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Iterative filtering procedure for the Vlasov equation

K. Chriaa! V. Skarka? and D. Caratt
IService de Physique Statistique, Univérsitere de Bruxelles, Association Euratom-Etat Belge,
Campus Plaine, Code Postal 231, B-1050 Brussels, Belgium
2Laboratoire des Propfites Optiques des Matiaux et Applications, Universitd’Angers, 2, Boulevard Lavoisier,
49045 Angers Cedex 1, France
(Received 14 February 1996

An iterative filtering scheme is used for deriving the evolution of large scales in a plasma. The information
lost by filtering out the small-scale fluctuations is accounted for by the introduction of an effective propagator
and vertex operators in the Vlasov equation. These renormalizing terms correspond to large-scale diffusive
effects. A general expression for the fluxes of energy and particles is obtained. The transport coefficients are
explicitly derived for the quasilinear limit and the guiding center approximafi8h063-651X97)06201-9

PACS numbes): 52.25.Dg, 52.25.Fi, 52.35.Ra

I. INTRODUCTION This will be particularly useful for studying problems re-
lated to microturbulence in plasni&]. Indeed, if the sto-

The Vlasov equatioVE) is the standard tool for study- chastic electromagnetic field drives the plasma in a turbulent
ing a plasma when the collective effects dominate the collistate, anomalous transport phenomena are observed even in a
sional interactions between particles. Within the collisionlessollisionless plasma. The large-scale behavior of the plasma
limit, this equation gives the evolution of the probability dis- is then dominated by these transport phenomena.
tribution F ,(r,t,v) of a particle of species at positionr The procedure used to filter the VE is based on an itera-
and timet with a velocityv: tive scheme that shares some of the features of the
renormalization-group techniques developed for dynamical
equationg6—9|. These techniques differ from usual renor-
malization schemelsl0—17 in that the simplification comes
from the small-scale elimination instead of a statistical trun-
whereB andE are, respectively, the magnetic and the elec-cation of the highest moments of the distribution function. In
tric fields. The mass and the charge of the particles of specied/der to avoid too involved formalisms, we limit the present
« are denoted, respectively, ande, . Equation(1) is non- study to the non-self-consistent case. The filtering technique
linear because the electromagnetic field is related to thés thus formally similar to the procedure used for investigat-
probability distributionF ,(r,t,v) through the Maxwell equa- ing the large-scale dynamics of a passive scilai. It will
tions. The search for analytical solutions of the nonlinear VEPe shown that the results are also comparable to those ob-
is then a very difficult problenfil,2]. Apart from a perturba- tained for the non-self-consistent gyrokinetic equafib4].
tive treatment, it is usually not possible to obtain analyticalHowever, the VE is more complex due to the dependence on
results for Eq.(1). Actually, the study of this equation is the velocity derivatives.
already complicated when the electromagnetic field is as- In Sec. Il the VE and the statistics of the external electro-
sumed to be known independently of the distribution func-magnetic field are introduced. The systematic procedure used
tion (non-self-consistent treatméntAlso, the numerical for filtering the small scales is presented in Sec. Ill. The
simulations of this equation require rather massive computaesulting filtered and renormalized Valsov equati&iRVE)
tional resources. For these reasons, the derivation of welis derived in Sec. IV together with general expressions for
defined approximation schemes starting from the VE andhe anomalous fluxes. Two particular limits of the FRVE are
leading to a simplified description of the plasma would bethen discussed: the quasilinear lirtec. \) and the guiding

<dy|F,(r,t,v)=0, (1)
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most welcome. center approximatiofiSec. V).
The purpose of this work is to reach such a simplified
description by building up an analytical scheme to separate Il. SYSTEM DESCRIPTION

