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The fun(:tionalp:|de¢2|2 measures the phase rigidity of a chaotic wave funct]x()ﬁ) in the transition
between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symme-
try, p crosses over from one to zero. We compute the distributigniofthe crossover regime and find that it
has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in
¢ and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal'’ko and Efetov
[Phys. Rev. Lett.77, 912 (1996] and by Taniguchiet al. [Europhys. Lett.27, 335 (1994]. As a third
implication of the phase-rigidity fluctuations we find correlations in the response of an eigenvalue to indepen-
dent perturbations of the systef$1063-651X97)50201-7

PACS numbe): 05.45:+b, 24.60.Ky, 42.25-p, 73.20.Dx

Wave functions of billiards with a chaotic classical dy- |F2_Fl|>}\- The existence of |Ong_range correlations in a
namics have been measured both for ClaSS[duaI] and chaotic wave function came as asurprise_
quantum mechar;ical_ wavgs,4]. The experiments are con-  Two years earlier, in an apparently unrelated paper, Tan-
sistent with a yj distribution of the squared modulus iguchi et al.[8] had studied the response of an energy level

|¢(F)|2 of a wave function at poinf, the indexB=1 or 2 E(X) to a small perturbation of the Hamiltonidgparameter-
depending on whether time-reversal symmetry is present dzed by the variableX). They discovered a non-Gaussian
completely broken. These two symmetry classes are the odistribution of the level “velocity”dE/dX in the orthogonal
thogonal and unitary ensembles of random-matrix th¢fy to unitary crossover. This was remarkable, since the distri-
For a complete description of the experiments one also needsition is Gaussian in the orthogonal and unitary ensembles.
to know what spatial correlations exist betweer,)|? and It is the purpose of the present paper to show that these
|¢(F2)|2 at two different points and how these correlationstwo crossover effects are two dlf_ferent manlfegtatlons of one
fundamental phenomenon, which we identify phase-

are affected by breaking of time-reversal symmetry. In therigidity fluctuations The phase rigidity is the real number

orthogonal and unitary ensembles it is known that the corre-

) _ _ N p=|[dry?? in the interval[0,1], which equals 1 (0) in the
lations decay to zero if the distanpe—r| greatly exceeds o q0nafunitary) ensemble. The possibility of fluctuations

the wavelength [6]. in p was first noticed by Frenakt al.[9], but the distribution
Recently, Fal'’ko and Efetoli7] managed to compute the P(p) was not known. We have comput&dp) in the cross-
two-point distributionP,(p;,p,) in the crossover regime be- er regime, building on work by Sommers and lideD],
tween the orthogonal and unitary ensemb{@¢e abbreviate ang find a broad distribution. Previous theories for the cross-
piEV|z//(Fi)|2, with V the volume of the system.They over by Zczkowski and Len411], by Kogan and Kaveh
found that the two-point distribution does not factorize into[12], and most recently by Kanzieper and Freilikiés3]
one-point distributionsP,(p1,p2) #P1(p1)P1(ps2), even if  amount to a neglect of fluctuations jn and thus imply the
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absence of long-range correlations z,mf) and a Gaussian
distribution ofdE/dX. Conversely, once the fluctuations of

the phase rigidity are properly accounted for, we recover the
distant correlations and non-Gaussian distribution of Refs.

[7.,8], and find a correlation between level velocities for in-
dependent perturbations of the Hamiltonian.
We start from the Pandey-Mehta Hamiltoni{&n14] for a
system with partially broken time-reversal symmetry,
H=S+ia(2N) ¥?A, (1)
where « is a positive nhumber, an& (A) is a symmetric
(antisymmetri¢ real NXN matrix. The matrixS has the
Gaussian distribution
P(S)xexp—iNc 2TrS9), 2
and the distribution oA is the same. The real parameter
determines the mean level spacidgat the center of the
spectrum forN>1, by c=NA/w. The distribution ofH

crosses over from the orthogonal to the unitary ensemble at

a=1. The wave functiony, of the kth energy level at
widely separated pointsri—r;|>\) is represented by the
unitary matrixU that diagonalize$i:
V2 (1) — NV (3)
Consider now an eigenvector  |u)
=(Uqx,Ua, ... ,Unw- (Since we deal with a single eigen-

state, we suppress the level index Following Ref.[9] we
decomposéu) in the form

luy=€?¢(t|R)+iy1—1t2|1)),

where |R) and|l) are real orthonormaN-component vec-
tors, and¢ e[0,7/2) andte[0,1] are real numbers. This
decomposition exists for any normalized vectap and is
unique fort+0,1. The phase rigidity is related to the pa-
rameternt by

