PHYSICAL REVIEW E VOLUME 55, NUMBER 1 JANUARY 1997
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In this paper we develop self-contained formulatiorto solve the steady-state spatially inhomogeneous
electron Boltzmann equatiofiEBE) in a plasma positive column, taking into account the spatial gradient and
the space-charge field terms. The problem is solved in cylindrical geometry using the classical two-term
approximation, with appropriate boundary conditions for the electron velocity distribution function, especially
at the tube wall. A condition for the microscopic radial flux of electrons at the wall is deduced, and a detailed
analysis of some limiting situations is carried out. The present formulatiseliscontainedn the sense that
the electron particle balance equation is exactly satisfied, that is, the ionization rate exactly compensates for the
electron loss rate to the wall. This condition yields a relationship between the applied maintaining field and the
gas pressure, termed thdescharge characteristiowhich is obtained as asigenvalue solutiomo the problem.

By solving the EBE we directly obtain the isotropic and the anisotropic components of the electron distribution
function (EDF), from which we deduce the radial distributions of all relevant macroscopic quantities: electron
density, electron transport parameters and rate coefficients for excitation and ionization, and electron power
transfer. The results show that the values of these quantities across the discharge are lower than those calcu-
lated for a homogeneous situation, due to the loss of electrons to the wall. The solutions for the EDF reveal
that, for sufficiently low maintaining fields, the radial anisotropy at some radial positions can be negative, that
is, directed toward the discharge axis, for energies abaalisional barrier around the inelastic thresholds.
However, at the wall, the radial anisotropy always points to the wall, due to the strong electron drain occuring

in this region. We further present pertinent comparisons with other formulations recently proposed in the
literature to model the present inhomogeneous prob]&h063-651X97)09901-7

PACS numbefs): 52.25.Dg, 51.10ty, 52.25.Fi

[. INTRODUCTION mann equationEBE) is written under certain approxima-
tions, e.g., theawo-term approximationwhen the discharge

In recent years there has been increasing interest devoteahisotropies are smdlll2—14, and/or thedc effective field
to the problem of nonlocal electron kinetics in various dis-approximation when the discharges are produced by hf ap-
charge and/or discharge field configurations, due to thelied electric field§12,13,158. Many authors have adopted
growing number of technological applications involving such descriptions to solve the EBE using a variety of numeri-
low-temperature plasmas. In fact, the spatial description o€al techniques in order to speed up the calculatjd6s-18.
the electron kinetics is fundamental not only to further un-Other authors have solved the EBE by adopting the so-called
derstand the physical phenomena inside a gas discharge, kotal energy formulationin which thetotal energy(kinetic
also to provide practical information about the type of dis-plus potential of the electrons replaces the kinetic energy as
charge to adopt for given applications. This motivation led toindependent variable.
the development of various nonequilibrium discharge models The total energy formulatiorhas been used to work out
and, in many cases, to the introduction of numerical tools irsolutions to the complete spatially inhomogeneous EBE in
order to solve the problem in an efficient, accurate way. various situations, such as the analysis of the plasma electron

An impressive illustration of this are the very complete response to a spatially embedded electric field impL1Sg
hybrid modelsf rf capacitively coupled dischargé€CD'’s) or the radial study of the electron kinetics in a classical dc
and inductively coupled discharg€kCD’s) [1-7]. In gen-  positive column[20,21]. In weakly collisional caseswhen
eral, thesehybrid modelsare assembled using different mod- the electron mean free path is of the order of the typical
ules, each of which is designed to calculate some importardischarge dimensions, the EBE can be written usingated
physical quantity: the electron distribution functiéBDF), energyof the electrons as the sole independent variable to
the distribution of fields, the density profiles, and so on. Thedescribe the nonequilibrium electron kinetics. This approxi-
main problem with these sophisticated models is that theynation corresponds to the so-calletnlocal approach
usually require very long computation times, particularly for based on the works of Bernstein and Hols{gi#l] and Tsen-
the electron kinetic calculations using eithgarticle-in-cell  din [23], in which the EDF becomes a spatially homoge-
and Monte Carlosimulations[2,7,8] or aconvective scheme neous function to be determined from a spatially averaged
to numerically integrate the Boltzmann equat{®-11]. kinetic equation.

The amount of computational work required to study the The basic advantage of this approach is that it not only
electron kinetics can greatly be reduced if the electron Boltzeonsiderably reduces the computational labor to solve the
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EBE (now transformed into a single variable equajidout  in Sec. VIII, and the concluding remarks are presented in
further allows analytical or semianalytical solutions to beSec. IX.
obtained in some limiting cases. As a consequencendne
local approachhas been applied to the study of a wide va- Il. RADIALLY DEPENDENT ELECTRON
riety of problems in gas discharge physics, such as the clas- BOLTZMANN EQUATION
sical dc positive column24], the anode and the cathode
regions of a dc glow dischard@5,26, and the modeling of
low-pressure rf CCD'q27], ICD’s [28-31], and surface- The system under analysis is a dc positive column of ra-
wave dischargef32]. dius R, under the action of a total electric field of the form
The contribution of these models was decisive to conE(r)=E,(r)e, +E,e,, where the radial component
struct an overall picture of the electron kinetics in inhomo-E,(r)=—V,¢ is the space-charge fieldp(represents the
geneous situations. However, the various formulationspace-charge potentiahnd the axial one is the applied elec-
adopted so far to solve this nonlocal kinetic problem stilltric field, assumed to be uniform. For the present discussion,
require some improvements in order to achivesalf- involving only the study of the electron kinetics, a given
contained description radial profile for the space-charge field is assumed.
The reasons for this are twofold. First, the nonlocal elec- The distribution of electrons in the discharge can be de-

tron kinetics are strongly dependent on the phenomena oGgribed by the EDFF(r,v), representing the number density

curing at the plasma-sheath boundary near the dischargﬁ electrons at the pointr(J) in phase space. The EDF is
wall, where the anisotropies are expected to increase. T

gain further physical insight into this problem one has t08t.)ta|ned by SO',‘"”‘?’ the cor.r(.aspondwlg goEzmann equation
derive a correcwall boundary conditionfrom theoretical  With the normalization conditiof F(r,v)d*v=n(r), where
considerationsinstead of assuming any arbitrary law at the "(r) iS the electron density. , _

wall [17,18,21. Busch and Kortshagef20] deduced a wall In thg present situation, we consider the existence qf a
boundary condition using thetal energy formulatioralong total anisotropy with an axial component due to the applied

with the physical arguments previously presented by Tsendifi€'d> and a radial component due to the space-charge field
and Golubovski[24]. However, thetotal energy formulation and the density gradlen_t. In order to so_lve t_he EBE we adopt
demands a considerable effort of theoretical development, i€ Well-knownsmall anisotropy approximatiofi 2,13, that

that a boundary condition directly applying to the electron!S: We represent the EDF by the first two terms of its expan-
velocity distribution function was not derived [20]. Sec- sion in fpher|cal harmonics around the total anisotropy di-
ond, aself-contained steady-state solutitmthe EBE must  reCtion €anisotropy

verify the electron particle balance equation. This require-

A. General formulation

ment yields a relationship between the discharge maintaining _ I

field and the pressure, termed tbischarge characteristic F“’”'e)‘;o F(r.v)Pi(cosh) (13
which has to besimultaneouslyobtained as areigenvalue

solutionto the problem. Such a formulation constitutes the ~F%r,v)+F(r,v)cod

sole correct approach for consistently solving this nonlocal

kinetic problem, as it does not resort to experimertal -

parametri¢ discharge characteristics as input data =Fr,v)+ K.ﬁl(r,v). (1b)
[20,21,33. v

