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Iterative filtering procedure for the Vlasov equation
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An iterative filtering scheme is used for deriving the evolution of large scales in a plasma. The information
lost by filtering out the small-scale fluctuations is accounted for by the introduction of an effective propagator
and vertex operators in the Vlasov equation. These renormalizing terms correspond to large-scale diffusive
effects. A general expression for the fluxes of energy and particles is obtained. The transport coefficients are
explicitly derived for the quasilinear limit and the guiding center approximation.@S1063-651X~97!06201-6#
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I. INTRODUCTION

The Vlasov equation~VE! is the standard tool for study
ing a plasma when the collective effects dominate the co
sional interactions between particles. Within the collisionle
limit, this equation gives the evolution of the probability di
tribution Fa(r ,t,v) of a particle of speciesa at positionr
and timet with a velocityv:

F] t1v•¹1
ea

ma
S v`B

c
1ED •]vGFa~r ,t,v!50, ~1!

whereB andE are, respectively, the magnetic and the el
tric fields. The mass and the charge of the particles of spe
a are denoted, respectively,ma andea . Equation~1! is non-
linear because the electromagnetic field is related to
probability distributionFa(r ,t,v) through the Maxwell equa
tions. The search for analytical solutions of the nonlinear
is then a very difficult problem@1,2#. Apart from a perturba-
tive treatment, it is usually not possible to obtain analyti
results for Eq.~1!. Actually, the study of this equation i
already complicated when the electromagnetic field is
sumed to be known independently of the distribution fun
tion ~non-self-consistent treatment!. Also, the numerical
simulations of this equation require rather massive comp
tional resources. For these reasons, the derivation of w
defined approximation schemes starting from the VE a
leading to a simplified description of the plasma would
most welcome.

The purpose of this work is to reach such a simplifi
description by building up an analytical scheme to sepa
the large scales from the small ones in the VE. Indeed
many situations the details of the small-scale fluctuations
somewhat unimportant from a practical point of view a
only the knowledge of the large-scale physics is really
quired @3#. This idea has already prompted the developm
of the large eddy simulations in fluid turbulence@4#. In this
work, the result of the overall procedure will be a spatia
filtered VE that allows a simpler treatment. In Fourier spa
the small-scale elimination corresponds to a reduction
modes needed to characterize the one-particle distribu
function. In real space, this function is ‘‘smoother’’ and c
be accurately described by a smaller set of data.
551063-651X/97/55~1!/947~9!/$10.00
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This will be particularly useful for studying problems re
lated to microturbulence in plasma@5#. Indeed, if the sto-
chastic electromagnetic field drives the plasma in a turbu
state, anomalous transport phenomena are observed eve
collisionless plasma. The large-scale behavior of the plas
is then dominated by these transport phenomena.

The procedure used to filter the VE is based on an ite
tive scheme that shares some of the features of
renormalization-group techniques developed for dynam
equations@6–9#. These techniques differ from usual reno
malization schemes@10–12# in that the simplification comes
from the small-scale elimination instead of a statistical tru
cation of the highest moments of the distribution function.
order to avoid too involved formalisms, we limit the prese
study to the non-self-consistent case. The filtering techni
is thus formally similar to the procedure used for investig
ing the large-scale dynamics of a passive scalar@13#. It will
be shown that the results are also comparable to those
tained for the non-self-consistent gyrokinetic equation@14#.
However, the VE is more complex due to the dependence
the velocity derivatives.

In Sec. II the VE and the statistics of the external elect
magnetic field are introduced. The systematic procedure u
for filtering the small scales is presented in Sec. III. T
resulting filtered and renormalized Valsov equation~FRVE!
is derived in Sec. IV together with general expressions
the anomalous fluxes. Two particular limits of the FRVE a
then discussed: the quasilinear limit~Sec. V! and the guiding
center approximation~Sec. VI!.

II. SYSTEM DESCRIPTION

As announced in the Introduction, we restrict our scope
situations where the self-consistent electromagnetic field
be either neglected or approximated by an external stocha
field. In that case, the distribution functions for different sp
cies ~typically a5 i for ions anda5e for electrons! are not
coupled. For that reason, the explicit species dependenc
omitted in the following discussions. Also, the plasma
considered to be embedded in an external electromagn
field consisting of a constant magnetic component direc
along thez axis,B5Bb and a stochastic electric fieldE. The
introduction of a stochastic variable in the VE suggests
947 © 1997 The American Physical Society
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following decomposition of the distribution functionF into
an average part and a fluctuation:

F~r ,t,v!5F~r ,t,v!1 f ~r ,t,v!, ~2!

whereF represents the average of the distribution funct
F[^F(r ,t,v)&. The equation for the fluctuation is obtaine
from Eq. ~1!:

@] t1v•¹1V~v`b!•]v# f ~r ,t,v!