R 2
=Udr¢§

In the orthogonal ensembte=0 or 1, hencep=1, while in
the unitary ensemble= \/1/2 hencep=0. In the crossover
between these two ensembles the parametoes not take
on a single value but fluctuates.

To compute the distributioR(p) we use a result of Som-
mers and lidd10], for the joint probability distribution of an
eigenvalueE and the corresponding eigenvectai of the
Hamiltonian (1). Substitution of the decompositidd), and

(4)

2
=(2t>—1)2 (5)

—”Z Uizk

inclusion of the Jacobian for the change of variables from

|u) to p, gives the expression
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FIG. 1. Distribution of the phase rigidity for «=1/4, 1, and
4, computed from Eq(9). The crossover from the orthogonal to
unitary ensemble occurs when~1, and is associated with large
fluctuations inp around its ensemble average.
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We have seE=0, corresponding to the center of the spec-
trum. We still have to take the limiN—o. Expansion of
Zn(0) in a series,

N N—k
Zy(0)=bl >, a ) : (7a)
k= b,
1 ¢ k=1 2k
=17 k(1 @) FP 1+ w) —
(7b)
and replacement of the summation by an integration, yields
2N\/_ a?12
ZN(0)= o nan| © +Terf(ia)) ®

for N>1. Here erf(a)EZiwfl’ngeyzdy. The double en-
ergy derivative oZy(E) is computed similarly, but turns out
to be smaller by a factoN and can thus be neglected. The
derivatives with respect tb.. can be found by differentia-
tion of Eq.(8). Collecting all terms, we find

P(o)=(1 s F< a? \[a?—1+p
(p)=(1—p) “ex 1) 1=,
i 1/2 1/2
o? flia)| - —2 erf(ia)|. (9)
x| e®+ ——er 5 .

In Fig. 1 the distribution ofp is plotted for three values of
the crossover parameter. It is very broad fora=1, and
narrows to a delta function at 1 (0) far—0 (a—).
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It remains to show that the long-range wave-function cor- 1

relations and non-Gaussian level-velocity distributions of P(Uo):j dpP(p)G1,(vo), (15a
Refs.[7,8] follow from the distributionP(p) that we have 0
computed. We begin with the wave-function correlations, 1

and consider tha-point distribution function P(Uu):j dpP(p)Gi-,(vy), (15b)
0

n
P.(P1,P2, - .- Pn)= < 11 5(pi—N|Uik|2)>- (100  whereG;., is a Gaussian distribution with zero mean and
=1 variance I p. We have normalized the velocities such that

vZ=v2=1 in the unitary ensemble. Substitution of H8)

