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Self-contained solution to the spatially inhomogeneous electron Boltzmann equation
in a cylindrical plasma positive column
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In this paper we develop aself-contained formulationto solve the steady-state spatially inhomogeneous
electron Boltzmann equation~EBE! in a plasma positive column, taking into account the spatial gradient and
the space-charge field terms. The problem is solved in cylindrical geometry using the classical two-term
approximation, with appropriate boundary conditions for the electron velocity distribution function, especially
at the tube wall. A condition for the microscopic radial flux of electrons at the wall is deduced, and a detailed
analysis of some limiting situations is carried out. The present formulation isself-containedin the sense that
the electron particle balance equation is exactly satisfied, that is, the ionization rate exactly compensates for the
electron loss rate to the wall. This condition yields a relationship between the applied maintaining field and the
gas pressure, termed thedischarge characteristic, which is obtained as aneigenvalue solutionto the problem.
By solving the EBE we directly obtain the isotropic and the anisotropic components of the electron distribution
function ~EDF!, from which we deduce the radial distributions of all relevant macroscopic quantities: electron
density, electron transport parameters and rate coefficients for excitation and ionization, and electron power
transfer. The results show that the values of these quantities across the discharge are lower than those calcu-
lated for a homogeneous situation, due to the loss of electrons to the wall. The solutions for the EDF reveal
that, for sufficiently low maintaining fields, the radial anisotropy at some radial positions can be negative, that
is, directed toward the discharge axis, for energies above acollisional barrier around the inelastic thresholds.
However, at the wall, the radial anisotropy always points to the wall, due to the strong electron drain occuring
in this region. We further present pertinent comparisons with other formulations recently proposed in the
literature to model the present inhomogeneous problem.@S1063-651X~97!09901-7#

PACS number~s!: 52.25.Dg, 51.10.1y, 52.25.Fi
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I. INTRODUCTION

In recent years there has been increasing interest dev
to the problem of nonlocal electron kinetics in various d
charge and/or discharge field configurations, due to
growing number of technological applications involvin
low-temperature plasmas. In fact, the spatial description
the electron kinetics is fundamental not only to further u
derstand the physical phenomena inside a gas discharge
also to provide practical information about the type of d
charge to adopt for given applications. This motivation led
the development of various nonequilibrium discharge mod
and, in many cases, to the introduction of numerical tools
order to solve the problem in an efficient, accurate way.

An impressive illustration of this are the very comple
hybrid modelsof rf capacitively coupled discharges~CCD’s!
and inductively coupled discharges~ICD’s! @1–7#. In gen-
eral, thesehybrid modelsare assembled using different mo
ules, each of which is designed to calculate some impor
physical quantity: the electron distribution function~EDF!,
the distribution of fields, the density profiles, and so on. T
main problem with these sophisticated models is that t
usually require very long computation times, particularly f
the electron kinetic calculations using eitherparticle-in-cell
and Monte Carlosimulations@2,7,8# or aconvective schem
to numerically integrate the Boltzmann equation@9–11#.

The amount of computational work required to study t
electron kinetics can greatly be reduced if the electron Bo
551063-651X/97/55~1!/890~17!/$10.00
ted
-
e

f
-
but
-
o
ls
n

nt

e
y
r

-

mann equation~EBE! is written under certain approxima
tions, e.g., thetwo-term approximation, when the discharge
anisotropies are small@12–14#, and/or thedc effective field
approximation, when the discharges are produced by hf a
plied electric fields@12,13,15#. Many authors have adopte
such descriptions to solve the EBE using a variety of num
cal techniques in order to speed up the calculations@16–18#.
Other authors have solved the EBE by adopting the so-ca
total energy formulation, in which thetotal energy~kinetic
plus potential! of the electrons replaces the kinetic energy
independent variable.

The total energy formulationhas been used to work ou
solutions to the complete spatially inhomogeneous EBE
various situations, such as the analysis of the plasma elec
response to a spatially embedded electric field impulse@19#,
or the radial study of the electron kinetics in a classical
positive column@20,21#. In weakly collisional cases, when
the electron mean free path is of the order of the typi
discharge dimensions, the EBE can be written using thetotal
energyof the electrons as the sole independent variable
describe the nonequilibrium electron kinetics. This appro
mation corresponds to the so-callednonlocal approach,
based on the works of Bernstein and Holstein@22# and Tsen-
din @23#, in which the EDF becomes a spatially homog
neous function to be determined from a spatially avera
kinetic equation.

The basic advantage of this approach is that it not o
considerably reduces the computational labor to solve
890 © 1997 The American Physical Society
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55 891SELF-CONTAINED SOLUTION TO THE SPATIALLY . . .
EBE ~now transformed into a single variable equation!, but
further allows analytical or semianalytical solutions to
obtained in some limiting cases. As a consequence, thenon-
local approachhas been applied to the study of a wide v
riety of problems in gas discharge physics, such as the c
sical dc positive column@24#, the anode and the cathod
regions of a dc glow discharge@25,26#, and the modeling of
low-pressure rf CCD’s@27#, ICD’s @28–31#, and surface-
wave discharges@32#.

The contribution of these models was decisive to c
struct an overall picture of the electron kinetics in inhom
geneous situations. However, the various formulatio
adopted so far to solve this nonlocal kinetic problem s
require some improvements in order to achive aself-
contained description.

The reasons for this are twofold. First, the nonlocal el
tron kinetics are strongly dependent on the phenomena
curing at the plasma-sheath boundary near the disch
wall, where the anisotropies are expected to increase.
gain further physical insight into this problem one has
derive a correctwall boundary conditionfrom theoretical
considerations, instead of assuming any arbitrary law at t
wall @17,18,21#. Busch and Kortshagen@20# deduced a wall
boundary condition using thetotal energy formulationalong
with the physical arguments previously presented by Tsen
and Golubovskii@24#. However, thetotal energy formulation
demands a considerable effort of theoretical developmen
that a boundary condition directly applying to the electr
velocity distribution function was not derived in@20#. Sec-
ond, aself-contained steady-state solutionto the EBE must
verify the electron particle balance equation. This requ
ment yields a relationship between the discharge maintain
field and the pressure, termed thedischarge characteristic,
which has to besimultaneouslyobtained as aneigenvalue
solution to the problem. Such a formulation constitutes t
sole correct approach for consistently solving this nonlo
kinetic problem, as it does not resort to experimental~or
parametric! discharge characteristics as input data
@20,21,33#.