The purpose of this paper is to developelf-contained )
formulation to numerically solve the spatially inhomoge- !N these equations?,(cost) denotes thé Legendre polyno-
neous EBE in a plasma positive column, including the spatiainial, andF'= Fleamsotropyis thefirst-anisotropy vectar
gradient and the space-charge field terms in the equation for With this approximation, the EDF is decoupled into an
the isotropic component. The problem is solved in cylindri-isotropic componenE®(r,v), an axial anisotropic compo-
cal geometry, with appropriate boundary conditions for thenentFx(r,v), and a radial anisotropic compone®t(r,v).
electron velocity distribution function, especially at the tubelntroducing expansior(1b) into the EBE yields a scalar
wall, where a detailed discussion is carried out. equation for the isotropic component of the EDF, and a two-

The organization of the paper is the following. In Sec. Il, fold vector equation for its anisotropic components. After the
we develop the general formulation for the radially depenrenormalization,
dent EBE and the boundary conditions, and we discuss its
validity domainversusthe pressure. In Sec. lll, we analyze Fo(r,v)
some limiting cases for the wall boundary condition used in
this work, and show that the results obtained in other theories
are recovered. The electron particle and power balance equa- Fi(r,v)
tions are deduced in Sec. IV, by integrating the EBE in en-
ergy space. In Sec. V, we present the independent input pa-
rameters and theeigenvalue solutionto the EBE; the
numerical method employed to solve the problem is de
scribed in Sec. VI. In Sec. VII, we introduce the space- . .
charge field profile adopted in this work, and discuss the f f(r’u)\/adu: &2 f(o,u)\/adu:]_, )
total energy formulationThe results obtained are discussed 0 No 0

47rvzdvzf(r,u)\/adu,

No

4wv2dvEf1(r,u)\/Gdu,

wheren is the electron density at the tube axis, so that
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one obtaing12,13 ground-state atom with a primary electron of eneugyThis
differential cross section verifies the integral relation

=V FHr,u)=VulI(r,u)+1(r,u)],

dG(r,u) (Ze)l’zu

(u=V)i2
ou 3 (3a) og(u)=f0 ot®{u,u’)du’. (6)
fi(r,u)= ! Zc?f(r,u), (3p)  Equations(3b) and (3c) determine the anisotropic compo-
No(u) Ju nentsf%(r,u) andfrl(r,u) as a function of the isotropic com-
ponentf(r,u).
F1(r,u)= E,(r) of(r,u) —V.fru)]. (30 The first term on the left-hand side of E@a) represents
e No(u)| " du e the divergence of the electron flux in energy space driven by

the applied field, the space-charge field, and the recoil colli-
Herein,G=Gg+ G, is thetotal upfluxin energy space due sions, respectively, while the second term represents the di-
to the total field and the elastic collisions given by, respecvergence of the electron flux in configuration space. The

tively, terms on the right-hand side of E(Ba) represent the net
creation rate of electrons with a given energy due to the
Ge(r,u)=Gg(r,u)+Gg (r,u) excitation and ionization processes, respectively. Substitut-

e 12 ing Egs. (3b), (3¢), (4a), and (4b) into Eq. (38 yields a
U 1 second-order partial differential equatiORDE) for f(r,u)
=] = + ; ) . s A

( m) 3[Ezfz(r,u) B (Dfr(rul, (43 in the energy and configuration spaces; this equation is to be
solved subject to appropriate boundary conditions.

1/2
e
=_| = 2
Ge(r,u)= ( m) M erNu 7e(U) B. Validity domain versus pressure
kgTg f(r,u) For the purpose of analyzing the validity domain of the
X f(r,U)+TT (4b)  EBE with the pressure, we will use estimations based on

simple orders of magnitude. The basic question here is to
know the applicability conditions of themall anisotropy

In these equations)=my®/2e is the electron energy in eV, approximationaccording to the range of pressures consid-
wheree and m are the electron charge and mass, respec- PP 9 9 P

) . ; . . ered.
tively; M is the atom massj is the gas densityT; is the gas . .
temperature;at(u)=ac(u)+2ia{)(u)+ag(u) is the total In view of this, let us focus on Eq$3b) and (3¢) for the

. : EDF anisotropic components. For the purposes of estimation,
electron-neutral momentum transfer cross sectigifu) is P . PLIp

. _ . we note that 1 =\ (N is the electron mean free path
the elastic momentum transfer cross sectiofj(u) is the o) ( pal

dflou~—f/{u) ({(u) represents the mean energy of the elec-
direct electron excitation cross section for ftile state; and trons, andV<rf>~(<— f>/R,pso that 9y

o'o(u) is the direct electron ionization cross secti@tl in-
elastic collisional processes are assumed to be isojrdpie 1 E,\

quantitiesJ(r,u) andl(r,u) represent electron operators for f=-— mf: (7a)
the collisional processes here considered, i.e., ground state
excitations and ionization, taking into account the production

of secondary electrons, respectively: fle| — E;); + E}f (7b)
u R
12 )
J(r,u)= m) TZ [(u+Vi)op(u+Vpf(r,u+V) From Eq.(7a), we conclude that the axial anisotropy can
ut be kept small provide A <(u), which means that the en-
—uah(uf(r,u], (59  ergy gained from the applied electric field between two suc-

cessive collisionsiz,\, must be much smaller than the mean
energy of the electrons4].

12 o
I(r,u)= E) ﬁ f u’ou’, u)f(r,u’)du’ The limitation of the radial anisotropy, however, further
Ju| Jau+y, requires that the two terms on the right-hand side of(Eh).
Sy must be of the same order of magnitude, i.e.,
+f Iu’afe"(u’,u’—v,—u)f(r,u’)du’ ErA/(u>:)\'/R, or equivalently \/R<E, /E,. The fulfill-
utv, ment of this latter condition strongly depends on pressure,

and may be difficult to meet: at low pressures=R) it
) (5b) requires the space-charge field to be higher than the applied
maintaining field E,>E,), which is certainly not the case
near the discharge axis; at high pressuregR) it requires
In these equations/; andV, are the energy of thih state  that the applied maintaining field dominates over the space-
and the ionization state, respectively, amif{u’,u) is the charge field E,>E,), a condition that may be violated near
differential direct ionization cross section for the productionthe wall. The situations here considered are limited to a
of a secondary electron of energyfrom the collision of a range of intermediate to high pressures, where collisional

—uah(u)f(r,u)
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processes play an important role in the electron kinetics and
E,>E, across most of the discharge radigse Sec. VIl

r=0 r=R' r=R

whereas in configuration space,rat0, symmetry consider-
ations lead to

I
N ' ¢=0
C. Boundary conditions :
The solution of Eq.(3a requires the knowledge of two |
boundary conditions in energy space and two boundary con- I
ditions in configuration space. In energy space we impose |
[13] |
G(r,0=G(r,»)=0, ® | , |
corresponding to théotal upfluxconservation : :
I |
*»dG(r,u
f (—)duzG(r,w)—G(r,O)EO, : : ~Ad
0 Ju | i
| I \

I |

I |

[ |

df(r,u)
ar

=0. 9

r=0

In order to deduce aeaningfulphysical boundary con-
dition atr =R, we first obtain thenet (microscopi¢ flux of

electrons with velocity between and v +dv, y(r,v), by

integrating the producE(r,v)v over all angles in velocity
space,

«;(r,v)zf LZF(r,J)JdQ. (10)

Substituting thdull expansion1a) into Eq.(10), and tak-

<>

<X

FIG. 1. Schematic diagram of the potential dibg, across the
noncollisionalboundary layer R<r<R (R—R’s<\ and\ is the
electron mean free pathThe discharge axis is at=0 and the
discharge wall is at=R.