the large scales from the small ones in the VE. Indeed, in

many situations the details of the small-scale fluctuations are As announced in the Introduction, we restrict our scope to
somewhat unimportant from a practical point of view andsituations where the self-consistent electromagnetic field can
only the knowledge of the large-scale physics is really rebe either neglected or approximated by an external stochastic
quired[3]. This idea has already prompted the developmenfield. In that case, the distribution functions for different spe-
of the large eddy simulations in fluid turbulened. In this  cies(typically @=i for ions anda= e for electron$ are not
work, the result of the overall procedure will be a spatially coupled. For that reason, the explicit species dependence is
filtered VE that allows a simpler treatment. In Fourier spacepmitted in the following discussions. Also, the plasma is
the small-scale elimination corresponds to a reduction ofonsidered to be embedded in an external electromagnetic
modes needed to characterize the one-particle distributiofield consisting of a constant magnetic component directed
function. In real space, this function is “smoother” and can along thez axis,B=Bb and a stochastic electric fielel The

be accurately described by a smaller set of data. introduction of a stochastic variable in the VE suggests the
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following decomposition of the distribution functidh into ~ where A represents the amplitude of the electric field and
an average part and a fluctuation: £(K) characterizes the shape of its spectrum.

F(r,t,v)=F(rt,v) +f(r,t,v), )
L . I1l. ITERATIVE FILTERING
where F represents the average of the distribution function
F=(F(r,t,v)). The equation for the fluctuation is obtained A. Perturbative approach

from Eq. (1): Due to the nonlinear convolution operatéfsee Eq(7)],

all Fourier modes are coupled in the VE. Therefore, it is
impossible to obtain a closed set of exact equations for a
e e subset of Fourier modes. As a consequence, the exact equa-
=— — 3, F-E(r,t)— —a,- [ F(r,t, E(r,1)], 3 tions for the large-scale modes cannot be decoupled from the
m m small scales. It is then necessary to use some approxima-
tions. The simplest one consists of treating the nonlinear op-
eratorN as a small quantity compared to the linear term.
Actually, the introduction of the parametgrin Eq. (4) an-

[0;+V-V+Q(VvADb)-4a,]f(r,t,v)

where 6 represents the fluctuating part of a quantity
(d[x]=x—(x)) and Q is the gyrofrequency. The iterative
filtering procedure developed in this paper is more SUitany[icipates this approximation, which will be referred to as the
expressed in Fourier space. In order to Fourier transform Eck expansion '

(3), the averaged distribution function is assumed to have a Two important questions must be discussed at this point.

slow spatial dependence in contrast with the rapid spatiabn the one hand, the strong coupling between some modes

variations of the fluctuations(r,t,v). A multiscale approxi- - I S
: . R i does not justify the. expansion in many situations where the
mation[15] is then justified and consequentlyis not Fou- i . ion b h hastic electric field and
rier transformed. It is convenient to introduce the following nonlinear interaction between the stochastic electric field an
svmbolic notatiolns for Eq3) in Fourier space: the particles is the dominant dynamical effect. On the other
y ‘ pace- hand, the coupling between modes should diminish for the
galf +VO.E=\N[E,f]. (4) very-high-wave-vector modes. In many physipal systems,_the
small-scale phenomena appear to follow linear evolution
The unperturbed propagatgg and vertexv® are given, re- 1aws. In this paper, the system is assumed to be characterized

spectively, by by these two properties. The nonlinearity is dominant for the
A large scales, while it is small in the small-scale range. Hence
gal(k,v)=[—i(w—k-v)+Q(v/\b)-&V] (5) the\ expansion is justified mainly for the high wave vector.
and B. First iteration

e We first remark that the spectrum of excited modes never
VO=—4 F, (6) extends untik—o in a real physical system. We thus intro-

m duce a cutoff wave numbek, that could be related to a
molecular scale length or to the Debye length depending on
the physical situations. Its actual value is unimportant for our
purpose. However, the cutoff may be used as a starting point
in an iterative elimination scheme based on thexpansion.
e dq A We have assumed that this expansion should be valid for the
N[E,f]=— —4,- f —— S E(kk—qf(q,v)]. @ high wave vectors mainly. The lack of knowledge about the

m (2m) convergence properties of theexpansion then suggests that

one should proceed as carefully as possible. In a first step,
this expansion will be used only in the infinitesimal domain

where the symboIA< stands for both the wave vectiarand
the frequencyw. The termN[ E,f] is nonlinear with respect
to the fluctuations. It is explicitly written as

