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Convection in rotating annuli: Ginzburg-Landau equations with tunable coefficients
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The coefficients of the complex Ginzburg-Landau equations that describe weakly nonlinear convection in a
large rotating annulus are calculated for a range of Prandtl nunabd¥er fluids witho~0.15, we show that
the rotation rate can tune the coefficients of the corresponding amplitude equations from regimes where
coherent patterns prevail to regimes of spatiotemporal ch&3d€63-651X97)50701-X]

PACS numbeps): 47.20.Bp, 47.20.Ky, 03.40.Gc, 47.3%

The complex Ginzburg-Landau equati@@GLE) illustrated by the heavy line far=6.7 in Fig. 1, confirm this
for essentially all Prandtl numbers larger than 0.2.

(1) In order to obtain an experimental realization of the
CGLE with coefficients that can be tuned by the rotation rate
over a much wider range, we have investigated convection in

which describes slow modulations of an amplitude or enverotating annuli for a range of Prandtl numbers. We take the

lope A near a Hopf bifurcation in spatially extended systemscircumference of the annulus large enough that the curvature
has been used extensively both to study nonequilibrium patan be neglected. This geometry differs from a cylindrical
tern formation[1,2] and as a model system for spatiotempo-one in that bulk-modes are quasi-one-dimensional and can be
ral chaoq3,4]. The qualitative dynamical behavior of solu- described by the same amplitude equations as the wall-
tions of the CGLE depends on the coefficientsandc;,  modes, and that there ateo wall-modes, localized near
which, for a given system, can be obtained from the underboth side-walls. The infinite radius limit allows the use of
lying equations by laborious calculatiorisee e.g.[5] for Euclidean instead of cylindrical coordinates and circumvents
binary mixture convection For c,; andc; small, as well as the wavenumber discretization that occurs in a finite con-
close to the linec3=—c,, the dynamics is close to that
found in the relaxational limit,;=c3=0, whereas foifc,|

and |c5| large, the CGLE reduces to the nonlinear Sehro

dinger equation. In recent years, the complicated and often

surprising dynamics that occurs away from these limits, has
been intensively studied theoreticallg,4]. In particular, it

has become clear that the CGLE shows various regimes of

spatiotemporal chaos whenc;>1; see Fig. 1. The precise

nature of the various chaotic regimes, as well as the exist-
ence and nature of the transitions between them, is still under
active investigation in the field of spatiotemporal chaos.

In order to be able to investigate these chaotic regimes

A=A+ (1+icy)d2A—(1—icy)|AJ?A,

——5=0.125"

experimentally one would like to have a system where the —— =015
coefficients of the corresponding CGLE can be tuned in a c——- 5=0175
convenient way through the spatiotemporal chaotic regimes. — =67
So far, only one experiment appears to be known where there ggjggg

is indirect evidence that these regimes are accef3&dl
When it was discovered that a forward Hopf bifurcation to a
guasi-one-dimensional wall-mode occurs in rotating G
Rayleigh-Beard convection in bounded containdi@], it ) _
was realized that the rotation rate might serve to tune the F'C-1. Partofthe phase diagram of the CGLE. Since the CGLE
coefficients of the corresponding CGIE]. Kuo and Cross 'S Invariantundec, — — i, C3— —Cy, S0 is the phase diagram. The
therefore performed the amplitude expansion for such a rOqlagonal linec; = —c; indicates the relaxational limit of the CGLE,

. . s - . while the curvec,c;=1 corresponds to the Newell criteridd];
tating cylinder of infinite radius and= 6.4 (corresponding . . : )
t t but fort tely. f d that th fficient outside of this hyperbola chaos occurs. The various spatiotemporal
o wa €), but, unfor unately, foun at the CoetlCIents Te- 4 otic regimes and the linég, L,, andL; separating therfi3,4]
main close to the relaxational ling = — c5 for arbitrary val-