A solution to this problem can be sought through a sepa-
ration of these processes. To this end, let us first note that
electron collisions do not occur within a walbundary layer
with a thickness of the order of the electron mean free path
(R'sr=R andR—R’=<\). In this region, no electrons are

ing into account the orthonormality properties of the Leg-created, and the space-charge field is expected to dominate

endre polynomial$35], yields

47rv

‘;(I’,U)I 3 Fl(rav)éanisotropy (11

over the applied field, so that a Boltzmann distribution law
can be assumed for the electron density.

This collisionlessboundary layeris not to be identified
with the wall space-charge sheath, as collisions can occur in
the latter for the range of pressures studied in this work.

As expected, th@? flux has the same direction as the total Within the collisionlesdoundary layerthe electron kinetics

anisotropy, its components being given by

Y(1,0) =7 (10) +7,(r,v), (129
N 47rv 1 N
F(rw)=—3-Fl(r0)e, (12b
- 47v 1 >
'}/Z(rav):TFz(riv)eZ' (12C)

can be described in terms of energy conservation only, as the
motion is determined exclusively by the space-charge poten-
tial drop A ¢ (see Fig. L

It is also important to note that the EBE, as given by Eqgs.
(3a)—(4b), has no physical meanin@nd consequentiyio
validity) inside the abovédoundary layey since the deriva-
tion of the EBE is based on@arse grainingprocedure over
a length scale much greater than the mean free [[3/37).
Therefore, Eqs(3a)—(4h) are only valid across the tube up to
the boundary layermposition (0<r<R’).

In order to deduce the wall boundary condition, we must

It is clear that the wall boundary condition must be de-getermine which electrons can overcome the potential drop

rived from the continuity of;/r atr =R, taking into account
that some electrons are reflected by {space-chargepo-

A ¢. For this purpose it is convenient to decompose the elec-
tron velocityv as(see Fig. 2

tential barrier and, thus, do not reach the wall. The math-
ematical formulation of this basic idea is, however, some-
what difficult to carry out, due to the nature of the different .. .
physical processes influencing the electron motion towardvheree, =e, ande are, respectively, the perpendicular and
the wall, as the collisional scattering, the drift under the acthe parallel unit vectors to the discharge boundary, assuming
tion of the total field, and the sink of electrons due to colli- planar geometry for simplicity. Similarly, the electron kinetic
sions with the wall. energy can be decomposed as

v=v,e +ve=vcosye, +vsinye,
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r=R

r=R'

AARY S
[

FIG. 2. Electron velocity decomposition in th®undary layer
R'<r<R.

1 mov? _1 m(vf-i—vﬁ)

U=5 =5 Wy,
where
1mvi 1 my?
UL_ET_ETC()&ZX_UCOS?X’ (139
_1mvﬁ_1mv2 2y — usir? 13b
U=5—5 =3 g SIMx=usify. (13b

In order to be able to cross theundary layerfromR’ to
R, an electron must have a kinetic energy alangu, ,
greater than the potential drape, that is,

A
u, =Ap=cody= T¢Eco§x*

1/2
:sz*(u)=arcco%7> . (14

Consequently, one can definelass cone to the wall24]
corresponding to the solid ang(eee Fig. 3

AQ*(u)sff dQ*=
Q*(u)

=2m(1—-cosy™(u)),

=2

=x*(u) .
fX X sinydy dy
p=0 Jx=0

(19

where y*(u), representing the maximum polar angle for a

given energw, is defined by the set of conditions
0 if ususAdg¢

X" (u)= Ad (16

1/2
arcco%T) if u=u,=Ad.

The v, flux conservation in théoundary layercan be
expressed by the condition
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FIG. 3. Theloss coneo the wall. The quantity™* represents the
maximum polar angle for which the kinetic energy alangi, , is
still greater than the potential drape.

¥ (Rv)=7% (R ,v)~ v (R',v), (17)

wherey," (R",v) [y, (R’,v)] is theforward (backward mi-

croscopic radial electron flux at+ R’, that is, the total num-

ber of electrons, with velocity betweenandv +dv, enter-

ing (leaving the boundary layemper unit area and unit time.
In general,y, (R’,v) is defined as

¥, (R",0)={y](R",v),

where is the wall reflection coefficient{=0 corresponds
to a perfectly absorbing wallwhile y, (R’,v) is given by
(see Fig. 3

(18)

yj(R',v)zf fQ*F(R’,J)v,dQ*

v=2m fx=x*w)_ _, - .
= F(R',v)(vcosy)sinydxdy.
p=0 Jx=0
(19

If we now assume that the EDF can be well represented
by the two-term expansion in spherical harmonitbk), we
can solve the integrals in E¢L9), yielding

p=2m [x=x"(v)
y?(RxU)::f fX X (v
=0 x=0

X(vcosy)siny dy dys

v o
FO(R',U)-F;-Fl(R/,v)

1—cogx*(v)

0 ’
5 F°(R',v)

=27

+1—co§x*(v)

3 . (20)

FHIR',v)

The situations considered in the present work are limited
to a range of intermediate to high pressutels Sec. 11 B,
such that the electron mean free path is much smaller than
the typical discharge dimension €R). Thus, aninfinitely
thin boundary layercan be assumed.
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FIG. 4. The¢ factor for the wall boundary condition. The curves

were calculated for the following potential dropg: solid curve, 4
V; dashed curve, 10 V.

The final form of the wall boundary condition is now

readily obtained from Eqq12b), (17), (18), and(20) (with
R’'—R), yielding

fHRW=&wWf(RU), (219
§(u)=g 1120052)( W (21b)
(rg“ +coSy*(u)

where the usual renormalization has been uggfd Sec.
Il A). Figure 4 representsvsu for A¢=4 V and 10 V.

For the purpose of calculations we have assum@era
fectly absorbing wall so we can write{cf. Egs. (16) and
(21b)]

0 if usAd

§W=13 1-(A¢lu) (22)

2Tr (g™ T u=aé.

Note that the wall boundary condition given by E¢2la

and(22) implies thatf >0 for u=A ¢, which means that the

radial anisotropy always points toward the wallrat R.
The introduction of aloss cone to the walin order to

advantage of the present formulation is that it gives a direct
control upon the electron transport features.

lIl. LIMITING CASES FOR THE
WALL BOUNDARY CONDITION

In this section we will analyze some limits of the wall
boundary condition deduced in Sec. Il C, in order to show
that it reproduces the results obtained from other theories.

A. Free diffusion approximation

Thefree diffusion approximatioassumes that there is no
potential barrier reflecting the electrons at the wall, which
means that théoss conesweeps all polar angles in the inter-
val 0<y=/2 (x*=w/2). In this case the equation for the
v, flux conservation ar =R writes, assuming a perfectly
absorbing wallcf. Egs.(17) and(20)],

%(Rp)=7(Rv)=2mu[; FURv)+ 3 F{(Rv)].
(23

The integration of Eq(23) over all velocities yields
I'(R)= 7 n(R)(v)(R)+ z n(R)vy(R), (24)

where

Fr(r)Efwyr(r,v)vzdv (25)

0

is the macroscopic radial flux, and the mean velo¢ity and
the radial drift velocityvy4 are given by, respectively,

n(r)(v)(r)zf:vFo(r,vMﬂ'vzdv, (263
> 41rv2
n(r)vd(r)=fouFr(r,v) 3 dv=Tr(r). (26b)

Equation(24), a well-known expression obtained in the
framework of thefree diffusion approximatiof38,39, can
be combined with Eq(26b) to give

1
vd(R)=§<v>(R), (27)

which constitutes a widely used macroscopic boundary con-
dition at an absorbing surface for the diffusion of electrons in
a scattering mediurpd0—44,.