The purpose of this paper is to develop aself-contained
formulation to numerically solve the spatially inhomoge
neous EBE in a plasma positive column, including the spa
gradient and the space-charge field terms in the equation
the isotropic component. The problem is solved in cylind
cal geometry, with appropriate boundary conditions for
electron velocity distribution function, especially at the tu
wall, where a detailed discussion is carried out.

The organization of the paper is the following. In Sec.
we develop the general formulation for the radially depe
dent EBE and the boundary conditions, and we discuss
validity domainversusthe pressure. In Sec. III, we analyz
some limiting cases for the wall boundary condition used
this work, and show that the results obtained in other theo
are recovered. The electron particle and power balance e
tions are deduced in Sec. IV, by integrating the EBE in
ergy space. In Sec. V, we present the independent input
rameters and theeigenvalue solutionto the EBE; the
numerical method employed to solve the problem is
scribed in Sec. VI. In Sec. VII, we introduce the spac
charge field profile adopted in this work, and discuss
total energy formulation. The results obtained are discuss
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in Sec. VIII, and the concluding remarks are presented
Sec. IX.

II. RADIALLY DEPENDENT ELECTRON
BOLTZMANN EQUATION

A. General formulation

The system under analysis is a dc positive column of
diusR, under the action of a total electric field of the for
EW (r )5Er(r )eW r1EzeW z , where the radial componen
Er(r )52¹ rf is the space-charge field (f represents the
space-charge potential!, and the axial one is the applied ele
tric field, assumed to be uniform. For the present discuss
involving only the study of the electron kinetics, a give
radial profile for the space-charge field is assumed.

The distribution of electrons in the discharge can be
scribed by the EDFF(r ,vW ), representing the number densi
of electrons at the point (r ,vW ) in phase space. The EDF i
obtained by solving the corresponding Boltzmann equat
with the normalization condition*F(r ,vW )d3v5n(r ), where
n(r ) is the electron density.

In the present situation, we consider the existence o
total anisotropy with an axial component due to the appl
field, and a radial component due to the space-charge
and the density gradient. In order to solve the EBE we ad
the well-knownsmall anisotropy approximation@12,13#, that
is, we represent the EDF by the first two terms of its exp
sion in spherical harmonics around the total anisotropy
rectioneWanisotropy,

F~r ,v,u!5(
l50

`

Fl~r ,v !Pl~cosu! ~1a!

.F0~r ,v !1F1~r ,v !cosu

5F0~r ,v !1
vW

v
•FW 1~r ,v !. ~1b!

In these equations,Pl(cosu) denotes thel Legendre polyno-
mial, andFW 1[F1eWanisotropyis thefirst-anisotropy vector.

With this approximation, the EDF is decoupled into a
isotropic componentF0(r ,v), an axial anisotropic compo
nentFz

1(r ,v), and a radial anisotropic componentFr
1(r ,v).

Introducing expansion~1b! into the EBE yields a scala
equation for the isotropic component of the EDF, and a tw
fold vector equation for its anisotropic components. After t
renormalization,

F0~r ,v !

n0
4pv2dv[ f ~r ,u!Audu,

F1~r ,v !

n0
4pv2dv[ f 1~r ,u!Audu,

wheren0 is the electron density at the tube axis, so that

E
0

`

f ~r ,u!Audu5
n~r !

n0
⇒E

0

`

f ~0,u!Audu51, ~2!
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892 55L. L. ALVES, G. GOUSSET, AND C. M. FERREIRA
one obtains@12,13#

]G~r ,u!

]u
1S 2em D 1/2u3¹W r• fW

1~r ,u!.Au@J~r ,u!1I ~r ,u!#,

~3a!

f z
1~r ,u!.

1

Ns t~u!
Ez

] f ~r ,u!

]u
, ~3b!

f r
1~r ,u!.

1

Ns t~u! FEr~r !
] f ~r ,u!

]u
2¹ r f ~r ,u!G . ~3c!

Herein,G5GE1Gc is the total upflux in energy space due
to the total field and the elastic collisions given by, resp
tively,

GE~r ,u![GEz
~r ,u!1GEr

~r ,u!

[2S 2em D 1/2u3 @Ezf z
1~r ,u!1Er~r ! f r

1~r ,u!#, ~4a!

Gc~r ,u![2S 2em D 1/2 2m

M1m
Nu2sc~u!

3F f ~r ,u!1
kBTg
e

] f ~r ,u!

]u G . ~4b!

In these equations,u5mv2/2e is the electron energy in eV
where e andm are the electron charge and mass, resp
tively; M is the atom mass;N is the gas density;Tg is the gas
temperature;s t(u)5sc(u)1( is0

i (u)1s0
I (u) is the total

electron-neutral momentum transfer cross section;sc(u) is
the elastic momentum transfer cross section;s0

i (u) is the
direct electron excitation cross section for thei th state; and
s0
I (u) is the direct electron ionization cross section~all in-

elastic collisional processes are assumed to be isotropic!. The
quantitiesJ(r ,u) andI (r ,u) represent electron operators f
the collisional processes here considered, i.e., ground
excitations and ionization, taking into account the product
of secondary electrons, respectively:

J~r ,u![S 2em D 1/2 NAu(i @~u1Vi !s0
i ~u1Vi ! f ~r ,u1Vi !

2us0
i ~u! f ~r ,u!#, ~5a!