52
e

m
]vF•E~r ,t !2

e

m
]v•d@ f ~r ,t,v!E~r ,t !#, ~3!

where d represents the fluctuating part of a quant
(d@x#[x2^x&) andV is the gyrofrequency. The iterativ
filtering procedure developed in this paper is more suita
expressed in Fourier space. In order to Fourier transform
~3!, the averaged distribution function is assumed to hav
slow spatial dependence in contrast with the rapid spa
variations of the fluctuationsf (r ,t,v). A multiscale approxi-
mation @15# is then justified and consequentlyF is not Fou-
rier transformed. It is convenient to introduce the followin
symbolic notations for Eq.~3! in Fourier space:

g0
21f1V0

•E5lN@E, f #. ~4!

The unperturbed propagatorg0 and vertexV0 are given, re-
spectively, by

g0
21~ k̂,v!5@2 i ~v2k•v!1V~v`b!•]v# ~5!

and

V05
e

m
]vF, ~6!

where the symbolk̂ stands for both the wave vectork and
the frequencyv. The termN@E, f # is nonlinear with respec
to the fluctuations. It is explicitly written as

N@E, f #52
e

m
]v•E dq̂

~2p!4
d@E~ k̂2q̂! f ~ q̂,v!#. ~7!

The coupling constantl is introduced in Eq.~4! for further
convenience. As already mentioned, the statistical prope
of the external electric field must be specified. Here
modesE( k̂) are assumed to be independent stochastic v
ables with a Gaussian distribution and zero average. They
thus completely determined by their correlations

^E~ k̂!E~ k̂8!&5E~ k̂!d~ k̂1 k̂8!. ~8!

The Dirac distributiond( k̂1 k̂8) appears as a result of th
additional assumption that the external electric field is a
tionary and homogeneous stochastic process. Conseque
different modes are correlated only when the sum of
corresponding wave vectors is zero. Finally, the electric fi
is supposed to derive from a potential so that the ten
E( k̂) takes the form

Ei j ~ k̂!5A2kiz~ k̂!kj , ~9!
n
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whereA represents the amplitude of the electric field a
z( k̂) characterizes the shape of its spectrum.

III. ITERATIVE FILTERING

A. Perturbative approach

Due to the nonlinear convolution operatorN @see Eq.~7!#,
all Fourier modes are coupled in the VE. Therefore, it
impossible to obtain a closed set of exact equations fo
subset of Fourier modes. As a consequence, the exact e
tions for the large-scale modes cannot be decoupled from
small scales. It is then necessary to use some approx
tions. The simplest one consists of treating the nonlinear
eratorN as a small quantity compared to the linear ter
Actually, the introduction of the parameterl in Eq. ~4! an-
ticipates this approximation, which will be referred to as t
l expansion.

Two important questions must be discussed at this po
On the one hand, the strong coupling between some mo
does not justify thel expansion in many situations where th
nonlinear interaction between the stochastic electric field
the particles is the dominant dynamical effect. On the ot
hand, the coupling between modes should diminish for
very-high-wave-vector modes. In many physical systems,
small-scale phenomena appear to follow linear evolut
laws. In this paper, the system is assumed to be characte
by these two properties. The nonlinearity is dominant for
large scales, while it is small in the small-scale range. He
thel expansion is justified mainly for the high wave vecto

B. First iteration

We first remark that the spectrum of excited modes ne
extends untilk→` in a real physical system. We thus intro
duce a cutoff wave numberL0 that could be related to a
molecular scale length or to the Debye length depending
the physical situations. Its actual value is unimportant for o
purpose. However, the cutoff may be used as a starting p
in an iterative elimination scheme based on thel expansion.
We have assumed that this expansion should be valid for
high wave vectors mainly. The lack of knowledge about t
convergence properties of thel expansion then suggests th
one should proceed as carefully as possible. In a first s
this expansion will be used only in the infinitesimal doma
defined by the wave vectors shellL1[L02dL,uku<L0.
We thus consider the following decomposition of the dist
bution function:

f ~ k̂,v!5H f.~ k̂,v! if L1,uku<L0

f,~ k̂,v! if uku<L1.
~10!