By using expressiofil2b) for the y, flux, we can rewrite
Eq. (23), after energy renormalization, as

f1(R,u)= % f(R,u). (28)

Equation(28), the asymptotic limit of Eqs(219 and(21b)

deduce a boundary condition for the electrons has previouslfor x*=7/2 and/=0, is currently used in photon diffusion
been used by other authdi®0,24]. These authors, however, theory[45] and neutron diffusion theorj46], where no in-
did not formally associate this concept with the microscopicteractions with electric fields exist. Although conditi¢2g)
electron flux(11), so the boundary conditions they derived implies a clear violation of themall anisotropy approxima-

are not directly expressed in terms of tﬂeanisotropy. The

tion, it has nevertheless been widely used in the literature
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as it “gives a better approximation to the exact solutionthan If we now adopt a Gaussian weight factor of

we should have the right to expecf45]. cos=1//3 as discussed by Chandrasekfs@], and note
that the mean electron collisional mean free path is
B. Two-stream approximation—Milne’s boundary condition A=1/(Noy), Eqg. (33) assumes the familiar form of the

Milne’s boundary conditiorior the magnitude of the normal-

The two-stream approximatiomvas used by several au- ized electron density slope Bt R [46,51—54,

thors[47-5(Q to solve the transport equations of uncharged
particles diffusing in an isotropic scattering medium. This

approach consists in replacing the angular distribution of v.n(r) V3 1-¢

scattered particles with a pair of representativenokinetic () =N 1+¢ (34)

streams one with intensityl . moving at angleé, to the r=R

éamsotropydirection, and the other with intensity moving at

angle g, to the —éanisotropydirection. Scattering fronh, re- C. Ambipolar diffusion approximation

sults in particles that remain in. or that join thel _ stream. The classicabmbipolar diffusion approximatioassumes

The reader should refer {6153 for a detailed discussion 5 vanishing electron density at the wall, which amounts to

of the formulation. assuming an infinite potential barrier at the wall reflectitig
By applying this approximation to the transport of elec- e electrons, that is,

trons, assuming,(r) =0 andeapisoropy=€r » the net micro- )

scopic radial flux at the wally,(R,v), is written [cf. Egs. Ap— —o=x"(U)—0=¢§(u)=0=F;(R,u)

(10) and (1D)] 1 s (R.U)

- = E/(R) -V, f(R,u)|=0. (39
yr(R,v)=27Tfo F(R,v,60)v,sinddo No(u) ou

- Equation(35) can be solved analytically using separation
zZWFrl(R,v)COSB,(vCOS%)J sindde of variables, to yield the well-known Maxwell-Boltzmann
0 distribution

=47vF}(R,v)cog,, (29
f(R,u)=Aexd —a(u—¢(R))]-0,
and the forward microscopic radial flux at the wall,

+
¥ (R,v), becomesci. Bgs.(19) and (20)] which vanishes at =R due to the space-charge potential

w2 singularity. The usual wall boundary condition for the elec-
Y, (Rv)=2m f F(Ruv,0)v,singde tron density in the ambipolar diffusion limit,
0 n(R)/ny=J5f(R,u)Judu=0 [55,56, is therefore recov-
ZZWFO(R,U)(UCOSﬂ)fWIZSinﬁdﬂ ered by the present formulation.
0
/2
+2WF3(R,U)0039|(UCO39|)f singde IV. INTEGRATION OF THE EBE—
0 MACROSCOPIC EQUATIONS

_ 0 1
=2mu[F°(R,v)cosh, +F7(Rv)cos6,]. (30) A. Electron particle balance equation

The radial flux conservation at=R is obtained from Eqgs. The electron particle balance equation is obtained by in-
(17) and(18) using Eqs(29) and(30) (assumingR’=R and  tegrating Eq.(3a) over all energies, taking into account the
adopting the usual renormalizatjprwhich yields boundary conditions in energy space, E8). The resulting

. 1 1-¢ equation is
fr(Ru) cosh, 1+§f(R’u)’ (31 1 /26|12 - n(r)
N . , 3 —) Vr'J fr(r.uudu=»(r)—, (36
where the radial anisotropy is now given ff. Eq. (30)] m 0 Mo
fYRuU)=— ;Vrf(r,u)h:R_ (32)  Wherey(r) is the direct ionization collision frequency given
No(u) by the expressiohy,(r)/N is the corresponding rate coeffi-
The integration of Eqs(31) and (32) over the energy cient
space yields
n(r)yn(r) (2e\Y2(=
v.n(r) No, 1-¢ N n_:(ﬁ) f oo(w)f(r,uyudu (37
r=R= : (33 0 0
n(r) coY, 1+¢

where we have used the fact that the electron streams are The left-hand side of Eq36) is just the divergence of the
monokinetic, together with the normalization conditi(®) reduced radial flux, /ny, which can be obtained by inte-
for the EDF. grating Eq.(3c) over all energies. This yieldsf. Eq. (26b)]
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L) 1=, 4m®  1(2e\"(=
ng —n—o oFr(r,v) 3 dv_§(ﬁ fo fo(r,u)udu
=90 ) e ), (39
0 0

whereD(r) and u(r) are the electron free diffusion coeffi-
cient and the electron mobility, respectively, given by

n(r) 1 Ze)l’2 = U
D(r)Nn—0—§ H JO o_t(u)f(r,u)du, (393
n(r) 1/2e\Y2 (= u af(r,u)
W)Nn—f‘@(a) fo o) au
(39b)

Therefore, Eq(36) corresponds to the electron continuity
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while the right-hand-side terms represent the power lost by
the electrons due to the radial transport in the discharge,
O transp @nd collisional processes) g -

According to Egs.(428 and (42b), the quantity®,nsp
includes the power lost in flowing against the space-charge
field, Pe,, and the net power lost due to convection in con-

figuration spaceR .., Wherea® .., accounts for the power
lost in elastic collisionsP, excitation,P,., and ioniza-
tion, Piyn.

The explicit expressions for these terms can be written as

equation, expressing the equality between the rates for elec-

tron creation and loss in the discharge

V,-T,(r)=v,(r)n(r). (40)

Up to now, most of the kinetic modeling of active plas-

mas using the EBE has been based on hbenogeneous

(space-independentssumption, neglecting altogether, for

consistency, the loss of electrons to the wall and the produc-

tion of new electrons by ionization. In this approximation

and for the purposes of discharge modeling, one must take

into account the electron continuity equatiodependently

of the Boltzmann equation, since the former is no longer

implicit in the latter.
In the present situation, the solutioh@,u) to the isotro-
pic EBE must also implicitly verify Eq(40). Detailed infor-

mation on how to solve this problem will be given later, in

Secs. V and VI B.