) are indicated, and the thick lines denote the results of our calcula-
ues of the rotation rat€ [10]. Our results for the annulus, ions, For o=6.7, the coefficients stay close to the relaxational

limit, similar to [10], but for o around 0.15 the rotation rate is able
to tunec, andcs from close to the relaxational limit to deep into
*Present address: Center for Chaos and Turbulence Studies, Tkige spatiotemporal chaotic regime. The variation with the dimen-
Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen @, Densionless rotation rateQ) is illustrated by the datapoints for
mark. 0 =1000 and(2 =2000.
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tainer [10,11. In a system of finite radius, the two wall- space and the amplitude, EQa) then reduces to the CGLE
modes will differ slightly, and as a result modes that are(1) in the frame moving with the group velocity, .
stationary in the infinite radius system acquire a small fre- As a length scale we choogk so the top and bottom
quency[12]; we will ignore these effects. The main result of plates are az=0 andz=1. We focus here on the case that
our calculations, illustrated in Fig. 1, is that for the width of the channel is 1; for nearby values of the width
0.1=0=0.2 traveling waves in a rotating annulus are pre-similar behavior occurs, as detailed[it6]. The rotating(in-
dicted to be an experimental realization of a CGLE whosefinite radiug annulus is therefore characterized by two pa-
coefficients scan through the spatiotemporal chaotic part afameters. The first is the Prandtl numher=v/«. The sec-
the phase diagram when the rotation rate is changed. ond is the dimensionless rotation rdte =Qpd?/ v, where
The relevant mode in the interesting low Prandtl numben is the angular velocity. In a typical experiment, is
regime is, however, not the analog of the wall-m@8¢l0].  fixed, and the rotation rat® can be adjusted over a certain
We have found that the- dependence of the wall mode is range up to values of order 40To be able to separate the
weak, and its coefficients remain close to the relaxationahydrodynamic equations, we assume slip boundary condi-
limit. However, in an annulus of finite width, the oscillatory tions on the top and bottom plates, ag1@]. On the vertical
bulk mode identified already long ago for an infinite con-sidewalls we apply stick boundary conditions, which damp
tainer [13,14], becomes the primary bifurcation from the the mean flow that plays a role for low Prandtl number con-
nonconvective regime for a range of the rotation rates angection with slip boundary conditiorfd7]
0.1=0=0.2. It is this bulk mode whose coefficients have the

desired behavior. For even smaller values mf several vy=vy=0v,=dy#=0 ony=0,1, (38
nearby branches compete and no simple picture emerges
[15]. dpx=dvy=v,=0=0 onz=0,1, (3b)

Our calculations are based on standard methods to calcu-
late the coefficients of the amplitude equatidisee, e.g., whered is the deviation of the temperature from the conduc-
[5]), but are complicated by computational difficulties andtive state profile. It should be noted that our version of the
the occurrence of several competing branches of solutionstick boundary conditions is slightly simpler than those used
for o. Since a detailed account of the calculations and thén [10]. We have normalized the amplitudes such tht
results is given if15], we confine our presentation here to arepresents the ratio of convected to conducted heat; the value
description of the basic setup and a summary of the moséf g, therefore determines the so-called Nusselt number
important predictions. [10].

The amplitude equations describing the slow modulations Bifurcation structure and linear stabilityFrom the equa-
of a righttraveling mode with Xt) dependence tions of motion we have determind®)., which is the value
e'("kxtoc) and amplitudeA, coupled to a left-traveling of the Rayleigh number where convection sets in, and the

modee' %t @) with amplitudeB, are[1,16] corresponding critical wave numbkg and frequencyw, as
a function ofo and{). An important feature of our system is
To(di+vgd) A=e(l+icy)A+ E(1+icy)a2A that there exists, in particular for smatfs, a multitude of
solutions to the linearized equations, but only the mode with
—go(1—icy)|AJ?PA—gy(1—icy)|B|?A, the lowestcritical Rayleigh number is relevant. For a finite

(2a) cylinder, these branches are discussed in detdil i
The relevant features of the bifurcation structure are illus-

To(di—vgdx)B=ge(1l+ice)B+ gS(lJricl)af(B trated in Fig. 2 and can be summarized as follogs.The
linear stability analysis for the stationary modes is not de-
—go(1—ic3)|B|?B—g,(1—ic,)|A|2B. pendent on the value ef [15]. (b) For all 0=0.2, the wall-