The same decomposition is used for the electric field and
~4! splits into two coupled equations

g0
21f,1V0

•E,5lN,@E,1E., f,1 f.#, ~11!

g0
21f.1V0

•E.5lN.@E,1E., f,1 f.#. ~12!
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The equation forf. is then solved perturbatively using th
l expansion. The approximate solution up to first order
l is

f.52g0V
0
•E.1lg0N

.@E,1E., f,2g0V
0
•E.#

1O~l2!. ~13!

This solution is now inserted into Eq.~11!, giving ~up to
orderl2) a closed equation forf,, i.e., an equation that is
independent off.. However, this equation still depends o
E.. In order to eliminate totally the small-scale contributio
the equation forf, is averaged over all realizations ofE..
This ‘‘partial averaging operation’’ will be denoted b
^ &. . With the assumptions made on the stochastic varia
E( k̂) in Sec. II there is no difficulty in averaging over on
subset of these variables that corresponds toE.. Indeed,
their probability distributionp„$E( k̂)%… has been assumed t
be a Gaussian. Moreover, relation~8! shows that variables
E( k̂) belonging to different shells of wave vectors are n
correlated. Hence the distributionp„$E( k̂)%… factorizes into
terms corresponding to the different shells and conseque

p„$E~ k̂!%…5p,„$E
,~ k̂!%…p.„$E

.~ k̂!%…, ~14!

wherep, andp. are, respectively, the probability distribu
tion function ~PDF! associated with the variablesE, and
E.. The PDF ofE, remains unaffected by the partial ave
aging over all the realizations ofE.. However, the explicit
evaluation of this averaging requires some approximati
for the terms depending onf,. Contrary to theE,( k̂), the
stochastic variablesf,( k̂) are not independent ofE.. The
nonlinear term in the VE induces a coupling betweenf, and
E.. Here we make the additional assumption that the co
lation betweenf, andE. may be neglected since these va
ables are coupled only through the nonlinearity assume
be small in this shell of wave vectors. This approximati
and the factorization of the probability~14! implies a few
useful properties for the partial averaging of the equation
f,.

~i! The total averaging and the partial averaging
equivalent as far as only the variablesE, are concerned:

^W@E.#&5^W@E.#&. , ~15!

whereW is any functional ofE. only. This property also
implies^d(W@E.#)&.50. Consequently, the partial averag
of the nonlinear termN@E.,E.# @see Eq.~7!# vanishes.

~ii ! The partial averaging does not affect a functionalQ
depending onf, andE, only:

^Q@ f,,E,#&.5Q@ f,,E,#. ~16!

~iii ! The partial averaging of a mixed term depending
multaneously onf,, E,, andE. must be evaluated follow
ing the procedure
n
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i51

n

)
j51

m

)
l51

r

f,~ k̂ i !E
,~ k̂ j !E

.~ k̂ l !L
.

5)
i51

n

)
j51

m

f,~ k̂ i !E
,~ k̂ j !K )

l51

r

E.~ k̂ l !L
.

. ~17!

These terms vanishes whenr , the number of factorE., is
odd because the electric field has a Gaussian distribu
with zero average.

The use of these properties in the systematic partial a
aging of the equation forf. cancels all but three terms gen
erated by the small-scale elimination. The first one is prop
tional to ^E.E.&. f

, and is included in the propagator. Th
second one is proportional to^E.E.&.E

, and renormalizes
the vertex. Finally, a cubic nonlinearity@16# proportional to
E,E, f, has to be included in the equation

g1
21f,1V1

•E,5lN,@E,, f,#

1l2N,
†E,,g0N

.@E,, f,#‡1O~l3!.

~18!

In this equation, the renormalized propagatorg1 and the
renormalized vertexV1 are given, respectively, by

g1
21f,5g0

21f,2l2^N,
†E.,g0N

.@E., f,#‡&. ~19!

and

V1
•E,5V0

•E,2l2^N,
†E.,g0N

.@E,,g0V
0
•E.#‡&. .

~20!