B. Electron power balance equation

The electron power balance equation is obtained by mul-

tiplying Eq. (38 by the electron energy, and then integrat-
ing over all energiegtaking into account the boundary con-
ditions in energy spacéB)]. The resulting equation can be
written as[see also Eq94a) and(4b)]

O(r)=0yransf 1)+ Ocon(r), (41

with
O transf 1) =P, (1) + Pcond 1), (429
O con(1)=Pei(1) + Pexd 1) + Pign(r). (42b)

The left-hand-side term of Eq41) represents the mean
power absorbed from the applied field per electron, and
given by

n(r °° ' (r
®(f)r(]—0)5fo Gg,(r,u)du=— ( )EZ
E2(2e\Y2 (= u af(r,u)
:‘3—N(ﬁ ) PR TR

) * T\ (r)
PE,(r)%E—fO Ge (r,u)du= n(or E/(r), (449
172 -
Pcon\(r)%zé(z_n?> V)r'jo F}(I’,U)Uzdu, (44b)
Pe|(r)%)z—fowec(r,u)du
2 1/2 2 o
:(Ee) MJrrnmNL Woe(u)
x f(f,U)+kBeTg%du, (449
Pexc(r)%z—J:J(I’,U)Uslzdu=§i: viyg(r)n;(:),
(440
Pion(l’)%E—f:|(r,u)u3/2du=v|vlo(r)n‘;l(or).
(44¢

V. NORMALIZED VARIABLES. INPUT PARAMETERS
AND EIGENVALUE SOLUTION

The present study involves the solution to the system
formed of the EBE3a)—(4b), with the normalization condi-
tion (2) and the boundary condition&), (9), (219, and
(21b). These equations are to be solved for a given gas, i.e.,
for a specific set of cross sections, and for appropriate values
of the independent parameters involved.

By simple inspection of the above equations, it can be
concluded that the proper independent parameters are
E,/N, E/(r)/N (termed thereduced fields NR, and T,
while r/R is to be taken as the independent space variable.
Further, as stated in Sec. IV A, self-contained solutioto
.the isotropic EBE(3a must verify the electron continuity
"tcéquation(40); that is, it must give an ionization rate that
exactly compensates for the loss rate to the wall. Assuming
thatE,(r)/N is knownab initio, this condition yields a rela-
tionship ofE,/N vs NR, termed thelischarge characteristic
for the maintaining field, which has to b&multaneously
obtained as aeigenvalue solutiomo the problem.

Such a formulation constitutes the sole correct approach
for consistently solving this nonlocal kinetic problem, as it
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does not resort to experimentdischarge characteristicas  tion function error. In other words, these techniques can be
input datg[20,21,33. Of course, the problem of the determi- used assmoothing operatorfor the function errors.

nation of E,(r)/N remains open, as it can only be consis- In view of this, we must perform some relaxation itera-
tently solved by further considering the ion dynamics andtions for the PDE on each grid, in order to obtain a smooth
Poisson’s equation. This, however, is out of the scope of theunction error whose correction will involve calculations in

present paper. the next(coarsey grid.
To construct anultigrid algorithm one must then choose
VI. NUMERICAL RESOLUTION a good smoothing method, as well as some appropriate

The numerical method employed to solve E8g) [after striction and prolongation operators, ruling the passage be-

substitution of Eqs(3b)—(4b)], with the boundary conditions Ween grids. In this work, we have adopted alternatene

(8), (9), (218, and(21b), is based on its conversion into a set andr-line blockW|se_Gauss-SeldE_tératlons as a smoothing

of Ny-coupled algebraic equations by second-order fixegMmethod, together with thaine-points prolongatiorand re-

step finite differencing in both the energy and the configuraStriction operatorg59], in a 3-4 grid system. Another impor-

tion space. tant question concerns the inclusion of boundary conditions
This procedurdan extension of the discretization method in the multigrid schemeln the algorithm here developed, at

presented in the works by Rockwog87] and Elliot and each iteration:

Greeng[58]) transforms the integration domain into a two- (i) Equations(8), (9), (218, and(21b) areexactly verified

dimensional (2D) grid, where the energy axig0 eV  on the finest grid, that is, the exact physical boundary con-

<u<100 eV) and the radial position axis (Or/R<1) are ditions are imposed in both the energy and the configuration

divided intoN, andNg cells, respectively. The total number space.

of grid points is, therefore, given by (i) Dirichlet boundary conditions are used in all other

Np=(Ne+1)X(Ns+1). (coarsey grids, corresponding to a zero-error solution func-
Typical working values for the number of cells are tjon at the boundaries.

Ne=128 and Ny=64, which leads to a 2D grid with  The multigrid methodwas already used by other authors

Ny=28385 points, corresponding to a 8388385 dimension to solve the EBE in quite different situatiofi&7,20, but

for the system matrix. When dealing with such matrix di- g\ways adopting either Dirichlet or Neumann boundary con-

mensions, direct solution techniques are immediately €Xgitions, That is why the algorithm proposed in this work

cluded, the option lying in iterative relaxation methods. Clasqntains some innovative aspects, as it treats mixed, i.e., Di-

sical rela>§at|on methods as, for example, thieckwise richlet and Neumann, boundary conditions and it allows an
Gauss-Seidebne, are not suitable because of the low con-

vergence ratesthe typical order of iterations for conver- eigenvaluecalculation(see Sec. VI & In summary, this al-

) 2 gorithm constitutes a powerful tool for the solution of the
gence is betweeN+InNy andN7). Although computer per- EBE in real discharges
formances have enormously increased during the last years, '
numerical tools are still required to efficiently solve such a
large system of coupled equations.

A fast iterative technique used nowadays to solve large After discretization in both the energy and the configura-
elliptic problems with boundary conditions is timeultigrid tion space the EBE assumes the general matrix form
method[59-61. The great advantage of this technique issNr ¢t =0, which shows that the EBE is a homogeneous
that its convergence rate does not deteriorate if the discretiyire oniiay equation, i.e., its right-hand side is equal to zero.
zation step is reduced, since the typical order of iterations fo/ro\S a consequence,,the ,EBE is satisfied by an infinite set of

convergence idlr. functions, meaning that a supplementary condition must be
o given in order to determine a unique physical solution. This
A. Multigrid method is why the EBE must be solved together with a normalization
The key idea of thenultigrid methods that the PDE to be condition for f(r,u).
solved can be discretized into a sequence of 2D grids having Furthermore, we saw in Sec. V thaself-contained solu-
increasingly larger cells. The calculation scheme starts at thigon to the isotropic EBE3a) yields thedischarge charac-
finest grid, where somimitial solution functionis given, and  teristic for the maintaining fieldE,/N vs NR, which has to
it continues from one grid to another, down to the coarsesbe simultaneously obtained as aigenvalue solutioto the
grid, and back again. On each gridcarrection functionis ~ problem. If E,/N is taken as an input parameter, then the
calculated in order to minimize the PDE error, written on thequantity NR becomes theigenvalueto be determined.
previous grid. This is made by using this correction function In this work, the system formed by the EBBa)—(4b),
to appropriately modify the PDE current solution on the pre-with the boundary condition$8), (9), (21a, and (21b), is
vious grid. The recursive repetition of this procedureiteratively solved using aultigrid method after each itera-
throughout all grids will end with a correction of the solution tion the solutionf(r,u) and theeigenvalue N Rare modified

B. Solution method

function, on the finest grid. in order to verify the normalization conditio®) and the
The success of the method comes from the combinatioelectron continuity equatiofd40). The system convergence
of two ideas: test is applied to thé(r,u) solution and to the electron mac-