for P(p) shows that the distribution af, coincides with the
result of Ref.[8]. However, ourP(v ) is different. This is
because we have chosArandA’ to be independent random
matrices, whereas they are identical in R&f. Independent
rmatricesA andA’ are appropriate for a system with a per-
turbing magnetic field in a random direction. Identiéahnd
A’ correspond to a system in which only the magnitude but
not the direction of the field is varied. Equati¢tb) demon-
1 n strates thaP(v,) andP(v,) are Gaussians in the orthogonal
Pn(p1.P2, - - - ,pn):f dpP(p)I] E(pi,p), (11a  and unitary ensembles, since the(p) is a delta function. In
0 i=1 the crossover regime the distributions are non-Gaussian, be-
cause of the finite width oP(p). The relation(15) between
M) (11b) the distributions oty andp for the GOE—GUE transition is
1-p/° reminiscent of a relation obtained by Fyodorov and Mirlin
for the metal-insulator transitigri6]. The role of the param-
Herel, is a Bessel function. We see that long-range spatiaéter p is then played by the so-called inverse participation
correlations exist only if the distributioR(p) of p has a ratio I=Jdr||* In our systemNI—p+2 for N—o. A
finite width. For example, the two-point correlator difference from Ref[16] is that our perturbation matrices are
(pip3)—(pi)(p3) equals the variance gf. The approxi- drawn from orthogonally invariant ensembles, whereas their
mation of Ref.[11] (implicit in Refs. [12,13) was to  perturbation is band diagonal.
take p fixed at each a. If p is fixed, As a final example of the importance of the phase-rigidity
Pn(P1, - - . Pn)—Pa(py) - -P1(pn) factorizes, and hence fluctuations in the crossover regime, we consider the re-
spatial correlations are absent. If instead we substitute fosponse of the system to two or more independent perturba-
P(p) our result(9), we recover exactly the results of Fal'ko tions,
and Efetov{7,15].
We now turn to the level-velocity distributions. We con- , o,
sider perturbations of the Hamiltoniah) by a real symmet- H'=H +21 XoiSi + 21 XujlAj - (16)
ric (antisymmetrig matrix S" (A'), :

We substitute the decompositigd) and do the average in
two steps: First ovelR) and|l), and then ovet. Due to the
invariance ofP(H) under orthogonal transformations Hf,
the vectorgR) and|l) can be integrated out immediately. In
the limit N—oo, the components of the two vectors amd 2
independent real Gaussian variables with zero mean a
variance IN. Doing the Gaussian integrals we find a gener-
alization of results in Refd9,11] to n>1:

(1 (172 L)
F(p.p)=(1—p) " eXp<p_1 lo

m n

For example, one may think of the displacementrodiffer-

ent scatterers, or the application of a localized magnetic field
_atn different sites. Proceeding as before, we obtain the joint
eQrobability distribution of the level velocities
Voi— (9Ek/(9xoi andvu]: aEk/(?Xuj ,

"=H+X,S +x,iA". (12

Herex,, X, are real infinitesimals, which parameterize, re
spectively, a perturbation that breaks or does not break tim
reversal symmetry. The corresponding level velocities

(?_Ek IE 13 P(vo1:V02, -+« WomiVu1 U2y - - - 1Uun)

Uo— y Vy=— f
° X, Uax,

1 m n
= fo dPP(P)il:[l Gl+p(voi)]];[l Gy p(vy). (17

have distributions

We see that as a result of the finite widthP(p), the joint

P(vo)=<5(vo—z UikU]*ij’i)>, (149 distribution of level velocities does not factorize into the
b individual distributiong15), implying that the response of an
energy level to independent perturbations of the Hamiltonian
_ N is correlated.

Ploy)= < 5<U” .2;‘ U'kUJKIA“) > (149 To summarize, we have introduced the phase rigidity, de-

fined as the squared modulus of the spatial average of the

We substitute the decompositio@) for the eigenvector wave function squared, and computed its distribution for a
U of H and average first ove®’ and A’, assuming a chaotic system with partially broken time-reversal symmetry.
Gaussian distribution for these perturbation matrices. AftefFluctuations of the phase rigidity from one wave function to
averaging oveB’ andA’, the eigenvector enters only via the another exist if time-reversal symmetry is partially broken.
parametelp. One finds We have shown that these fluctuations imply long-range
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wave-function correlations and non-Gaussian eigenvaluenuzdiar, and N. D. Whelan have been working on this same

perturbations, thereby unifying two previously unrelated dis-problem, with some overlap of results.

coveries[7,8]. A manifestation of the phase-rigidity fluctua-

tions is the existence of level-velocity correlations for inde- The authors thank Y. Alhassid, K. B. Efetov, V. I. Fal'ko,

pendent perturbations of the system. and S. Tomsovic for valuable discussions. This research was
Note addedWe have learned that Y. Alhassid, J. N. Hor- supported by the Dutch Science Foundation NWO/FOM.
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