The coupling constant is introduced in Eq(4) for further
convenience. As aIrea_dy mentioned, the stati_;tical propertie&efined by the wave vectors shell,=Ao— 5A < |k|< A..

of the external electric field myst be specified. He.re th, e thus consider the following decomposition of the distri-
modesE(k) are assumed to be independent stochastic varig tion function:

ables with a Gaussian distribution and zero average. They are

thus completely determined by their correlations f>(|2,v) if Aj<|k|<A,

(E(K)E(k"))=EK)S(K+K'). (8) FRVI=) =(k,v) if [K[<A,. (10

The Dirac distributions(k+k') appears as a result of the

additional assumption that the external electric field is a staThe same decomposition is used for the electric field and Eq.
tionary and homogeneous stochastic process. Consequentjy) splits into two coupled equations

different modes are correlated only when the sum of the

corresponding wave vectors is zero. Finally, the electric field

is supposed to derive from a potential so that the tensor 9o = +VO-ES=ANS[E“+E™,f+f7], (1))

S(IQ) takes the form
&;(k) =A%k Z(K)k; 9) Uo M7 +VO-E”=ANT[ES+E~,f<+f]. (12
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The equation forf~ is then solved perturbatively using the r R R R
\ expansion. The approximate solution up to first order in 1111 f=(k)E~(kj)E™ (k)
\ is =1 j=110=1 -

zﬁ

f==—goV®-E”+\goN"[E=+E~,f=—goV®-E”] =
+O(\?). (13

Hf<(lii>E<(|2,-><H E>(12|>> .an
1j=1 =1

>

These terms vanishes whenthe number of factoE~, is
odd because the electric field has a Gaussian distribution
with zero average.

The use of these properties in the systematic partial aver-
aging of the equation fof~ cancels all but three terms gen-
erated by the small-scale elimination. The first one is propor-
tional to(E”E~).f= and is included in the propagator. The
econd one is proportional {&~E~ ). E~ and renormalizes
e vertex. Finally, a cubic nonlinearifst6] proportional to
<E<f< has to be included in the equation

This solution is now inserted into Eqll), giving (up to
order\?) a closed equation fof~, i.e., an equation that is
independent of ~. However, this equation still depends on
E~. In order to eliminate totally the small-scale contribution,
the equation foff < is averaged over all realizations Bf .
This “partial averaging operation” will be denoted by
( ) - With the assumptions made on the stochastic variable
E(k) in Sec. Il there is no difficulty in averaging over one E
subset of these variables that porrespondsETo Indeed,
their probability distributiorp({E(k)}) has been assumed to g M=+ VL ES=ANT[ES,f]

be a Gaussian. Moreover, relati¢8) shows that variables

E(k) belonging to different shells of wave vectors are not +N®N=[E=,goN"[E=, 1]+ O(\%).
correlated. Hence the distributign({E(k)}) factorizes into (18)
terms corresponding to the different shells and consequently

In this equation, the renormalized propagatpr and the
A~ ~ ~ H 1 H £
PUER) D =p-(E<(K)D)p-(E>(K)}), (14) renormalized verteX/~ are given, respectively, by