The explicit evaluation of these terms using the property
the partial averaging yields, respectively,

g1
215g0

212l̄2] iE
S
dq̂qiz~ q̂!qjg0~ k̂2q̂,v!] j ~21!

and

Vi
15Vi

02l̄2] lE
S
dq̂qlz~ q̂!qj

3g0~ k̂2q̂,v!] ig0~2q̂,v!Vj
0~2q̂,v!, ~22!

where summation over repeated indices is implied. Here] i
represents thei th component of the vector]v and
l̄[lAe/m(2p)4 is the effective coupling constant. Henc
the l expansion must be regarded as an expansion in
amplitude of the spectrum of the fluctuating electric fie
The integration domain isS5$L1,(uqu,uk2qu)<L0%. At
this point it must be stressed that bothg andV include a
velocity differential operator acting, respectively, onf and
E.

C. Higher-order iterations

The same procedure is then iterated and yields, aftem
steps, the renormalized VE
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gm
21f,1Vm

•E,

5lN,@E,, f,#1l2 (
i50

m21

N,
†E,,giN

.@E,, f,#‡

1O~l3!, ~23!

where the propagator and the vertex are given by the re
rences

~gm
212gm21

21 ! f,52l2 (
l50

m21

^N,
†E.,glN

.@E., f,#‡&.

~24!

and

~Vm2Vm21!•E,

52l2 (
l50

m21

^N,
†E.,glN

.@E,,gm21V
m21

•E.#‡&. .

~25!

On the left-hand sides of these relations, the symbolsgm
21

and Vm represent, respectively, the inverse propagator
the vertex obtained after elimination of all modesf (k,v) and
E(k) with uku>Lm . For example, the action of the propag
tor on a functiona( k̂,v) must be understood as

gm
21a[g21~ k̂,v;Lm!a~ k̂,v! for uku<Lm . ~26!

On the right-hand sides of relations~24! and ~25!, gl
21 and

V l have the property to act always on modes w
L l11<uqu<L l . In the continuous limit of the iterative fil-
tering (dL5L i212L i→0), these operators thus act o
modes with wave vectors characterized byuku5L l and it is
convenient to introduce compact notations

g̃21a[g21~ k̂,v;uku!a~ k̂,v!. ~27!

The recursion~24! can then be explicitly written as

gm
215gm21

21 2l̄2 (
l50

m21

] iF E
Slm

dq̂ qiz~ q̂!qj g̃~ k̂2q̂,v!G] j ,
~28!

whereSlm5$L l11,uk2qu<L l ;Lm,uqu<Lm21%. This re-
lation is simplified by noting that the summation indexl
appears in the volume integration only. The summation
thus equivalent to the integration over a larger volume c
responding to the union of theSlm . This yields

gm
215gm21

21 2l̄2] iE
Sm

dq̂ qiz~ q̂!qj g̃~ k̂2q̂,v!] j , ~29!

whereSm5$Lm,uk2qu<L0 ; Lm,uqu<Lm21%.
The procedure developed in this section shows how

VE is modified by renormalization of both the propaga
and the vertex after the small-scale elimination. We ha
mentioned at the beginning of this section that the use of
l expansion for filtering the VE is better justified when w
proceed iteratively. However, the details of this iterati
r-

d

is
r-

e
r
e
e

should not influence the large-scale description of the plas
and it is desirable to obtain a FRVE in which the success
steps of the filtering are written in a compact form. Such
equation and some general results are presented in the
section.

IV. GENERAL RELATIONS BETWEEN FILTERED
QUANTITIES

The main motivation for filtering the VE is to obtain a s
of equations for spatially filtered~smoothed! quantities such
as the distribution function or the electric field. In this se
tion, we derive general relations involving these filter
quantities.

A. Filtered and renormalized Vlasov equation

The FRVE~23! depends on all steps of the filtering pro
cedure through the summation index. However, the rec
rence formula~29!, which determines the propagator, may
formally solved and the result may be expressed in term
the final cutoffL[Lm corresponding to the last step of th
iterative procedure

gL
215g0

212l̄2] iE
SL

dq̂ qiz~ q̂!qj g̃~ k̂2q̂,v!] j . ~30!

This relation is now independent of the details of the ite
tion and the domainSL is defined by the inequalities
L,uqu<uk2qu<L0. A similar expression may be derive
for the renormalized vertex

Vi
L5Vi

02l̄2]nE
SL

dq̂ qnz~ q̂!qj

3g̃~ k̂2q̂,v!] i g̃~2q̂,v!Ṽj~2q̂,v!, ~31!

where Ṽ is defined in the same way asg̃. When all wave
vectors larger thanL are filtered out the FRVE reads@see
Eq. ~23!#

gL
21~ k̂,v! f ~ k̂,v!1Vl

L~ k̂,v!El~ k̂!