I ~r ,u![S 2em D 1/2 NAu F E
2u1VI

`

u8s I
sec~u8,u! f ~r ,u8!du8

1E
u1VI

2u1VI
u8s I

sec~u8,u82VI2u! f ~r ,u8!du8

2us0
I ~u! f ~r ,u!G . ~5b!

In these equations,Vi andVI are the energy of thei th state
and the ionization state, respectively, ands I

sec(u8,u) is the
differential direct ionization cross section for the producti
of a secondary electron of energyu from the collision of a
-

c-

te
n

ground-state atom with a primary electron of energyu8. This
differential cross section verifies the integral relation

s0
I ~u!5E

0

~u2VI !/2
s I
sec~u,u8!du8. ~6!

Equations~3b! and ~3c! determine the anisotropic compo
nentsf z

1(r ,u) and f r
1(r ,u) as a function of the isotropic com

ponentf (r ,u).
The first term on the left-hand side of Eq.~3a! represents

the divergence of the electron flux in energy space driven
the applied field, the space-charge field, and the recoil co
sions, respectively, while the second term represents the
vergence of the electron flux in configuration space. T
terms on the right-hand side of Eq.~3a! represent the ne
creation rate of electrons with a given energy due to
excitation and ionization processes, respectively. Subst
ing Eqs. ~3b!, ~3c!, ~4a!, and ~4b! into Eq. ~3a! yields a
second-order partial differential equation~PDE! for f (r ,u),
in the energy and configuration spaces; this equation is to
solved subject to appropriate boundary conditions.

B. Validity domain versus pressure

For the purpose of analyzing the validity domain of t
EBE with the pressure, we will use estimations based
simple orders of magnitude. The basic question here is
know the applicability conditions of thesmall anisotropy
approximationaccording to the range of pressures cons
ered.

In view of this, let us focus on Eqs.~3b! and~3c! for the
EDF anisotropic components. For the purposes of estimat
we note that 1/(Ns t)5l (l is the electron mean free path!,
] f /]u;2 f /^u& (^u& represents the mean energy of the ele
trons!, and¹ r f;2 f /R, so that

f z
1.2

Ezl

^u&
f , ~7a!

f r
1.F2

Erl

^u&
1

l

RG f . ~7b!

From Eq.~7a!, we conclude that the axial anisotropy ca
be kept small providedEzl!^u&, which means that the en
ergy gained from the applied electric field between two s
cessive collisions,Ezl, must be much smaller than the mea
energy of the electrons@34#.

The limitation of the radial anisotropy, however, furth
requires that the two terms on the right-hand side of Eq.~7b!
must be of the same order of magnitude, i.
Erl/^u&.l/R, or equivalentlyl/R!Er /Ez . The fulfill-
ment of this latter condition strongly depends on pressu
and may be difficult to meet: at low pressures (l*R) it
requires the space-charge field to be higher than the app
maintaining field (Er.Ez), which is certainly not the case
near the discharge axis; at high pressures (l!R) it requires
that the applied maintaining field dominates over the spa
charge field (Ez@Er), a condition that may be violated nea
the wall. The situations here considered are limited to
range of intermediate to high pressures, where collisio
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55 893SELF-CONTAINED SOLUTION TO THE SPATIALLY . . .
processes play an important role in the electron kinetics
Ez.Er across most of the discharge radius~see Sec. VII!.

C. Boundary conditions

The solution of Eq.~3a! requires the knowledge of two
boundary conditions in energy space and two boundary c
ditions in configuration space. In energy space we imp
@13#

G~r ,0!5G~r ,`!50, ~8!

corresponding to thetotal upfluxconservation

E
0

`]G~r ,u!

]u
du5G~r ,`!2G~r ,0![0,

whereas in configuration space, atr50, symmetry consider-
ations lead to

] f ~r ,u!

]r U
r50

50. ~9!

In order to deduce ameaningfulphysical boundary con
dition at r5R, we first obtain thenet ~microscopic! flux of

electrons with velocity betweenv and v1dv, gW (r ,v), by
integrating the productF(r ,vW )vW over all angles in velocity
space,

gW ~r ,v ![E E
V
F~r ,vW !vW dV. ~10!

Substituting thefull expansion~1a! into Eq.~10!, and tak-
ing into account the orthonormality properties of the Le
endre polynomials@35#, yields

gW ~r ,v !5
4pv
3

F1~r ,v !eWanisotropy. ~11!

As expected, thegW flux has the same direction as the to
anisotropy, its components being given by

gW ~r ,v !5gW r~r ,v !1gW z~r ,v !, ~12a!

gW r~r ,v !5
4pv
3

Fr
1~r ,v !eW r , ~12b!

gW z~r ,v !5
4pv
3

Fz
1~r ,v !eW z . ~12c!

It is clear that the wall boundary condition must be d
rived from the continuity ofgW r at r5R, taking into account
that some electrons are reflected by the~space-charge! po-
tential barrier and, thus, do not reach the wall. The ma
ematical formulation of this basic idea is, however, som
what difficult to carry out, due to the nature of the differe
physical processes influencing the electron motion tow
the wall, as the collisional scattering, the drift under the
tion of the total field, and the sink of electrons due to co
sions with the wall.
d

n-
e

-

l

-

-
-
t
d
-

A solution to this problem can be sought through a se
ration of these processes. To this end, let us first note
electron collisions do not occur within a wallboundary layer
with a thickness of the order of the electron mean free p
(R8<r<R andR2R8&l). In this region, no electrons ar
created, and the space-charge field is expected to dom
over the applied field, so that a Boltzmann distribution la
can be assumed for the electron density.

This collisionlessboundary layeris not to be identified
with the wall space-charge sheath, as collisions can occu
the latter for the range of pressures studied in this wo
Within the collisionlessboundary layerthe electron kinetics
can be described in terms of energy conservation only, as
motion is determined exclusively by the space-charge po
tial dropDf ~see Fig. 1!.