(i) Smooth functions are well discretized in coarse grids.roscopic equationgparticle and power balance equatipns
(i) Classical relaxation techniques considerably reducehecking for relative errors less thanfoand 10 2, respec-
the amplitude of the high-frequency components of the solutively.
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T T v In view of this, we have assumed a cubic-type law for
¢, yielding a space-charge field with the general form

tx

r\?2 - r L Ar
R/ " R R
E/(r)= ) A (45)
r . ror
Ew(ﬁ) , if 1—?$§$1,

a

whereE,, is the space-charge field at the wallis a constant
to be determined by continuity, ankr is the discretization
step along the radial direction. In Fig. 5 we present, for the
'-.'_‘-‘.,/ correspondingNR eigenvaluesthe radial profile of the re-
A A6 duced fields,/N andE,(r)/N, and the radial profile of the
potential(r) as adopted for the numerical simulations pre-
sented in this work.
With the space-charge field imposed here as an external
. -7 parameter, we have not used a formulation in terms of the
L7 AT electrontotal energy(kinetic plus potentigl since this would
e .- imply the use of anarbitrary potential distribution as an
e - ] independent variable. This fact could, consequently, intro-
_:::,_——l' ' ' duce important distortions in the description of all phenom-
00 02 04 00 05 1‘0-10 ena, even of those' not directly dependent on the potential
energy, like the collisional processes.
r/R The total energy formulatiorhas recently been used by
various author$20,21] to solve the spatially inhomogeneous
EBE. The great advantage of this formulation lies in the fact
FIG. 5. Radial profiles for the reduced fields and the spacethat it formally transforms the EBE into a diffusionlike equa-
charge potential as a function ofR, for the following work con-  tjon, allowing some convenient simplifications at low pres-
ditions: A, E,/N=3x10"°V cm” andNR=1.2x10"" cm % and  gyres, when collisional processes play a less important role
B, E,/N=6x10"**V cm’ andNR="5.5x 10" cm 2 The space- i the discharge physicdthis is the main idea behind the
charge fieldg, was calculated using Eg45). Solid curves, for the  g4_callednonlocal modelbased on the works of Bernstein
reduced maintaining fielde,/N; dashed curves, for the reduced and Holsteir[22] and Tsendifi23]). However, when dealing
space-charge fieli, /N; dotted curves, for the space-charge poten- i, the general problenof the nonlocal electron kinetics by

o
Sqo~oooponoooood 0

o (V)

E/N (10 Vem?)

N
e Ly

tial . solving thecomplete EBEthere are no special reasons jus-
tifying the use of thetotal energy formulationOn the con-
VIl. SPACE-CHARGE FIELD. trary, it is our belief that this formulationannot provide a
TOTAL ENERGY FORMULATION good physical descriptioin the strongly collisional domain

of intermediate to high pressures here studiedSec. I B,

In principle, the space-charge fidig(r) and the potential unless a fully self-consistent resolution is carried out involv-
drop A ¢ can be self-consistently determined by coupling theing the Boltzmann equation for the electrons, the fluid-type
EBE with fluid-type equations for the ions, and Poisson’sequations for the ions, and Poisson’s equation.
equation. However, in this work, these quantities are im-
posed as external parameters, but their influence on the final VIIl. RESULTS AND DISCUSSION
results is carefully analyzed.

By performing extensive numerical simulations, we have The simulations presented in this work were made for
concluded that a physical solution to the problem requiredielium, adopting the set of electron cross sections derived in
the fulfillment of the following conditions. [62,63. We have used the field distributions represented in

(i) Near the axis, the space-charge field mimsrease Fig. 5, corresponding to E,/N=3x10'® Vcm?,
slowly from zero, in order that the radial drift velocity be NR=1.2x10"" cm~2? and E,/N=6x10"® Vcm?
always directed toward the wall; for example, a linear-typeNR=5.5x 10'® cm~? (hereafter referred to as tiset of con-
law for E,(r), like the one used if20], is not suitable for ditions | and Il respectively, imposingE,,/N~1.33&,/N
this purpose. andA ¢=10 V. Note that thelischarge characteristigalues

(i) Near the wall, the space-charge field must present §€,/N, NR) obtained with this model are shifted toward
strong increasg in order to limit the electron diffusion higher reduced applied fields as compared to the results in

losses. [64], due to the neglet of stepwise ionization processes in the
(iii ) The magnitude of the potential drdpp must be such  present model.
that it yields thecorrect electron fluxat the tube wall, Figures §a) and Gb) represent, for conditions | and II,

I',(r=R). In fact, the magnitude of the electron flux is very respectively, the isotropic component of the EDff,u), as
sensitive to the variations in the potential drop, in such away function of u for different radial positions
thatI', decreases whefl ¢ increases. (r/R=0;0.5;1),together with thef(u) distribution for the
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FIG. 6. Isotropic component of the EDF as a functiorupfa)
for E;/N=3X10"1¢V cm? andNR=1.2x10'" cm2, and(b) for
E,/N=6X10"% V cm? and NR=5.5x10'® cm 2. The calcula-
tions were made assumirdggp =10 V, andE, as given by Eq(45).
Solutions to the inhomogeneous EBE at the followil@&® posi-
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FIG. 7. Isotropic component of the EDF as a functionr R
and u, for E,/N=6x10"% Vcm? NR=5.5x10% cm?
A¢=10V, andE, as given by Eq(45).

corresponding homogeneous situation. For purposes of com-
parison, each function was renormalized to 1, that is,
Jof(r,u)Judu=1. A 3D plot of f(r,u) vs (r/R,u) is also
represented in Fig. 7 for condition Il. These figures clearly
show the depletion of the isotropic EDF as the boundary at
r=Ris approached, due to the electron drain to the wall. The
distribution at the axis is closer to the homogeneous solution,
but the deviations become strongerEggN increases, which

is indicative of an enhanced nonlocal behavior.

The radial electron density distribution(r)/ng is repre-
sented in Fig. 8 as a function ofR, for the set of conditions
I and Il. For comparison, we have also plotted in this figure
the density distributions assuming a Boltzmann equilibrium
with the space-charge fieldho(r)/ng=exp(@(r)/Ty) (T, is
the radially averaged electron temperature with,
=(2/3)u)), and the typical Bessel distribution with
ne(R)=0.

The electron ionization rate coefficient /N [cf. Eq.
(37)], the electron characteristic energy=D/u [cf. Egs.
(399 and (39b)], and the mean power absorbed from the
applied field per electron at unit gas densiyN [cf. Eq.
(43)], are shown in Figs. 9, 10, and 11, respectively, as a
function ofr/R and for the set of conditions | and Il. In each
of these figures, we also represent the data calculated for the
homogeneous situation. We observe that the values of these
guantities across the discharge, calculated using the spatially
dependent EDF, are always below those corresponding to the
homogeneous situation, due to the loss of electrons to the
wall. As expected, this nonlocal effect becomes more impor-
tant as the reduced applied field increases.