5
2l2e

m
] lE

uqu,uk2qu>L

dq̂

~2p!4
d@El~ k̂2q̂! f ~ q̂,v!#1T.

~32!

HereT stands for the cubic nonlinearities. Its explicit form

T5
l2e2

m2 ] lE
uk2qu>L>uqu

dq̂

~2p!4
dFEl~ q̂!g̃~ k̂2q̂,v!] j

3E
uk2q2q8u,uq8u<L

dq̂8

~2p!4
d@Ej~ k̂2q̂2q̂8! f ~ q̂8,v!#G .

~33!

Equation ~32! may be regarded as the main result of th
section. Although the structure has not been strongly mo
fied by the iterative filtering, the differences with the VE a
important. The propagatorgL is a solution of Eq.~30! and
differs from the original propagatorg0 by a renormalizing
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term. Similarly, the vertexVL is the solution of Eq.~31! and
it is also renormalized. Up to orderl2 new cubic nonlineari-
tiesT appear. The last, but not least, difference between
VE and the FRVE is that all physical quantitiesE and f in
the renormalized equation are filtered and the integration
mains are thus bounded byL.

B. Fluxes of energy and particles

Let us now consider the expression for the anomal
fluxes of energy and particles. They are defined by@5,17,18#

Gn52
c

BE E dq̂ dq̂8qyIm^dn~ q̂!df* ~ q̂8!&, ~34!

Gp52
5c

2BTE E dq̂ dq̂8qyIm^dP~ q̂!df* ~ q̂8!&, ~35!

where Im is the imaginary part of a complex variable a
* is its complex conjugate. These fluxes are generated by
fluctuations of macroscopic quantities such as the den
and the pressure, which are given, respectively, by

dn~ q̂!5E dv f ~ q̂,v! ~36!

and

dP~ q̂!5E dv
m

3
v2f ~ q̂,v!. ~37!

The usual procedure in computing fluxes is to use the dis
bution function obtained as a solution of the linearized V
since the general solutions of the nonlinear VE are not av
able. The advantage of our method is that the linear FR
gives a better description of the plasma evolution than
usual linearized VE. Indeed, the nonlinear effects have b
partially taken into account in the renormalization of the l
ear terms. However, the nonlinear interactions between
tered modes also generate the cubic nonlinearity. This t
cannot be evaluated explicitly. Replacing the product
EjEl in the integration by its average gives a first appro
mation of this cubic term

T'l̄2] lE
KL

dq̂ qjqlz~ q̂!g̃~ k̂2q̂,v!] j f ~ k̂,v!, ~38!

where the domainKL is given byuqu<L<uk2qu. Clearly,
this approximation for the term~33! shows the same struc
ture as the correction to the propagator. However, the i
gration domain is different. The domainSL in Eq. ~30! keeps
on growing as modes are eliminated (L→0), while KL

tends to zero. This does not mean that the termT is always
negligible. Indeed, when the peak of the energy spectrum
electric-field fluctuationsz(k) is at wave number (k5kmax)
smaller thanL, most of this spectrum contributes toT.
HenceT should not be neglected. For that reason, the te
T is explicitly taken into account in the filtering procedu
developed in the previous sections. However, once eno
modes have been eliminated (kmax>L), the energy spectrum
of electric-field fluctuations mostly contributes to the ren
malization of the linear terms, while the cubic nonlinear
e

o-

s

he
ty

i-

il-
E
e
en

l-
m
f
-

e-

of

m

gh

-

becomes small. In particular, forL→0, the following ap-
proximation should be justified:

f ~ k̂,v!52gL~ k̂,v!VL~ k̂,v!•E~ k̂!, ~39!

where the norm of wave vectork is smaller than the cutoff
L. This expression is not truly linear since bothgL andVL

depend on the spectrum ofE. When this relation is inserted
in the expressions for the fluxes, one obtains

Gb5A2E dvE
q,L

dq̂ qyz~ q̂!Pb~v!