It is also important to note that the EBE, as given by E
~3a!–~4b!, has no physical meaning~and consequentlyno
validity! inside the aboveboundary layer, since the deriva-
tion of the EBE is based on acoarse grainingprocedure over
a length scale much greater than the mean free path@36,37#.
Therefore, Eqs.~3a!–~4b! are only valid across the tube up t
theboundary layerposition (0<r<R8).

In order to deduce the wall boundary condition, we mu
determine which electrons can overcome the potential d
Df. For this purpose it is convenient to decompose the e
tron velocityvW as ~see Fig. 2!

vW 5v'eW'1v ieW i5vcosxeW'1vsinxeW i ,

whereeW'[eW r andeW i are, respectively, the perpendicular a
the parallel unit vectors to the discharge boundary, assum
planar geometry for simplicity. Similarly, the electron kinet
energy can be decomposed as

FIG. 1. Schematic diagram of the potential dropDf, across the
noncollisionalboundary layer R8,r,R (R2R8&l andl is the
electron mean free path!. The discharge axis is atr50 and the
discharge wall is atr5R.
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u5
1

2

mv2

e
5
1

2

m~v'
21v i

2!

e
5u'1ui ,

where

u'5
1

2

mv'
2

e
5
1

2

mv2

e
cos2x5ucos2x, ~13a!

ui5
1

2

mv i
2

e
5
1

2

mv2

e
sin2x5usin2x. ~13b!

In order to be able to cross theboundary layer, fromR8 to
R, an electron must have a kinetic energy alongr , u' ,
greater than the potential dropDf, that is,

u'>Df⇒cos2x>
Df

u
[cos2x!

⇒x<x!~u!5arccosS Df

u D 1/2. ~14!

Consequently, one can define aloss cone to the wall@24#
corresponding to the solid angle~see Fig. 3!

DV!~u![E E
V!~u!

dV!5E
c50

c52pE
x50

x5x!~u!
sinx dx dc

52p„12cosx!~u!…, ~15!

wherex!(u), representing the maximum polar angle for
given energyu, is defined by the set of conditions

x!~u!5H 0 if u'<u<Df

arccosS Df

u D 1/2 if u>u'>Df.
~16!

The g r flux conservation in theboundary layercan be
expressed by the condition

FIG. 2. Electron velocity decomposition in theboundary layer
R8,r,R.
 g r~R,v !5g r

1~R8,v !2g r
2~R8,v !, ~17!

whereg r
1(R8,v) @g r

2(R8,v)# is the forward ~backward! mi-
croscopic radial electron flux at r5R8, that is, the total num-
ber of electrons, with velocity betweenv andv1dv, enter-
ing ~leaving! theboundary layerper unit area and unit time

In general,g r
2(R8,v) is defined as

g r
2~R8,v ![zg r

1~R8,v !, ~18!

wherez is the wall reflection coefficient (z50 corresponds
to a perfectly absorbing wall!, while g r

1(R8,v) is given by
~see Fig. 3!

g r
1~R8,v !5E E

V!
F~R8,vW !v rdV!

5E
c50

c52pE
x50

x5x!~v !
F~R8,vW !~vcosx!sinxdxdc.

~19!

If we now assume that the EDF can be well represen
by the two-term expansion in spherical harmonics~1b!, we
can solve the integrals in Eq.~19!, yielding

g r
1~R8,v !5E

c50

c52pE
x50

x5x!~v !FF0~R8,v !1
vW

v
•FW 1~R8,v !G

3~vcosx!sinx dx dc

52pvF12cos2x!~v !

2
F0~R8,v !

1
12cos3x!~v !

3
Fr
1~R8,v !G . ~20!

The situations considered in the present work are limi
to a range of intermediate to high pressures~cf. Sec. II B!,
such that the electron mean free path is much smaller t
the typical discharge dimension (l!R). Thus, aninfinitely
thin boundary layercan be assumed.

FIG. 3. Theloss coneto the wall. The quantityx! represents the
maximum polar angle for which the kinetic energy alongr , u' , is
still greater than the potential dropDf.
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The final form of the wall boundary condition is no
readily obtained from Eqs.~12b!, ~17!, ~18!, and ~20! ~with
R8→R), yielding

f r
1~R,u!5j~u! f ~R,u!, ~21a!

j~u!5
3

2

12cos2x!~u!

S 11z

12z D1cos3x!~u!

, ~21b!

where the usual renormalization has been used~cf. Sec.
II A !. Figure 4 representsj vs u for Df54 V and 10 V.

For the purpose of calculations we have assumed aper-
fectly absorbing wall, so we can write@cf. Eqs. ~16! and
~21b!#

j~u!5H 0 if u<Df

3

2

12~Df/u!

11~Df/u!3/2
if u>Df.

~22!

Note that the wall boundary condition given by Eqs.~21a!
and~22! implies thatf r

1.0 for u>Df, which means that the
radial anisotropy always points toward the wall atr5R.

The introduction of aloss cone to the wallin order to
deduce a boundary condition for the electrons has previo
been used by other authors@20,24#. These authors, howeve
did not formally associate this concept with the microsco
electron flux~11!, so the boundary conditions they derive
are not directly expressed in terms of thef r

1 anisotropy. The

FIG. 4. Thej factor for the wall boundary condition. The curve
were calculated for the following potential dropsDf: solid curve, 4
V; dashed curve, 10 V.
ly

c

advantage of the present formulation is that it gives a dir
control upon the electron transport features.

III. LIMITING CASES FOR THE
WALL BOUNDARY CONDITION

In this section we will analyze some limits of the wa
boundary condition deduced in Sec. II C, in order to sh
that it reproduces the results obtained from other theorie

A. Free diffusion approximation

The free diffusion approximationassumes that there is n
potential barrier reflecting the electrons at the wall, whi
means that theloss conesweeps all polar angles in the inte
val 0<x<p/2 (x!5p/2). In this case the equation for th
g r flux conservation atr5R writes, assuming a perfectly
absorbing wall@cf. Eqs.~17! and ~20!#,

g r~R,v !5g r
1~R,v !52pv@ 1

2 F
0~R,v !1 1

3 Fr
1~R,v !#.

~23!

