either. Consequently, all entries in the rule tablgo have the length, so it has to be the entire initial configu-
which contain 11(i.e., 110, 111, and 011) do not matter, andration. If the entire initial configuration does not have the
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form required by Proposition 3, it cannot be the ter than single rules evolved in earlier experiments. Since the
[(L—1)/2]-step preimage of 1. Therefore, afféiL —1)/2] exact solution exists, we may speculate that the average per-
iterations of rule 232 the system converges to a state of aformance of a pair obtained in such an experiment should be
zeros. For everL this happens afterl(—2)/2 iterations. significantly better.

Similarly, if the initial configuration includes no 00 blocks,  Although the solution proposed here performs the task in
but at least one 11 block, the system converges to a state bftime steps, it is straightforward to construct a faster algo-
all ones. If the initial configuration contains neither 00 norrithm, providing that we allow rules of larger radius flis a

11, it stays in this state forever. radius-1 rule, theri”, the rule iteratech times, is itself a CA
Using Propositions 2 and 3, our final results follow im- rule of radiusn. Therefore, the pairg,h), whereg=1flg,
mediately: and h=f3,,, performs the classification task i/n time

Proposition 4 Let s be a configuration of length and  steps, assuming that we iterate bgttand h for L/2n time
density p, and let n=[(L—2)/2|, m=[(L—1)/2]. Then steps.

F254 Flg4(s)] consists of only 0's ifpo<1/2 and of only 1's Another interesting question is the possibility of con-
if p>1/2.1f p=1/2,F5{F1g,(s)] is an alternating sequence structing a general algorithm to discriminate configurations
of 0 and 1, i.e.,...010101Q.... according to an arbitrary critical densip.. One promising

As we showed, firsh iterations of rule 184 eliminate all approach to this problem involves generalized traffic rules,
blocks 11 if p<1/2 (or 00 if p>1/2), and the subsequent for example, rules with higher “speed limit{'5], where the
m iterations of rule 232 produce homogeneous configuratio®ccupied site can move to the right by uprtounits if the
of all 0's (or all 1's). Configurations withp=1/2 are also sites in front of it are empty. Rules of this type exhibit a
treated properly, i.e., their density remains conserved anghase transition gi,=1/(m+ 1) similar to the phase transi-

the converge to. .. 0101010 .. ..Examples are shown in tion in rule 184. Any configuration witlp=p. converges to
Fig. 1. the periodic state of isolated 1's separated by blocksnof
zeros. Blocks of zeros longer than are a-type defects,

IV. REMARKS propagating to the right, while blocks of 1's longer than 1 are

. ] defects ofp type, propagating to the left. As in rule 188,

In conclusion, we have demonstrated that the density clagtefects are eliminated when<p.., and« defects disappear
sification task can be performed perfectly lintime steps  whenp>p.. One can also construct an analog of rule 232,
with two cellular automata rules, rule 184 used in the firstyhich growse defects if3 defects are not present and con-
L/2 steps and rule 232 used in the remaining time steps. Thgersely, and such a pair of radins+ules can perform the
adva}ntag_e of this ass_embly line” processing over a S|nglepC=1/(m+ 1) classification task for any integen>0 (de-
rule is evident, as the single rule can never be 100% succesgjls of this construction will be presented elsewheteis

ful in density classification. . not clear, however, how to generalize this method for arbi-
The existence of this perfect solution does not mean, Ofrary Pe.

course, that the evolutionary process coubd could noj

produce such a pair of rules. Therefore, it would be interest- ACKNOWLEDGMENTS
ing to design a genetic algorithm experiment in which pairs
of CA rules are evolved, and find out how edsy difficult) The author is grateful to Professor Nino Boccara for use-
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