3Im@ igL~ q̂,v!q•VL~ q̂,v!#, ~40!

where the indexb corresponds ton for the density and to
p for the pressure. The functionsPn5c/B and
Pp55mcv2/6BT are directly derived from the expressio
~36! and~37!, respectively. The vertex depends explicitly o
the average distribution functionF, which itself depends on
the density and temperatures profiles. For example, the l
equilibrium may be described by the Gaussian distributio

F5S 1

pVT~r !
2D 3/2n~r !expS 2

v2

VT~r !
2D , ~41!

where the thermal velocity is given by

VT~r !5A2T~r !

m
. ~42!

Equation~40! thus gives general expressions for the flux
In Sec. VI, it will be shown that these expressions can
transformed into explicit flux-forces relations. However, t
derivation of explicit analytical results requires further a
proximations. Some simple cases are presented in the
section.

V. QUASILINEAR LIMIT

The FRVE~32! is coupled to Eqs.~30! and ~31! for the
propagator and the vertex, which are both an integ
differential equation in the velocity and an integral equati
in the wave vector. Obviously, these equations are too c
plex to be solved exactly. Let us consider an approximat
in which explicit expressions for both the propagator and
vertex can be derived. We first note that the equation for
propagator involves both the operatorsgL[g( k̂,v;L) and
g̃[g( k̂,v;L5uku). However,g is obtained directly fromg̃
through Eq.~30!. It is thus only necessary to obtain an e
plicit expression forg̃. A closed equation for this quantity
can be obtained from Eq.~30! by considering the limit
L5uku:

g̃ 215g0
212l̄2] iE

Ỹk

dq̂ qiz~ q̂!qj g̃~ k̂2q̂,v!] j . ~43!

This equation is very similar to the equation forgL except
that no explicit dependence onL is needed since the cutoff i
defined by the norm ofk. The domainỸk is defined by the
inequalitiesuku,uqu<uk2qu<L0. This clarifies the meaning
of the operatorg̃( k̂,v), which is the renormalized propagato
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acting onf ( k̂,v) when all Fourier modes withuqu.uku have
been filtered out from the VE. Let us stress the differen
with gL( k̂,v;L), which is the propagator acting on mod
f ( k̂,v) with uku,L when all Fourier modes withuqu.L
have been filtered out from the VE.

The nonlinear equation~43! is written in a symbolic form
as

g̃ 215g0
211l̄2Z@z,g̃#, ~44!

where the explicit form of the nonlinear convolutionZ is
obtained from Eq.~43!. The problem is now to find a solu
tion of this equation. Here again it is impossible to obta
exact results and some approximations are unavoidable.
simplest choice consists in expandingg̃ in series ofl̄. The
lowest order is simplyg̃5g0. The first nontrivial approxima-
tion corresponds to the quasilinear~QL! limit and is formally
given by

g̃ QL
215g0

211l̄2Z@z,g0#. ~45!

We thus need the expression ofg0. This problem is more
easily treated using the cylindrical coordinates. Indeed,g0

21

may then be written as

g0
2152 i @v2kiv i2k'v'cos~f2u!#2V]f , ~46!

where the coordinate system is chosen so that the wave
tor and the velocity are given, respectively, b
k5(k'cosu, k'sinu, ki) and v5(v'cosf, v'sinf, vi). The
explicit expression forg0 is obtained by inverting the equa
tion g0

21f5s in order to transform it intof5g0s. The gen-
eral solution of this first-order differential equation contai
an arbitrary parameter that is usually determined by the
tial conditions. Here this condition is naturally replaced
the periodicity conditionf (f12p)5 f (f). Then, the unique
solution is given by
re

a

m

e

he

c-

i-

f ~f!52
1

VE
0

f

h~f,f8!s~f8!df8

1
1

V@12h~0,2p!#
E
0

2p

h~f,f8!s~f8!df8, ~47!

where the functionh reads

h~f,f8!5exp2
i

VE
f8

f

df9

3@v2kiv i2k'v'cos~f92u!#. ~48!