91 =00 == N¥N<[E”,goN"[E7,f<]])> (19
wherep_ andp. are, respectively, the probability distribu-
tion function (PDP associated with the variablds~ and  and
E~. The PDF ofES remains unaffected by the partial aver-
aging over all the realizations & . However, the explicit ~ V.E<=VO9.E~—\%(N“[E”,goN"[E~,goV®-E™ 1))~ .
evaluation of this averaging requires some approximations (20
for the terms depending ofi~. Contrary to theE™(k), the . _ _
stochastic variable§<(k) are not independent &&~. The  The explicit evaluation of these terms using the property of
nonlinear term in the VE induces a coupling betwéerand ~ the partial averaging yields, respectively,
E~. Here we make the additional assumption that the corre-
lation betweerf < andE~ may be neglected since these vari- -1_,-1_52 f N2 PR~ ,
ables are coupled only through the nonlinearity assumed to 91780 A7 quq,g(q)qjgo(k avid (2D
be small in this shell of wave vectors. This approximation
and the factorization of the probabilitfl4) implies a few and
useful properties for the partial averaging of the equation for
f=. — R
(i) The total averaging and the partial averaging are Vilzvio_)\zﬁl quq@(q)q,—
equivalent as far as only the variablEéS are concerned: A
Xgo(k_qu)aigo(_ayV)V?(_aaV)' (22)
ME"D=ME"])-, (15 . o
where summation over repeated indices is implied. Hgre
represents theith component of the vectord, and
where W is any functional ofE~ only. This property also N=\Ae/m(2m)* is the effective coupling constant. Hence
impIies(&(ME>])>>=O;Cogsequently, the partial average the \ expansion must be regarded as an expansion in the
of the nonlinear termN[E~,E~] [see Eq(7)] vanishes. amplitude of the spectrum of the fluctuating electric field.
(i) T_he partial averaging does not affect a functiogdl The integration domain iS={A;<(|q|,|k—q])<Ao}. At
depending orf= andE™ only: this point it must be stressed that bajhand V include a
velocity differential operator acting, respectively, érand

(Q[f=,E"])-=Q[f~,E~]. 16 E

(iii) The partial averaging of a mixed term depending si- C. Higher-order iterations

multaneously orf <, E<, andE~ must be evaluated follow- The same procedure is then iterated and yields, after
ing the procedure steps, the renormalized VE
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g;]lf<+vm. E< should not influence the large-scale description of the plasma
and it is desirable to obtain a FRVE in which the successive
m-1 steps of the filtering are written in a compact form. Such an
=AN<[E=,f<]+A2>, N<[E<,giN"[E=,f<]] equation and some general results are presented in the next
1=0 section.
+0(\%), (23
IV. GENERAL RELATIONS BETWEEN FILTERED
where the propagator and the vertex are given by the recur- QUANTITIES
rences The main motivation for filtering the VE is to obtain a set
m—1 of equations for spatially filtere@smoothedl quantities such
(Om'—Omi)f== —)\le (N<[E”,g/N7[E~,f<]])~ as the distribution function or the electric field. In this sec-
=0

tion, we derive general relations involving these filtered
(24) quantities.

and
A. Filtered and renormalized Vlasov equation

-1
(VI=vmTh) B The FRVE(23) depends on all steps of the filtering pro-

m-1 cedure through the summation index. However, the recur-
— )2 <rp> >re< m-1_> rence formulg29), which determines the propagator, may be
A |:20 (NS[E7,gIN"[E=, g1V E7 ]~ formally solved and the result may be expressed in terms of
(25  the final cutoff A=A, corresponding to the last step of the

iterative procedure
On the left-hand sides of these relations, the symbgls

and V™ represent, respectively, the inverse propagator and 11 3 A Ay = B

the vertex obtained after elimination of all modd&&,v) and 9a =G0 —A SAdq 9i¢()0;9(k—=q.v)d;.  (30)
E(k) with [k|=A,. For example, the action of the propaga-

tor on a functiona(k,v) must be understood as This relation is now independent of the details of the itera-

. . tion and the domainS, is defined by the inequalities
gnta=g Y(k,v;Apack,v) for [k|<A,. (260 A<|g|<|k—qg|<Ag. A similar expression may be derived
for the renormalized vertex
On the right-hand sides of relatioig4) and (25), g,‘1 and

V! have the property to act always on modes with A _\,0 3 A A

Ay 1<|g/<A,. In the continuous limit of the iterative fil- Vi=Vim Ao, SAdq and(Q)a;

tering (6A=A;_,—A;—0), these operators thus act on . _

modes with wave vectors characterized|kjy=A, and it is Xg(k—0q,v)d;g(—a,v)Vj(—a,v), (31

convenient to introduce compact notations _ _
whereV is defined in the same way @& When all wave