The integration of Eq.~23! over all velocities yields

G r~R!5 1
4 n~R!^v&~R!1 1

2 n~R!vd~R!, ~24!

where

G r~r ![E
0

`

g r~r ,v !v2dv ~25!

is the macroscopic radial flux, and the mean velocity^v& and
the radial drift velocityvd are given by, respectively,

n~r !^v&~r !5E
0

`

vF0~r ,v !4pv2dv, ~26a!

n~r !vd~r !5E
0

`

vFr
1~r ,v !

4pv2

3
dv5G r~r !. ~26b!

Equation~24!, a well-known expression obtained in th
framework of thefree diffusion approximation@38,39#, can
be combined with Eq.~26b! to give

vd~R!5
1

2
^v&~R!, ~27!

which constitutes a widely used macroscopic boundary c
dition at an absorbing surface for the diffusion of electrons
a scattering medium@40–44#.

By using expression~12b! for theg r flux, we can rewrite
Eq. ~23!, after energy renormalization, as

f r
1~R,u!5 3

2 f ~R,u!. ~28!

Equation~28!, the asymptotic limit of Eqs.~21a! and ~21b!
for x!5p/2 andz50, is currently used in photon diffusion
theory @45# and neutron diffusion theory@46#, where no in-
teractions with electric fields exist. Although condition~28!
implies a clear violation of thesmall anisotropy approxima-
tion, it has nevertheless been widely used in the literat
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as it ‘‘gives a better approximation to the exact solution th
we should have the right to expect’’@45#.

B. Two-stream approximation—Milne’s boundary condition

The two-stream approximationwas used by several au
thors @47–50# to solve the transport equations of uncharg
particles diffusing in an isotropic scattering medium. Th
approach consists in replacing the angular distribution
scattered particles with a pair of representativemonokinetic
streams, one with intensityI1 moving at angleu I to the
eWanisotropydirection, and the other with intensityI2 moving at
angleu I to the2eWanisotropydirection. Scattering fromI1 re-
sults in particles that remain inI1 or that join theI2 stream.
The reader should refer to@51–53# for a detailed discussion
of the formulation.

By applying this approximation to the transport of ele
trons, assumingEr(r )50 andeWanisotropy.eW r , the net micro-
scopic radial flux at the wall,g r(R,v), is written @cf. Eqs.
~10! and ~11!#

g r~R,v !52pE
0

p

F~R,v,u!v rsinu du

.2pFr
1~R,v !cosu I~vcosu I !E

0

p

sinu du

54pvFr
1~R,v !cos2u I , ~29!

and the forward microscopic radial flux at the wa
g r

1(R,v), becomes@cf. Eqs.~19! and ~20!#

g r
1~R,v !52pE

0

p/2

F~R,v,u!v rsinu du

.2pF0~R,v !~vcosu I !E
0

p/2

sinu du

12pFr
1~R,v !cosu I~vcosu I !E

0

p/2

sinu du

52pv@F0~R,v !cosu I1Fr
1~R,v !cos2u I #. ~30!

The radial flux conservation atr5R is obtained from Eqs.
~17! and~18! using Eqs.~29! and~30! ~assumingR8.R and
adopting the usual renormalization!, which yields

f r
1~R,u!5

1

cosu I

12z

11z
f ~R,u!, ~31!

where the radial anisotropy is now given by@cf. Eq. ~3c!#

f r
1~R,u!52

1

Ns t~u!
¹ r f ~r ,u!ur5R . ~32!

The integration of Eqs.~31! and ~32! over the energy
space yields

U¹ rn~r !

n~r !
U r5R5

Ns t

cosu I

12z

11z
, ~33!

where we have used the fact that the electron streams
monokinetic, together with the normalization condition~2!
for the EDF.
n

d

f

re

If we now adopt a Gaussian weight factor
cosuI51/A3 as discussed by Chandrasekhar@50#, and note
that the mean electron collisional mean free path
l51/(Ns t), Eq. ~33! assumes the familiar form of th
Milne’s boundary conditionfor the magnitude of the normal
ized electron density slope atr5R @46,51–54#,

U¹ rn~r !

n~r !
U
r5R

5
A3
l

12z

11z
. ~34!

C. Ambipolar diffusion approximation

The classicalambipolar diffusion approximationassumes
a vanishing electron density at the wall, which amounts
assuming an infinite potential barrier at the wall reflectingall
the electrons, that is,

Df→2`⇒x!~u!→0⇒j~u!50⇒ f r
1~R,u!

5
1

Ns t~u! FEr~R!
] f ~R,u!

]u
2¹ r f ~R,u!G50. ~35!

Equation~35! can be solved analytically using separati
of variables, to yield the well-known Maxwell-Boltzman
distribution

f ~R,u!5Aexp@2a~u2f~R!!#→0,

which vanishes atr5R due to the space-charge potent
singularity. The usual wall boundary condition for the ele
tron density in the ambipolar diffusion limit
n(R)/n05*0

` f (R,u)Audu50 @55,56#, is therefore recov-
ered by the present formulation.

IV. INTEGRATION OF THE EBE—
MACROSCOPIC EQUATIONS

A. Electron particle balance equation

The electron particle balance equation is obtained by
tegrating Eq.~3a! over all energies, taking into account th
boundary conditions in energy space, Eq.~8!. The resulting
equation is

1

3 S 2em D 1/2¹W r•E
0

`

fW r
1~r ,u!udu5n I~r !

n~r !

n0
, ~36!

wheren I(r ) is the direct ionization collision frequency give
by the expression@n I(r )/N is the corresponding rate coeffi
cient#

n I~r !

N

n~r !

n0
5S 2em D 1/2E

0

`

s0
I ~u! f ~r ,u!udu. ~37!