Figures 12a) and 12b) represent, for condition I, the iso-
tropic component of the EDF(r,u), and the anisotropic
components,f%(r,u) and frl(r,u), as a function ofu for
different radial positionsr/R=0.5;1. These figures show
that the axial anisotropy ialways directed against the re-
duced applied field EN (df(r,u)/du<0) [cf. Eqg. (3b)],

tions: solid curve, 0; dashed curve, 0.5; dotted curve, 1. The daslwhile the radial anisotropyormally points toward the wall
dotted curve is for the solution to the homogeneous EBE. Eacrq|vrf(r,u)|>Er(r)|¢9f(r’u)/(9u|) [cf. Eg. (30)], which

curve was renormalized to 1, that i& f(r,u) Judu=1.

means that thelectrons do flow toward the wall against the
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FIG. 8. Electron density radial distribution as a function
of r/R, for the following work conditions:A, E,/N=3x10"16
V cm? andNR=1.2x10'" cm™? andB, E,/N=6x10"% v cm?
and NR=5.5x10'® cm™2. The calculations were made assuming
A$=10V, andE, as given by Eq(45). Solid curves: solutions to
the inhomogeneous EBE. Dashed curves: calculations assuming
Boltzmann equilibrium with the space-charge field, i.e.,
Ne(r)/ne,=exp(é(r)/Te), whereT, is the radially averaged electron
temperature. Dotted curves: Bessel distribution takipdR) =0.

space-charge fieldHowever, an exception to this occurs for
an intermediate range of the kinetic energy, Whéfrebe-

back to Eq.(3c) for the radial anisotropy, which can be re-

written as
Ik Rt
(46)

Equation(46) interprets the formation dfrl as the result of a
balance between the variations fovith the kinetic energy

u and the potential energy. In this way,fr1 is negative
whenever the termidf/du| dominates oveldf/de|. This
happens in a region of intermediate kinetic energies, beyon
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FIG. 9. Electron ionization rate coefficient as a function
of r/R, for the following work conditions:A, E,/N=3x10 16
Vem? andNR=1.2x 10" cm™2; andB, E,/N=6X 10716V cm?
and NR=5.5x 10'® cm~2. The calculations were made assuming
A$=10V, andE, as given by Eq(45). Solid curves: solutions to
the inhomogeneous EBE. Dashed curves: solutions to the homoge-

neous EBE.

A ¢, and a forward directed radial anisotropy otherwise
Egs. (14), (219, and (22)]. Second, in view of the above
considerations we can expect to have a strong correlation
between the behavior in sign éf and the reduced applied
geld strength. Figures 18 and 13b) represent a contour
plot of f,l(r,u) vs (r/R,u) for the set of conditions I, and for
E,/N=1.5x10 1% Vcm?2 and NR=3.1x 10 cm™2, re-
spectively. From these figures we observe that, whgfN
decreases, there is a broadenihgth inr and u) of the
region wheref is strongly influenced by the excitations and
ionizations, and fl is negative. In fact, for
E,/N=3x10 1® vV cm?, this region starts au~25 eV,
where acollisional barrier develops, reaching the maximum
values of u=80 eV and r/R=~0.8, whereas for
E,/N=1.5x10 %V cm? the starting zone drops to~20
eV and the maximum values attained moveuta 100 eV
andr/R~0.95.

an energy around the inelastic thresholds, where the excita- The low field situation represented in Fig. (bB repro-
tions and ionizations strongly deplete the electron energgluces in part the results of Urhlandt and WinK2t], whose

distribution.

numerical simulations yield a radial anisotropy pointing to

Two further remarks are required to fully understand thisthe wall for the lower kinetic energies, and to the axis for the

guestion. First, as we can see from Fig.(d2 the radial
anisotropyalways points toward the wadltr =R, due to the

higher ones, regardless of the spatial position. We do dis-
agree, however, with the observations of these authors, as

strong electron drain occurring in this region. This is a directthey seem to infer thaftrl is always negative, even near the

consequence of the wall boundary condition deduced hereyall, at high kinetic energies. This conclusion comes out as a
which yields a vanishing radial anisotropy if the electronresult of their semi-empirical wall boundary condition, com-
kinetic energy along, u, , is smaller than the potential drop bined with a restricted analysis based only on l&/N
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FIG. 10. Electron characteristic energy as a function/&, for FIG. 11. Mean power absorbed from the applied field per

the following work conditions:A, E,/N=3x10"% vcm? and  electron at unit gas density as a functionréR, for the following
NR=1.2x10" cm % and B, E,/N=6x10"% Vcm? and  Wwork conditions:A, E,/N=3x10'® Vcm? and NR=1.2x 10"’
NR=5.5x10 cm 2 The calculations were made assuming cm 2 andB, E,/N=6X10'®V cm? and NR=5.5x 10'® cm 2.
A¢=10V, andE, as given by Eq(45). Solid curves: solutions to  The calculations were made assumihg=10 V, andE, as given
the inhomogeneous EBE. Dashed curves: solutions to the homoggy Ed. (45). Solid curves: solutions to the inhomogeneous EBE.
neous EBE. Dashed curves: solutions to the homogeneous EBE.

values. As a matter of fact, the change in Sigrfbfs by no wall for A¢p=10 V shows that this potential drop is high
means a general feature for &} /N values; numerical tests €nough to slow down the electron flux across keaindary
showed that forE,/N=4x10"1 Vcm? this effect no layer; in thgt senseA¢p=4 V is a more realistic value for
longer occurs, as the electrons are sufficiently accelerated Bjpe Potential drop. As noted beforeSec. VI, a self-

the applied field to cross thellisional barrier without be- ~ consistent determination @ ¢ requires the inclusion of the
ing significantly affected by it. ion kinetics in order to equate the electron and the ion fluxes

The strong variation of with u, beyond thecollisional @t the wall. _
barrier around the inelastic thresholds, is also responsible for The distribution of the fractional power lost by the elec-
the fact thaif|=f from u=20 eV. This observation agrees TONS is shown in Fig. 15 as a function ofR, for the set of
with the resuits obtained by Pitchford, O'Neil, and Rummecpndltlons I and Il. The curves plotted here corresponq to the
[14], who analyzed the corrections introduced in the macrodifferent terms of the electron power balance equafich
scopic coefficients when more than two terms are retained iffdS- (41)—(448]: the fractional power lost by the electrons
the Legendre expansidiia of the EDF. A consequence of due to the radial transport in the dischar@®yans/®, in
this fact was previously reportd62] while deducing a cross €astic collisionsPe /0, in excitations,Pey./®, and in ion-
section set for direct excitations and ionization in helium, byiZ&tions,Pio,/®. As expected, the main electron power loss
fitting the Townsend ionization coefficient. In both works the channel is associated with excitation collisions, throughout
conclusion is that a multiterm expansion is required whenMOst of the discharge cross section, to become mainly due to
ever high accuracy results are requested. the radial transport of the electrons, near the wall. .

A similar problem occurs with the radial anisotropy at  1he two components 08 ans/® can be unfolded into
r=R. wheref,lzf for u=25 eV[see Fig. 18b)]. This vio- the power lost by the electrons in flowmg agalngt the space-
lation of the two-term approximation is a direct result of the Charge f'eld’PEr’ and that due to the radial flux in configu-
wall boundary condition[cf. Egs. (218 and (22)], as ration space,P.,,. Figure 16 represent®/(® — P,
&(U,Ap=10V) =1 foru=25 eV. - PEr 1(® = Peony), @and— P o/ (@ — Pegopy) as a function of

The radial drift velocityvy can be obtained from the ra- r/R, for the set of conditions | and Il. Note that the positive
dial anisotropy using Eq26b). In Fig. 14 we representy vs  (negativé values in this figure indicate an electron power
r/R for the set of conditions II, assuming the potential dropsgain (loss. Further note that the percentages are now calcu-
A¢$=4 V and 10 V. The unphysical decreasevgfnear the lated relative to thenet power gain® — P.,,,, because the
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FIG. 12. Isotropic and anisotropic components of the EDF as

a function of u, for E,/N= 3x10 % Vvcm?, NR=1.2x10"
cm % A¢p=10V, andE, as given by Eq(45), at the following

FIG. 13. Countour plot of log|f}| as a function of /R andu,
(a) for E,/N=3x1071¢V cm? andNR=1.2x 10" cm 2, and(b)

r/R positions:(a) 0.5 and(b) 1. Solid curves: isotropic component for E,/N=1.5x10"%* V cm? and NR=3.1x 10" cm 2. The cal-

f. Dashed curves: axial anisotropic componignt. Dotted curves:

radial anisotropic componefit?|.