@"1azg‘1(lz,v;|k|)a(lz,v). (27 vectors larger tham\ are filtered out the FRVE readsee
Eqg. (23)]
The recursion24) can then be explicitly written as A A A A
1 9 (kW F(k,v) + Vi (k,V)E (k)
g,;1=gr;11—>\2|20 aiUS dq qig(d)qjﬁ(k—d,v)}&j, —\2% f dq STER &) F(G)]+ T
= im = — - WV .
(28) m g e q=a(2m® T VT
whereS,,={A,,<|k—q|<A,;An<|q|<An_1}. This re- (32)

lation is _S|mpl|f|ed by noting that the summation |nd.éx . HereT stands for the cubic nonlinearities. Its explicit form is
appears in the volume integration only. The summation is

thus equivalent to the integration over a larger volume cor- X 22

responding to the union of th§,,,. This yields T= _2‘9'f ——0 E|(E{)'§(I2—d,v)aj
m® " Jjk-gi=a=q|(27)

Xf d—alﬁ[E.(&_"_’V)f("/v)]
\k—Q—q’I,lq’|sA(27T)4 J a—q q, .

whereS,={An<|k—q|<Aq; Ap<|g<An i} (33
The procedure developed in this section shows how the

VE is modified by renormalization of both the propagator Equation(32) may be regarded as the main result of this

and the vertex after the small-scale elimination. We havesection. Although the structure has not been strongly modi-

mentioned at the beginning of this section that the use of théied by the iterative filtering, the differences with the VE are

A expansion for filtering the VE is better justified when we important. The propagatay, is a solution of Eq(30) and

proceed iteratively. However, the details of this iterationdiffers from the original propagatay, by a renormalizing

ggql:g;ﬁl—gc?i L dq qig(d)qj'd(l?—d,v)ﬂi’ (29
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term. Similarly, the vertex/" is the solution of Eq(31) and  becomes small. In particular, fok— 0, the following ap-
it is also renormalized. Up to orda? new cubic nonlineari- Pproximation should be justified:

ties T appear. The last, but not least, difference between the N N A N

VE and the FRVE is that all physical quantiti€sandf in f(k,v)==ga(k,V)V7(k,v)-E(k), (39

the.renormallzed equation are filtered and the integration d0\7vhere the norm of wave vectdris smaller than the cutoff
mains are thus bounded hy.

A. This expression is not truly linear since bagh andVv*
depend on the spectrum Bf When this relation is inserted
in the expressions for the fluxes, one obtains

Let us now consider the expression for the anomalous

fluxes of energy and particles. They are defined®%7,19 F,BZAZJ va d§ ,Z(8)Pa(v)
y
q<A

B. Fluxes of energy and particles

c - . .
Fn=—§deq dq'ayIm{én(q)d¢*(a’)), (34 xIm[ig,(a,v)q-VAG,v)], (40)

5c where the index3 corresponds tam for the density and to

Iy=- —f f dqg dg’g,Im(5P(q) 5¢*(§')), (35 p for the pressure. The functionsP,=c/B and
2BT Pp=5mcu2/68T are directly derived from the expression

d(36) and(37), respectively. The vertex depends explicitly on

e average distribution functiafi, which itself depends on

e density and temperatures profiles. For example, the local

quilibrium may be described by the Gaussian distribution

where Im is the imaginary part of a complex variable an
* is its complex conjugate. These fluxes are generated by th%
fluctuations of macroscopic quantities such as the densit

and the pressure, which are given, respectively, by

32 U2
5n(d):j dv f(q,v) (36) = 7TVT(I‘)2) n(r)exp( - —VT(r)Z)' (42
and where the thermal velocity is given by
2T(r)
5P(@)= | avgv?h(a). 37 V(= N 42

The usual procedure in computing fluxes is to use the distriEquation(40) thus gives general expressions for the fluxes.
bution function obtained as a solution of the linearized VE!N Sec. VI, it will be shown that these expressions can be
since the general solutions of the nonlinear VE are not availtransformed into explicit flux-forces relations. However, the
able. The advantage of our method is that the linear FRVE€rivation of explicit analytical results requires further ap-
gives a better description of the plasma evolution than th@roximations. Some simple cases are presented in the next
usual linearized VE. Indeed, the nonlinear effects have beef€ction.