The left-hand side of Eq.~36! is just the divergence of the
reduced radial fluxG r /n0, which can be obtained by inte
grating Eq.~3c! over all energies. This yields@cf. Eq. ~26b!#
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G r~r !

n0
5
1

n0
E
0

`

Fr
1~r ,v !

4pv3

3
dv5

1

3 S 2em D 1/2E
0

`

f r
1~r ,u!udu

52¹ r SD~r !
n~r !

n0
D2m~r !

n~r !

n0
Er~r !, ~38!

whereD(r ) andm(r ) are the electron free diffusion coeffi
cient and the electron mobility, respectively, given by

D~r !N
n~r !

n0
5
1

3 S 2em D 1/2E
0

` u

s t~u!
f ~r ,u!du, ~39a!

m~r !N
n~r !

n0
52

1

3 S 2em D 1/2E
0

` u

s t~u!

] f ~r ,u!

]u
du.

~39b!

Therefore, Eq.~36! corresponds to the electron continui
equation, expressing the equality between the rates for e
tron creation and loss in the discharge

¹W r•GW r~r !5n I~r !n~r !. ~40!

Up to now, most of the kinetic modeling of active pla
mas using the EBE has been based on thehomogeneous
~space-independent! assumption, neglecting altogether, f
consistency, the loss of electrons to the wall and the prod
tion of new electrons by ionization. In this approximatio
and for the purposes of discharge modeling, one must
into account the electron continuity equationindependently
of the Boltzmann equation, since the former is no long
implicit in the latter.

In the present situation, the solutionsf (r ,u) to the isotro-
pic EBE must also implicitly verify Eq.~40!. Detailed infor-
mation on how to solve this problem will be given later,
Secs. V and VI B.

B. Electron power balance equation

The electron power balance equation is obtained by m
tiplying Eq. ~3a! by the electron energyu, and then integrat-
ing over all energies@taking into account the boundary con
ditions in energy space~8!#. The resulting equation can b
written as@see also Eqs.~4a! and ~4b!#

Q~r ![Q transp~r !1Qcoll~r !, ~41!

with

Q transp~r ![PEr
~r !1Pconv~r !, ~42a!

Qcoll~r ![Pel~r !1Pexc~r !1Pion~r !. ~42b!

The left-hand-side term of Eq.~41! represents the mean
power absorbed from the applied field per electron, and
given by

Q~r !
n~r !

n0
[E

0

`

GEz
~r ,u!du52

Gz~r !

n0
Ez

52
Ez
2

3N S 2em D 1/2E
0

` u

s t~u!

] f ~r ,u!

]u
, ~43!
c-

c-

ke

r

l-

is

while the right-hand-side terms represent the power lost
the electrons due to the radial transport in the discha
Q transp, and collisional processes,Qcoll .

According to Eqs.~42a! and ~42b!, the quantityQ transp
includes the power lost in flowing against the space-cha
field, PEr

, and the net power lost due to convection in co

figuration space,Pconv, whereasQcoll accounts for the powe
lost in elastic collisions,Pel , excitation,Pexc, and ioniza-
tion, Pion .

The explicit expressions for these terms can be written

PEr
~r !

n~r !

n0
[2E

0

`

GEr
~r ,u!du5

G r~r !

n0
Er~r !, ~44a!

Pconv~r !
n~r !

n0
[
1

3 S 2em D 1/2¹W r•E
0

`

fW r
1~r ,u!u2du, ~44b!

Pel~r !
n~r !

n0
[2E

0

`

Gc~r ,u!du

5S 2em D 1/2 2m

M1m
NE

0

`

u2sc~u!

3F f ~r ,u!1
kBTg
e

] f ~r ,u!

]u Gdu, ~44c!

Pexc~r !
n~r !

n0
[2E

0

`

J~r ,u!u3/2du5(
i
Vin0

i ~r !
ne~r !

n0
,

~44d!

Pion~r !
n~r !

n0
[2E

0

`

I ~r ,u!u3/2du5VIn0
I ~r !

ne~r !

n0
.

~44e!

V. NORMALIZED VARIABLES. INPUT PARAMETERS
AND EIGENVALUE SOLUTION

The present study involves the solution to the syst
formed of the EBE~3a!–~4b!, with the normalization condi-
tion ~2! and the boundary conditions~8!, ~9!, ~21a!, and
~21b!. These equations are to be solved for a given gas,
for a specific set of cross sections, and for appropriate va
of the independent parameters involved.

By simple inspection of the above equations, it can
concluded that the proper independent parameters
Ez /N, Er(r )/N ~termed thereduced fields!, NR, and Tg ,
while r /R is to be taken as the independent space varia
Further, as stated in Sec. IV A, aself-contained solutionto
the isotropic EBE~3a! must verify the electron continuity
equation~40!; that is, it must give an ionization rate tha
exactly compensates for the loss rate to the wall. Assum
thatEr(r )/N is knownab initio, this condition yields a rela-
tionship ofEz /N vsNR, termed thedischarge characteristic
for the maintaining field, which has to besimultaneously
obtained as aneigenvalue solutionto the problem.

Such a formulation constitutes the sole correct appro
for consistently solving this nonlocal kinetic problem, as
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does not resort to experimentaldischarge characteristicsas
input data@20,21,33#. Of course, the problem of the determ
nation ofEr(r )/N remains open, as it can only be cons
tently solved by further considering the ion dynamics a
Poisson’s equation. This, however, is out of the scope of
present paper.

VI. NUMERICAL RESOLUTION

The numerical method employed to solve Eq.~3a! @after
substitution of Eqs.~3b!–~4b!#, with the boundary conditions
~8!, ~9!, ~21a!, and~21b!, is based on its conversion into a s
of NT-coupled algebraic equations by second-order fix
step finite differencing in both the energy and the configu
tion space.

This procedure~an extension of the discretization metho
presented in the works by Rockwood@57# and Elliot and
Greene@58#! transforms the integration domain into a tw
dimensional ~2D! grid, where the energy axis~0 eV
,u,100 eV! and the radial position axis (0,r /R,1) are
divided intoNe andNs cells, respectively. The total numbe
of grid points is, therefore, given b
NT5(Ne11)3(Ns11).