For simplicity, the dependence ink̂, v' , andv i are not writ-
ten explicitly in h, s, and f . The relation~47! defines the
action of the operatorg0 on an arbitrary function. The op
eratorg̃ QL

21 is then obtained by inserting the expression~47!
into the nonlinear convolutionZ @~43! and ~44!#. However,
this would lead to long formulas that are difficult to hand
A major simplification comes from the assumption of gyr
tropy. The velocity distribution function and the fluctuatio
spectrumz considered here are supposed to be isotro
in the plane perpendicular to the magnetic fie
f ( k̂,v)5 f (v,k' ,ki ,v' ,v i). Thus we consider the action o
gQL

21 on such gyrotropic functions. Also, the presentation
limited to the lowest order in the wave vectork ~Markovian
approximation!. This leads to the following result, which i
well known@19–25# in the context of the QL approximation

g̃ QL
215g0

211l̄2S ]'1
1

v'

,] i D S D'' D'i

D i' D ii D S ]'

] i D , ~49!

where the matrixD is given explicitly by
D5 (
n52`

1` E
uqu,L0

dqidq'q'dv8z~qi ,q' ,v8!
2p iJn

2

nV2v81qiv i1 i e S S nV

v'
D 2 qinV

v'

qinV

v'

qi
2 D , ~50!
wheree→01. TheJn represent the Bessel functions that a
evaluated at the valueq'v' /V. The summation in Eq.~50!
comes from the decomposition

eiasin b5 (
n52`

`

Jn~a!einb, ~51!

which has been used extensively in order to evalu
the angular integrals containingh(f,f8). Similarly,
the renormalized vertex can be expressed in the QL li
as
te

it

ṼQL5V01l̄2S ]'1
1

v'

,] i D •QS ]'

] i D emF, ~52!

where the vectorQ is given by

Q5 (
n,r ,p,s52`

1` E
uqu,L0

dqidq'q'dv8z~qi ,q' ,v8!

3
JnJrJpJsdr•Anpsdn

~v82qiv i2nV2 i e!~v82qiv i2rV2 i e!
.

~53!
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The vectorsA andd are defined by

Anps5H F ~p2n!S 12
sV

q'v'
D1sS 12

pV

q'v'
D G 1v'

1
sV

q'v'

]'J e'1] ib ~54!

and

dn5
nV

v'

e'1qib. ~55!

Heree' denotes the unit vector followingv' in the cylindri-
cal coordinates. The relations~49! and~52!, together with the
explicit form of the FRVE~32!, may now be used in explici
calculations. However, a commonly used approximation
strongly magnetized plasmas allows further simplificatio
in the expressions for Eqs.~50! and~53!. Indeed, whenB is
large, finite Larmor radius effects may be neglected and
argument of the Bessel functions (q'v' /V) is small. In that
case, the following approximation may be used:

D'22p i E
uqu,L0

dqidq'q'dv8
qi
2z~q' ,qi ,v8!

v82qiv i2 i e
bb ~56!

and

Q'2pE
uqu,L0

dqidq'q'dv8
qi
2z~q' ,qi ,v8!

~v82qiv i2 i e!2
] ib. ~57!

These relations can now be reduced to a single integral
is computed explicitly for a given shape of the spectrum.
interesting example is the Lorentzian frequency spectrum
the fluctuating electric field

z~q' ,qi ,v8!5
vc
2

v821vc
2 z̄~q' ,qi!, ~58!

wherevc is a characteristic frequency andz̄ is the wave-
vector spectrum. The frequency integral in Eqs.~56! and~57!
can then be performed analytically. This yields

D52p2ivcE
uqu,L0

dqidq'q'z̄~qi ,q'!qi
22 ivc1qiv i

~vc
21qi

2v i
2!
bb

~59!

and

Q52p2vcE
uqu,L0

dqidq'q'z̄~qi ,q'!
qi
2v i

22vc
2

~vc
21qi

2v i
2!2

qi
2] ib.

~60!

These expressions are strongly simplified in the lim
vc→`. In that case the spectrum is independent of the
quency and the electric field is a white noise. The tensoD
then reduces to

D' s̄ipbb, ~61!

where
r
s

e

at
n
r

t
-

s̄i52pE
q,L0

dqidq'q'qi
2z̄~q' ,qi!. ~62!

Within the same limitQ vanishes. This example shows th
simple results can be obtained from the general express
for both the renormalized propagator~30! and vertex~31!
when the explicit form of the spectrum of the electric field
known. Here the results are given in the quasilinear lim
However, the general expressions~30! and~31! can be useful
in other situations by using another analytical treatment.

VI. GUIDING CENTER APPROXIMATION

We have presented in the preceding section an appr
mation that allows many simplifications for the FRVE. L
us now consider another approximation~guiding center@26–
28#! that leads to explicit results for the flux-force relatio
and more specifically for the transport coefficients. The th
modynamical forces are assumed to originate from the s
tial dependence of the particle density and the temperatu

Xn52
] lnn~x!