(2b)  mode is relevant for sufficiently large rotation rates, while a
stationary(nonoscillatory mode is relevant for smalfl); see
For Rayleigh-Beard convectiong:=(R—R.)/R., with R Fig. 2(c). For c=6.7 the crossover between the stationary
the Rayleigh numbegaATd®/ kv, whereg is the gravita- and oscillatory modes occurs &~27.5; the situation for
tional accelerationg the thermal expansion coefficie¥T ~ o=6.7 is representative for the whole range0.2.(c) The
the temperature difference between bottom and top pthte, bulk-mode exists for values of that are comparable to
the height of the layerx the thermal diffusivity, and the ~ where the Hopf bifurcation in an infinite layer occurs
kinematic viscosity;R. is the critical Rayleigh number. [13,14), and approaches this mode rapidly upon increasing
These quantities arise in the equations of motion that dethe width of the annulugd) For 0.1=0=<0.2 we find a band
scribe the fluid system in the corotating frame, which are thedf rotation rates() ,,;, <2 <, for which the bulk-mode
Navier-Stokes equation with additional centrifugal and Cori-is relevant See Fig. &), where Q.;,=140 and
olis force, supplemented by the heat equation and the mag$smnax=5600 are marked. The situation for=0.15 studied
conservation lawW13]. As usual[10,11,13,14 we apply the below is representative, as Figd®for 0=0.175 shows(e)
Boussinesq approximation and neglect the centrifugal forcedhen o<0.1, the situation becomes quite convoluted since
Below we shall summarize our findings for all the coeffi- additional modes become relevant for some rang® ‘st

cients and parameters in the amplitude equations. Since we Amplitude expansiariThe amount of computer time that
find thatg,>g, for the bulk mode, the standing waves areis needed for the calculation of the nonlinear coefficients
suppressefil] and the relevant dynamical states are travelinggg, €3, 92, andc, of the coupled amplitude equatio(® is
wave states with, e.gA#0, B=0. Upon rescaling time, substantial; therefore, we cannot scan all system parameters
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FIG. 2. (a)—(c) The linear onset values of bulkBM) and wall-
modes(WM) as a function of} for ¢=6.7 and 0.15. Iric) and(d) FIG. 3. The coefficients of Eq(2) for the bulk-mode for
we have rescaled the critical Rayleigh numbers(byo facilitate ;. —g 15 The coefficients, and in particularc; have a strong
the comparison between the various modes. The stationary bifurcgependence of the rotation ra®. For Q—Q,,,,, ¢, andcs are
tion is seen to be the primary bifurcation for small rotation rates.¢|ose to the relaxational limit. When the rotation rate is decreased
For_a_ll 0=0.2, the wall-mode constitutes the primary mode for c; changes sign, and &~1050, the Newell criterion is reached
sufficiently large () as illustrated for the caser=6.7. For (¢ c.=1). A further decrease of the rotation rate pushes the coef-

0=0.15, the bulk-mode exists for afb>€)p;,~140. Its critical ficients deep into the spatio-temporal chaotic regime, as Fig. 1
Rayleigh number is smaller than the critical Rayleigh number of thegpgws.

wall-mode forQ,,in<Q <O ,a=5600. It is in this range that the

coefficients of the CGLE can be tuned over a wide rangéa)land modes that are relevant for smalland Q> Q are simi-
max:

(b) the corresponding critical frequencies and wave numbers artyr to the coefficients that we find for the wall-mode for
plotted.(d) For values of the Prandtl number around 0.15, the criti-higher Prandtl numbers, in thag~ — cs. In the other small-

cal Rayleigh numbers of the wall-mode only show a weak depen- redime wh th '"_ de i 3|' LB .
dence on the Prandtl number, whereas those for the bulk-mod& 9 where the wall-mode 1S relevant, 1.E:=min,

strongly depend omr. As a result, the range of rotation rates for tehere. qppears to be a.tlny regime, clos in: Wh.er.e th.e
which the bulk-mode is relevant strongly depends en for (?ogfflmentscl andcs mlght. move away fr‘?m the dissipative
o=0.175, the values o, andQ,,, are approximately 200 and limit; however, the numerics are not decisive here.