Typical working values for the number of cells a
Ne5128 and Ns564, which leads to a 2D grid with
NT58385 points, corresponding to a 838538385 dimension
for the system matrix. When dealing with such matrix d
mensions, direct solution techniques are immediately
cluded, the option lying in iterative relaxation methods. Cl
sical relaxation methods as, for example, theblockwise
Gauss-Seidelone, are not suitable because of the low co
vergence rates~the typical order of iterations for conver
gence is betweenNTlnNT andNT

2). Although computer per-
formances have enormously increased during the last ye
numerical tools are still required to efficiently solve such
large system of coupled equations.

A fast iterative technique used nowadays to solve la
elliptic problems with boundary conditions is themultigrid
method@59–61#. The great advantage of this technique
that its convergence rate does not deteriorate if the disc
zation step is reduced, since the typical order of iterations
convergence isNT .

A. Multigrid method

The key idea of themultigrid methodis that the PDE to be
solved can be discretized into a sequence of 2D grids ha
increasingly larger cells. The calculation scheme starts at
finest grid, where someinitial solution functionis given, and
it continues from one grid to another, down to the coars
grid, and back again. On each grid acorrection functionis
calculated in order to minimize the PDE error, written on t
previous grid. This is made by using this correction functi
to appropriately modify the PDE current solution on the p
vious grid. The recursive repetition of this procedu
throughout all grids will end with a correction of the solutio
function, on the finest grid.

The success of the method comes from the combina
of two ideas:

~i! Smooth functions are well discretized in coarse grid
~ii ! Classical relaxation techniques considerably red

the amplitude of the high-frequency components of the so
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tion function error. In other words, these techniques can
used assmoothing operatorsfor the function errors.

In view of this, we must perform some relaxation iter
tions for the PDE on each grid, in order to obtain a smo
function error whose correction will involve calculations
the next~coarser! grid.

To construct amultigrid algorithm, one must then choos
a good smoothing method, as well as some appropriatere-
striction andprolongationoperators, ruling the passage b
tween grids. In this work, we have adopted alternateu-line
and r -line blockwise Gauss-Seideliterations as a smoothing
method, together with thenine-points prolongationand re-
strictionoperators@59#, in a 3-4 grid system. Another impor
tant question concerns the inclusion of boundary conditi
in themultigrid scheme. In the algorithm here developed, a
each iteration:

~i! Equations~8!, ~9!, ~21a!, and~21b! areexactly verified
on the finest grid, that is, the exact physical boundary c
ditions are imposed in both the energy and the configura
space.

~ii ! Dirichlet boundary conditions are used in all oth
~coarser! grids, corresponding to a zero-error solution fun
tion at the boundaries.

Themultigrid methodwas already used by other autho
to solve the EBE in quite different situations@17,20#, but
always adopting either Dirichlet or Neumann boundary co
ditions. That is why the algorithm proposed in this wo
contains some innovative aspects, as it treats mixed, i.e.,
richlet and Neumann, boundary conditions and it allows
eigenvaluecalculation~see Sec. VI B!. In summary, this al-
gorithm constitutes a powerful tool for the solution of th
EBE in real discharges.

B. Solution method

After discretization in both the energy and the configu
tion space the EBE assumes the general matrix fo
( j51
NT Ci j f j50, which shows that the EBE is a homogeneo

differential equation, i.e., its right-hand side is equal to ze
As a consequence, the EBE is satisfied by an infinite se
functions, meaning that a supplementary condition must
given in order to determine a unique physical solution. T
is why the EBE must be solved together with a normalizat
condition for f (r ,u).

Furthermore, we saw in Sec. V that aself-contained solu-
tion to the isotropic EBE~3a! yields thedischarge charac-
teristic for the maintaining field,Ez /N vsNR, which has to
be simultaneously obtained as aneigenvalue solutionto the
problem. If Ez /N is taken as an input parameter, then t
quantityNR becomes theeigenvalueto be determined.

In this work, the system formed by the EBE~3a!–~4b!,
with the boundary conditions~8!, ~9!, ~21a!, and ~21b!, is
iteratively solved using amultigrid method; after each itera-
tion the solutionf (r ,u) and theeigenvalue NRare modified
in order to verify the normalization condition~2! and the
electron continuity equation~40!. The system convergenc
test is applied to thef (r ,u) solution and to the electron mac
roscopic equations~particle and power balance equations!,
checking for relative errors less than 1026 and 10210, respec-
tively.
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VII. SPACE-CHARGE FIELD.
TOTAL ENERGY FORMULATION

In principle, the space-charge fieldEr(r ) and the potential
dropDf can be self-consistently determined by coupling th
EBE with fluid-type equations for the ions, and Poisson
equation. However, in this work, these quantities are im
posed as external parameters, but their influence on the fi
results is carefully analyzed.

By performing extensive numerical simulations, we hav
concluded that a physical solution to the problem requir
the fulfillment of the following conditions.

~i! Near the axis, the space-charge field mustincrease
slowly from zero, in order that the radial drift velocity be
always directed toward the wall; for example, a linear-typ
law for Er(r ), like the one used in@20#, is not suitable for
this purpose.

~ii ! Near the wall, the space-charge field must presen
strong increase, in order to limit the electron diffusion
losses.

~iii ! The magnitude of the potential dropDf must be such
that it yields thecorrect electron fluxat the tube wall,
G r(r5R). In fact, the magnitude of the electron flux is very
sensitive to the variations in the potential drop, in such a w
thatG r decreases whenDf increases.