]x
, ~63!

XT52
] lnT~x!

]x
, ~64!

where the gradients are supposed to be directed along
axisx perpendicular to the magnetic field. Moreover, with
the guiding center approximation, the macroscopic quanti
such as the density and the temperature are assumed t
pend on the guiding center position of the particle traject
instead of the particle position itself. Hence the average
tribution function is given by

F5S 1

pVT~R!2D
3/2

n~R!expS 2
v2

VT~R!2D , ~65!

whereR5r2M•v/V and

M5S 0 1 0

21 0 0

0 0 0
D . ~66!

In that case the velocity derivatives]v are replaced by
]v2M•]R /V. When combined with the Gaussian veloci
dependence ofF in the QL approximation, the flux-force
relations reduce to

Gb5
A2

V (
n52`

1` E dvdqiq'dq'dv8qyz~q' ,qi ,v8!Pb~v!

3ImH Jn
2

~v82qiv i2nV2 i e! J q•M•]RF~R,v!. ~67!

Here also the Lorentzian spectrum may be treated ana
cally. The following flux-force relations are then derive
when finite Larmor radius effects are neglected:

Gn5DnXn , ~68!
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Gp5
5

2
Dn~Xn1XT!, ~69!

whereD is given by

D5
2p2c2A2

B2 E dqidq'q'
3 z̄~q' ,qi!. ~70!

It is interesting to remark that these results are the sam
those obtained by Caratiet al. following another approach
@14#. They first considered the guiding center approximat
of the original VE, i.e., the gyrokinetic equation~GKE!.
Then they applied an iterative filtering on the GKE and o
tained the same transport coefficients. Hence the guid
center approximation and the iterative filtering commute. W
also remark that the Onsager symmetry is broken for
anomalous flux-force relations in agreement with the res
obtained in Ref.@14#.

VII. CONCLUSION

An iterative scheme has been developed for small-s
modes filtering from the one-particle distribution function
a collisionless plasma. The evolution equation for the filte
distribution function appears to be of the Vlasov type with
renormalized propagator, a renormalized vertex, and a c
nonlinearity. The general form of this equation has been
rived in Sec. IV. In a sense, it corresponds to the cen
result of this work. It gives a possible starting point for t
investigation of large-scale phenomena in a collisionl
plasma submitted to an external stochastic electric fi
However, this equation is too complicated to be used jus
it stands. Indeed, both the renormalized vertex and prop
tor must be obtained by solving integro-differential equ
tions. For that reason, we have presented with some de
classical approximations that may be used to simplify
FRVE. Both the quasilinear and guiding center approxim
tions are discussed. Explicit expressions for the propag
and the vertex are then derived.

The numerical solution of the FRVE represents a v
et
as

n

-
g
e
e
ts

le

d

ic
e-
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s
d.
s
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-
ils
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-
or

y

difficult task. Indeed, it would require one to solve Eqs.~30!
and ~31! for the renormalized linear operators, which a
nonlinear integro-differential equations. Moreover, t
FRVE itself is nonlocal in time and its numerical solutio
would require the knowledge of all previous time state
However, as in the theoretical investigation of this equati
some additional approximations may be considered for
FRVE and reasonable simulations could become access

In addition to its practical interest, we would like to stre
the theoretical aspects of the method developed here.
iterative filtering procedure is a scheme that takes the gr
est care in using the expansion in the nonlinearity. After e
iteration, the linear terms are increased by a contribut
coming from the nonlinearity. Hence the respecti
‘‘weights’’ of linear and nonlinear terms are continuous
modified towards more important renormalized linear int
actions. Thus there is an intrinsic justification within the pr
cedure itself for using thel expansion for smaller and
smaller wave vectors. Also, it is established that the ano
lous transport coefficients are not affected by inverting
order of ~i! the iterative small-scale elimination and~ii ! the
guiding center approximation. On the one hand, in Ref.@14#
the iterative filtering is applied on the gyrokinetic equatio
which itself results from the application of the guiding cen
approximation on the VE. On the other hand, the guid
center approximation is applied here after the iterative sm
scale elimination from the VE. We have shown that the
two operations are commutative as far as anomalous tr
port coefficients are concerned.
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