2500, while foro=0.125(not shown they are 122 and 10 500. From the point of view of the amplitude equations, the
wall-modes do not have many interesting features, and there-

simultaneously. Instead, we have performed a “trial and erfore we will focus now on the bulk-modes that are relevant
ror” search in the(Q),0) space. We shall not exhaust the for small Prandtl numbers and ,;,<Q<Q,ax. The coef-
reader with the data thus obtained but concentrate on thiicients of the amplitude equatioit®) for the bulk-mode are
wall- and bulk-mode discussed above and to a few values ahown in Fig. 3 forc=0.15. We find that the coefficients
o that are representative for the various ranges of the Prandtl, andc; can be tuned over a wide range by the rotation rate.
number. The dependence of the coefficientaindc; of Eq.  For the system parameters that we consiger; gq [see Fig.
(2) for these two modes is illustrated in Figs. 1 and 3. 3(d)] and the left- and right-traveling modes suppress each
For the wall-modes, we find that the precise valuerdé  other. The convection patterns thus consist of a juxtaposition
quite irrelevant; the coefficients; andc; of the amplitude of patches of left- and right-traveling waves, and after careful
equations are always near thg= —c; line, as the full line  adjustments one may have the convection exclusively con-
in Fig. 1 shows folo=6.7. When() is sufficiently large, the sisting of either a left- or a right-traveling wave, which war-
wall-modes at the opposite sides of the boundary are decouiants a description with a single CGLE. Note that for such a
pled and we recover the result of Kuo and Crps6]. Of  single wave the value af, is immaterial, since terms of the
course, we have performed extensive searches in parameferm |A|?B or |B|?A are zero.
space to search for more interesting behavior of the coeffi- At other values of the Prandtl number in the range
cientsc; and c, but for all Prandtl numbers larger than 0.1<0=<0.2, the main effect of a change inis through a
0.2, the wall-mode is relevant, and the behavior of the coefehange inQ),,;, andQ,.; the coefficients of the amplitude
ficients of the amplitude equatioi(®) is very much like that equations depend @f, but this dependence is rather weak, in
for 0=6.7. the sense thd® still makes the coefficients vary over a wide
For all system parameters that we investigatgg,re- range. This is shown in Fig. 1, where the path that the coef-
mains smaller thag, for the wall-modes, and therefore the ficients trace in the parameter space of the CGLE is shown
convection occurs in two counterpropagating travelingfor three values ob.
waves, which are localized near the oppositeoundaries Can the interesting Prandtl number range0¢i<0.2 be
[1]. The coefficients of the amplitude equations for the wall-accessed experimentally? Compressed gases hav@.7
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and typical liquids have even largers, while liquid mer-  dimensional geometry of the system warrants a description
cury and gallium haver=0.025 ando=0.005. However, in terms of one-dimensional amplitude equations, for both
Rayleigh-Baard convection in superfluigHe-*He mixtures  the intrinsic one-dimensional wall-modes and the intrinsic
is known to behave to a very good approximation as a contwo-dimensional bulk-mode(iii) The onset of convection
vecting liquid with a Prandtl number which can be tunedoccurs via a forward bifurcation; for backward bifurcations,
continuously between 0.02 and abouf1B]. Convection in  |ike those in binary liquids, amplitude equations can at most
rotati.ng cells and fI_ow visualization haye recently be.comegive a qualitative description of the patterfis) The under-
possible for such mixtureig9], and so this system provides |ying basic equations for this system, i.e., the Navier-Stokes
a unique route to probe the regimes of phase-chaos anthations, are considerably simpler than the basic equations
defect-chaos experimentally, and to compare to theoreticghy convection in liquid crystals or binary liquids. For in-
predictions|3,4]. Another possible realization of convection stance, in the latter system, it is hard to decide which aspects
with 0~0.15 is in certain gas mixtures, that might behave agys the experimentally observed cha@l] can be described
reasonable good approximations to single component quidﬁy the quintic CGLE, and which aspects are connected to

[20]. ) o _ physically relevant effects that are not captured in an ampli-
In summary, we predict that Rayleigh-B&d convection {,4e description.

in a large rotating annulus is an attractive experimental real- Note addedAfter submission of this paper, we became

ization of a supercritical CGLE with tunable coefficients for qyare of a recent copy of unpublished w§22] in which it

a number of reasongf) The onset of convection can occur js predicted that Rossby waves in a rapidly rotating annulus

either via a stationary or a Hopf bifurcation; in the latter caseneated from the outside also show very similar instabilities,

the mode can either consist ofsingletraveling bulk wave,  oth for comparable and for very small Prandtl numbers.
or two counterpropagating wall-modes. The rotation rate can

be adjusted to study the competition between these states, in We have benefited from correspondence with R. E. Ecke,
analogy to the study of the co-dimension-2 points that occuM. C. Cross, P. Kolodner, F. H. Busse, G. Ahlers, P. G. J.
in binary liquid convection [5]. (ii) The quasi-one- Lucas, and E. Knobloch.
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