partially taken into account in the renormalization of the lin-

ear terms. However, the nonlinear interactions between fil- V. QUASILINEAR LIMIT

tered modes also generate the cubic nonlinearity. This term :

cannot be evaluafqed explicitly. Replacing the )é)roduct of The FRVE(32) is coupled to Eqs(30) and (31) for the

EE inthe int tion by it . first - propagator and the vertex, which are both an integro-
jei In e integration by IS average gives a Nirst approxi- yige ential equation in the velocity and an integral equation
mation of this cubic term

in the wave vector. Obviously, these equations are too com-
_ R ~ plex to be solved exactly. Let us consider an approximation
T%)&?,f dg g;a(@)a(k—a,v)g;f(k,v), (38  inwhich explicit expressions for both the propagator and the
Ka vertex can be derived. We first note that the equation for the

where the domailK , is given by|g|<A<|k—g|. Clearly, Bropagator involves both the operatayg=g(k,v;A) and

this approximation for the tert83) shows the same struc- 9=9(K.v;A=k|). However,g is obtained directly frong
ture as the correction to the propagator. However, the intethrough Eq.(30). It is thus only necessary to obtain an ex-
gration domain is different. The doma8y in Eq. (30) keeps plicit expression forg. A closed equation fOI.’ this quantity
on growing as modes are eliminated {-0), while K,  €an be obtained from Eq30) by considering the limit
tends to zero. This does not mean that the t&rim always A=1K:

negligible. Indeed, when the peak of the energy spectrum of .

electric-field quctuations{(k)'is at wave numbgrk(= Kmax T =gt 2% f~ dg qii(ﬁ)qjﬁ(lz—d,v)ﬂj . (43
smaller thanA, most of this spectrum contributes b. Y

HenceT should not be neglected. For that reason, the term o o )

T is explicitly taken into account in the filtering procedure ThiS equation is very similar to the equation fgx except

developed in the previous sections. However, once enougff@t no explicit dependence dnis needed since the cutoff is
modes have been e|iminat%} A), the energy spectrum defined by the norm ok. The domainYk is defined by the
of electric-field fluctuations mostly contributes to the renor-inequalitiegk| <|qg|<[k—g|<A,. This clarifies the meaning
malization of the linear terms, while the cubic nonlinearity of the operatog(k,v), which is the renormalized propagator



952 K. CHRIAA, V. éKARKA, AND D. CARATI 55

acting onf(lz,v) when all Fourier modes witfg| > |k| have N , o

been filtered out from the VE. Let us stress the differencef(d’)_ 0o h(¢.4")s(¢4")d¢

with g, (k,v;A), which is the propagator acting on modes L

f(k,v) with |k|<A when all Fourier modes withg|> A " szh ' N oh 4

have been filtered out from the VE. Q[1-h(0,2m)] )0 (4. ¢7)s(¢")d’, (47
The nonlinear equatio3) is written in a symbolic form

as where the functiorh reads
§ =90 +N?Z[{ 7], (44) -
i
where the explicit form of the nonlinear convolutiah is h(¢,¢')=exp- ﬁﬁb’d(ﬁ”
obtained from Eq(43). The problem is now to find a solu-
tion of this equation. Here again it is impossible to obtain X[w—kjp—k v, coq¢"—0)]. (48

exact results and some approximations are unavoidable. The
simplest choice consists in expandiggn series of\. The
lowest order is simplg=g,. The first nontrivial approxima-
tion corresponds to the quasiling&L) limit and is formally
given by

For simplicity, the dependence ﬁ) v, , andv| are not writ-
ten explicitly in h, s, and f. The relation(47) defines the
action of the operatog, on an arbitrary function. The op-
eratorE(SL1 is then obtained by inserting the expressidid)
=gl N2z _ 4 int_o the nonlinear convolutio [(43) and (4_4)}. However,
9L=00 " TN"Z[£,00l 49 this would lead to long formulas that are difficult to handle.