culations were made assumingp=10 V, andE, as given by Eq.
(45).
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25.0 — 7 tion function, both in configuration and in energy spaces.
Special attention was given to the wall region, where we
defined an infinitely thinboundary layerwith a potential
drop A ¢; at the entrance of this layer, we imposed a bound-
ary condition expressing that the microscopic radial flux of
electrons, as obtained frofif, exactly matches the flux of
electrons with sufficient kinetic energy alongo overcome
the potential dropA ¢. This yieldsf,l(R,u)=§(u)f(R,u),
where £(u) is calculated by considering lass cone to the
wall; the validity of this condition was tested by considering
various well-known limiting situations.
We adopted &inetic energy formulationin opposition to
the total energy formulatiorrecently used by other authors
[20,21], to work out solutions to the complete spatially inho-
mogeneous EBE. In fact, because we are considering the
space-charge field as an external parameter, a formulation in
terms of the electrortotal energy (kinetic plus potentigl
would imply the use of an arbitrary potential distribution as
an independent variable. Consequently, some important dis-
tortions could be introduced in the description of all phenom-
ena, even of those not directly dependent on the potential
energy, like the collisional processes, especially in the range
of intermediate to high pressures here studied.

Further, the formulation developed in this paperséf-
containedn the sense that the electron particle balance equa-
tion is verified. This requires an ionization rate that exactly
compensates for the electron loss rate to the wall. This con-

FIG. 14. Electron radial drift velocity as a function ofR, for ~ dition yields the relationship between the applied reduced
E,/N=6x10"1V cm? NR=5.5x 10 cm?, E, as given by Eq. maintaining fieldE,/N, and the produdNR, termed thedis-
(45), and the following potential dropd ¢: solid curve, 10 V; charge characteristicwhich was simultaneously obtained as
dashed curve, 4 V. an eigenvalue solutiorto the problem. Such a formulation
constitutes the sole correct approach for consistently solving
guantity P,,, can represent either a loss or a gain of powerthis nonlocal kinetic problem, as it does not resort to experi-
[depending on whether the divergence in E&#b) is posi- mentaldischarge characteristicas input dat420,21]. _
The system formed by the EBE and the appropriate nor-

tive or negative, respectivelyAs seen from Fig. 16, the e o ’
P.ony becomes positive close to the wall, which malization condition for the EDF was solved using a power-

[oo--o--

200 |-

Y

15.0

S

\ (106 cm

term — o . - .
means that the divergence of the power flow by convection i§! Multigrid method conveniently modified to treat mixed,

negative. Physically, this corresponds to a gain of power irl€-» Dirichlet and Neumann, boundary conditions together
this region due to heat convection. Such a gain is necessalyith éigenvaluecalculations. We obtained the isotropic and
to overcome the increased losses associated with the rapfiliSOtropic components of the EDF, from which we deduced
increase in the space-charge field near the \radte that the radial dlstnbunons of all relevant macroscopic quantities:
Pe =|P.n near the wall These results agree, in general, ejeptron densﬂy, ellectron transport parameters and rate coef-
T . ficients for excitation and ionization, and electron power
with the ones presented by Uhrlandt and WinHet]. transfer. These radial distributions were shown to be below
the values calculated for a homogeneous situation, due to the
IX. CONCLUDING REMARKS loss of electrons to the wall. As expected, this nonlocal effect
becomes more important as the reduced applied field in-

In this paper we developedself-contained formulatioto  creases.
solve the steady-state spatially inhomogeneous EBE numeri- The solutions obtained for the EDF revealed that, for suf-

cally, including the spatial gradient and the space-charggciently low maintaining fields,E,/N<4x10 ¢ V. cm?,

field terms, using the classicalo-term approximationThe  the radial anisotropy presents negative values in a bounded

problem was solved for a dc positive column in He of radiusenergy region, above eollisional barrier around the inelas-

R, under the action of a total electric field of the form tic thresholds, in which this anisotropy is directed toward the

E(r)=E,(r)e +E,e,, where the radial component discharge axis; however, at the wall, the radial anisotropy

E.(r)=-V,¢ is the space-charge fieldp(represents the always points to the wall, due to the strong electron drain

space-charge potentiahnd the axial one is the applied elec- occurring in this region. The general analysis presented here,

tric field, assumed to be uniform. Our study was focused orgoncerning the radial anisotropy, clarifies the physical be-

the electron kinetics, so a cubic-type law was assumed fonavior offr1 previously reported by other authdi&l]. In all

the radial profile ofe. cases, however, the electron drift velocity points to the wall,
We carried out a detailed discussion to deduce the appraneaning that we can characterize the radial electron transport

priate boundary conditions for the electron velocity distribu-in the discharge as diffusion-controlled regimein which
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FIG. 15. Average fractional power lost by the
electrons va'/R, for the following work condi-
tions: solid curvesg,/N=3x10 %V cm? and
NR=1.2x10 cem% dashed curves,
E,/N=6%X10"'® Vvcm? and NR=5.5x10'
cm 2 The calculations were made assuming
A$=10 V, andE, as given by Eq.45). The
labels correspond to the following power loss
channelsA, radial transport in the dischargeif-
fusion against the space-charge fietdconvec-
tion flow in configuration spageB, inelastic ex-
citations;C, ionizations; and, elastic collisions.

Fractional power loss (%)

the electrons do flow toward the wall against the spacehigh pressures, allowing the characterization of a dc positive
charge field and the friction force due to collisions. column in terms of the radial transport and the power transfer
Further, we observed thét:|=f for u=20 eV, irrespec- distribution. The complete resolution of this nonlocal kinetic
tively of the discharge position, and thfait:f foru=25eV problem still requires, however, the determination of the
atr=R. These results show that, for our conditions, the vaspace-charge potential and the potential diap in a self-
lidity of the two-term approximatiorfails, so that a multi- consistentvay, by coupling the Boltzmann equation for the
term expansion is required for higher accurgtyg. electrons with the fluid-type equations for the ions, and Pois-
We also analyzed the fractional power transfer distribuson’s equation. Work is in progress in this direction.
tion in the discharge, to conclude that the main electron
power loss channel is associated with the inelastic excita-
tions, throughout most of the discharge cross section. How-
ever, near the wall, the power flow due to the radial transport
of electrons becomes predominant. In this region, the en- The authors wish to thank Dr. U. Kortshagen and C.
hanced power losses associated with the rapid increase of tlBeisch for many exchanges of ideas. This work was sup-
space-charge field are balanced by a gain of power due foorted byPRAXIS XXIProgramme and FEDER uner Con-
heat convection. tract No. Fis/377/94. One of ud..L.A.) received financial
The present model gives self-containeddescription of  support fromPRAXIS XXIProgramme to carry part of this
the nonlocal electron kinetics, for a range of intermediate tavork at the University Paris XI, Orsay.
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FIG. 16. Average fractional power gained/lost
by the electrons vs/R, for the following work
conditions: solid curves,/N=3x 10"V cm?
and NR=1.2x10Y cm~2 dashed curves,
E,/N=6%x10"% vcm? and NR=5.5x10'%

50 ] cm 2. The dotted line corresponds to a zero-
power transfer. The calculations were made as-
sumingA¢=10 V, andE, as given by Eq(45).
The labels correspond to the following power
transfer channelsA, acceleration by the applied
field; B, diffusion against the space-charge field;
and C, convection flow in configuration space.
The positive(negative values indicate a power
gain(los9 by the electrons. Percentages were cal-
culated relative to the net power gain from the
A+ C mechanisms.
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