We thus need the expression @f. This problem is more A major simplification comes from the assumption of gyro-

easily treated using the cylindrical coordinates. Indegd, tropy. The veloci_ty distribution function and the fluc.tuation.
may then be written as spectrum{ considered here are supposed to be isotropic

in_the plane perpendicular to the magnetic field
O '=—i[w— Kpj—k v, cog¢p—0)]-Qdy, (46)  f(k,v)=F(w,k, kv, ,v)). Thus we consider the action of
) ) g&_l on such gyrotropic functions. Also, the presentation is
where the coordinate system is chosen so that the wave Vegmited to the lowest order in the wave vector(Markovian
tor and the velocity are given, respectively, by approximation. This leads to the following result, which is

k=(k cost, k;sing, k) andv=(v, cosp, v,sing, v). The  \ye|l known[19-25 in the context of the QL approximation:
explicit expression fog, is obtained by inverting the equa-

tion g, 'f=s in order to transform it intd =g,s. The gen- D D P

eral solution of this first-order differential equation contains_ _, _, — 1 1L 1 L

an arbitrary parameter that is usually determined by the inid oL =% TA%| dL+ Z'aH D Dyllal 49
tial conditions. Here this condition is naturally replaced by

the periodicity conditiorf(¢+ 27) = f(¢). Then, the unique

solution is given by where the matriD is given explicitly by
nQ\2 qnQ
< 2miJ? PR
1 1
D= dgdg, q,dw’ {(q;,9, ,0') T , 50
2 Jq<AO 9da. d.do"¢(a). 9, 0 )g =g o e | gine - (50
v, [
|
wheree—0*. TheJ, represent the Bessel functions that are o 1 9\ e
evaluated at the valug, v, /{}. The summation in E50) Vor=Vo+\?| a,+—.,9/|-Q| 4, | =F (52)
comes from the decomposition vy I/ m

. - _ where the vectof is given by
glasinb _ 2 Jn(a)e'”b, (51) ..
n=-—ow
Q= 2 f dgdg,q,dw’{(q,q, ,@")
nr.p,s=— J|g<Ag
which has been used extensively in order to evaluate 333,30, - Anpedn

the angular integrals containingh(¢,¢'). Similarly, X — a—i y O—io
the renormalized vertex can be expressed in the QL limit (o' =g —n—ie)(o’—qu—r-ie)

as (53)
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The vectorsA andd are defined by _ _
SH=27TJ dgda, a, afZ(a, ,qp)- (62)
sQ pQ \11 a<Ao
Anps: [(p_n) 1- +s| 1- ) . . - . .
q.v, qvi /vy Within the same limitQ vanishes. This example shows that
sQ simple results can be obtained from the general expressions
+ d (e, +ab (54) for both the renormalized propagat@®0) and vertex(31)
LU when the explicit form of the spectrum of the electric field is
known. Here the results are given in the quasilinear limit.
and However, the general expressid3g) and(31) can be useful
nQ in other situations by using another analytical treatment.
anIei-i—qu. (55

VI. GUIDING CENTER APPROXIMATION

Heree, denotes the unit vector following, in the cylindri- We have presented in the preceding section an approxi-
cal coordinates. The relatiot49) and(52), together with the  mation that allows many simplifications for the FRVE. Let
explicit form of the FRVE(32), may now be used ir) explicit us now consider another approximati@uiding centef26—
calculations. However, a commonly used approximation forg)) that leads to explicit results for the flux-force relations
strongly magnetized plasmas allows further simplifications;ng more specifically for the transport coefficients. The ther-
in the expressions for Eqe50) and (53). Indeed, wherB is  mogynamical forces are assumed to originate from the spa-

large, finite Larmor radius effects may be neglected and thga| dependence of the particle density and the temperature
argument of the Bessel functiong,(v, /) is small. In that

case, the following approximation may be used: dlnn(x)
(0, 9.0') T ~
D~—27-rif dq”quqldw’H,l—’”’.bb (56)
lal<Aq @ —qu~le JInT(x)

and

2 , where the gradients are supposed to be directed along the
aj¢(a. gy, o) ; ; o e

b (57) axisx perpendicular to the magnetic field. Moreover, within

(0" —qu—ie) the guiding center approximation, the macroscopic quantities

) ) ) such as the density and the temperature are assumed to de-

These relations can now be reduced to a single integral thgyend on the guiding center position of the particle trajectory

is computed explicitly for a given shape of the spectrum. Aninstead of the particle position itself. Hence the average dis-
interesting example is the Lorentzian frequency spectrum fofrihution function is given by

the fluctuating electric field

Q%wa dgdg,q, dw
lal<Aq

2

3/2
. sl i)
{0, .01 0) = 7o (. ), (59) Rz "RER Ty Rz (89

_ whereR=r—M-v/Q) and
where w. is a characteristic frequency ardis the wave-

vector spectrum. The frequency integral in E@%) and(57) 0
can then be performed analytically. This yields M=l -1 0 o], (66)
] — —ilws+qpu 0
D=2w21wcf dqyda,q.¢(qy ,qi)qﬁzc—z”z”bb
lal<Ao (wg+afof)

In that case the velocity derivatived, are replaced by
d—M-dg/Q. When combined with the Gaussian velocity
and dependence ofF in the QL approximation, the flux-force
relations reduce to

2.2
qiv] 2 4+

— |~ @ 5
Q=27"w f doyda, 0, £(ay.9.) 2 7224 d|b.
Jlagang T (W2 gfuf)2 (leo) Fo=g 2 fdvdquqldqidw’qyé(qi,qH,w’)Pﬁ(V)

2
These expressions are strongly simplified in the limit Jn M.
we.—. In that case the spectrum is independent of the fre- m (0" —qu—nQ—ie) q-M-GrFRV). (67)

guency and the electric field is a white noise. The teri3or
then reduces to Here also the Lorentzian spectrum may be treated analyti-

o cally. The following flux-force relations are then derived
D~s|wbb, (61 when finite Larmor radius effects are neglected:

where I'n=DnX,, (68)
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difficult task. Indeed, it would require one to solve E(R0)

I'p=5Dn(Xqy+Xy), (69 and (31) for the renormalized linear operators, which are

nonlinear integro-differential equations. Moreover, the

whereD is given by FRVE itself is nonlocal in time and its numerical solution
would require the knowledge of all previous time states.

272c2A2 — However, as in the theoretical investigation of this equation,
D=—53 doidq.q7¢(q.,qp)- (70 some additional approximations may be considered for the

FRVE and reasonable simulations could become accessible.
It is interesting to remark that these results are the same as In addition to its practical interest, we would like to stress
those obtained by Caraét al. following another approach the theoretical aspects of the method developed here. The
[14]. They first considered the guiding center approximationiterative filtering procedure is a scheme that takes the great-
of the original VE, i.e., the gyrokinetic equatioiGKE). est care in using the expansion in the nonlinearity. After each
Then they applied an iterative filtering on the GKE and ob-iteration, the linear terms are increased by a contribution
tained the same transport coefficients. Hence the guidingoming from the nonlinearity. Hence the respective
center approximation and the iterative filtering commute. We‘weights” of linear and nonlinear terms are continuously
also remark that the Onsager symmetry is broken for thenodified towards more important renormalized linear inter-
anomalous flux-force relations in agreement with the resultactions. Thus there is an intrinsic justification within the pro-

obtained in Ref[14]. cedure itself for using then expansion for smaller and
smaller wave vectors. Also, it is established that the anoma-
VIl. CONCLUSION lous transport coefficients are not affected by inverting the

. ) order of (i) the iterative small-scale elimination afid) the
An iterative scheme has been developed for small-scalgyiging center approximation. On the one hand, in [R&f]
modes filtering from the one-particle distribution function in the jterative filtering is applied on the gyrokinetic equation,
a collisionless plasma. The evolution equation for the filtereqyhich itself results from the application of the guiding center
distribution function appears to be of the Vlasov type with agpproximation on the VE. On the other hand, the guiding
renormalized propagator, a renormalized vertex, and a cubigenter approximation is applied here after the iterative small-
nonlinearity. The general form of this equation has been degcgje elimination from the VE. We have shown that these

rived in Sec. IV. In a sense, it corresponds to the centradyg operations are commutative as far as anomalous trans-
result of this work. It gives a possible starting point for the yort coefficients are concerned.

investigation of large-scale phenomena in a collisionless

plasma submitted to an external stochastic electric field.
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