FIG. 5. Radial profiles for the reduced fields and the spac
charge potential as a function ofr /R, for the following work con-
ditions:A, Ez /N53310216 V cm2 andNR51.231017 cm22; and
B, Ez /N56310216 V cm2 andNR55.531016 cm22. The space-
charge fieldEr was calculated using Eq.~45!. Solid curves, for the
reduced maintaining fieldEz /N; dashed curves, for the reduced
space-charge fieldEr /N; dotted curves, for the space-charge poten
tial f.
e
s
-
al

e
s

e

a

y

In view of this, we have assumed a cubic-type law f
f, yielding a space-charge field with the general form

Er~r !55 aS rRD 2, if 0<
r

R
<12

Dr

R

EwS rRD 2, if 12
Dr

R
<

r

R
<1,

~45!

whereEw is the space-charge field at the wall,a is a constant
to be determined by continuity, andDr is the discretization
step along the radial direction. In Fig. 5 we present, for
correspondingNR eigenvalues, the radial profile of the re-
duced fieldsEz /N andEr(r )/N, and the radial profile of the
potentialf(r ) as adopted for the numerical simulations pr
sented in this work.

With the space-charge field imposed here as an exte
parameter, we have not used a formulation in terms of
electrontotal energy~kinetic plus potential!, since this would
imply the use of anarbitrary potential distribution as an
independent variable. This fact could, consequently, int
duce important distortions in the description of all pheno
ena, even of those not directly dependent on the poten
energy, like the collisional processes.

The total energy formulationhas recently been used b
various authors@20,21# to solve the spatially inhomogeneou
EBE. The great advantage of this formulation lies in the f
that it formally transforms the EBE into a diffusionlike equ
tion, allowing some convenient simplifications at low pre
sures, when collisional processes play a less important
in the discharge physics,~this is the main idea behind th
so-callednonlocal modelbased on the works of Bernstei
and Holstein@22# and Tsendin@23#!. However, when dealing
with thegeneral problemof the nonlocal electron kinetics b
solving thecomplete EBE, there are no special reasons ju
tifying the use of thetotal energy formulation. On the con-
trary, it is our belief that this formulationcannot provide a
good physical descriptionin the strongly collisional domain
of intermediate to high pressures here studied~cf. Sec. II B!,
unless a fully self-consistent resolution is carried out invo
ing the Boltzmann equation for the electrons, the fluid-ty
equations for the ions, and Poisson’s equation.

VIII. RESULTS AND DISCUSSION

The simulations presented in this work were made
helium, adopting the set of electron cross sections derive
@62,63#. We have used the field distributions represented
Fig. 5, corresponding to Ez /N53310216 V cm2,
NR51.231017 cm22 and Ez /N56310216 V cm2,
NR55.531016 cm22 ~hereafter referred to as theset of con-
ditions I and II, respectively!, imposingEw /N'1.33Ez /N
andDf510 V. Note that thedischarge characteristicvalues
(Ez /N, NR) obtained with this model are shifted towar
higher reduced applied fields as compared to the result
@64#, due to the neglet of stepwise ionization processes in
present model.

Figures 6~a! and 6~b! represent, for conditions I and II
respectively, the isotropic component of the EDFf (r ,u), as
a function of u for different radial positions
(r /R50;0.5;1), together with thef (u) distribution for the

-

-
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FIG. 6. Isotropic component of the EDF as a function ofu, ~a!
for Ez /N53310216 V cm2 andNR51.231017 cm22, and~b! for
Ez /N56310216 V cm2 and NR55.531016 cm22. The calcula-
tions were made assumingDf510 V, andEr as given by Eq.~45!.
Solutions to the inhomogeneous EBE at the followingr /R posi-
tions: solid curve, 0; dashed curve, 0.5; dotted curve, 1. The d
dotted curve is for the solution to the homogeneous EBE. E
curve was renormalized to 1, that is,*0

` f (r ,u)Audu51.
corresponding homogeneous situation. For purposes of c
parison, each function was renormalized to 1, that
*0

` f (r ,u)Audu51. A 3D plot of f (r ,u) vs (r /R,u) is also
represented in Fig. 7 for condition II. These figures clea
show the depletion of the isotropic EDF as the boundary
r5R is approached, due to the electron drain to the wall. T
distribution at the axis is closer to the homogeneous solut
but the deviations become stronger asEz /N increases, which
is indicative of an enhanced nonlocal behavior.

The radial electron density distributionne(r )/n0 is repre-
sented in Fig. 8 as a function ofr /R, for the set of conditions
I and II. For comparison, we have also plotted in this figu
the density distributions assuming a Boltzmann equilibriu
with the space-charge field,ne(r )/n05exp(f(r)/T̄e) (T̄e is
the radially averaged electron temperature withTe
[(2/3)^u&), and the typical Bessel distribution wit
ne(R)50.

The electron ionization rate coefficientn I /N @cf. Eq.
~37!#, the electron characteristic energyuk5D/m @cf. Eqs.
~39a! and ~39b!#, and the mean power absorbed from t
applied field per electron at unit gas densityQ/N @cf. Eq.
~43!#, are shown in Figs. 9, 10, and 11, respectively, a
function of r /R and for the set of conditions I and II. In eac
of these figures, we also represent the data calculated fo
homogeneous situation. We observe that the values of th
quantities across the discharge, calculated using the spa
dependent EDF, are always below those corresponding to
homogeneous situation, due to the loss of electrons to
wall. As expected, this nonlocal effect becomes more imp
tant as the reduced applied field increases.

Figures 12~a! and 12~b! represent, for condition I, the iso
tropic component of the EDFf (r ,u), and the anisotropic
components,f z

1(r ,u) and f r
1(r ,u), as a function ofu for

different radial positions:r /R50.5;1. These figures show
that the axial anisotropy isalways directed against the re
duced applied field Ez /N (] f (r ,u)/]u,0) @cf. Eq. ~3b!#,
while the radial anisotropynormally points toward the wall
(u¹ r f (r ,u)u.Er(r )u] f (r ,u)/]uu) @cf. Eq. ~3c!#, which
means that theelectrons do flow toward the wall against th

h-
h

FIG. 7. Isotropic component of the EDF as a function ofr /R
and u, for Ez /N56310216 V cm2, NR55.531016 cm22,
Df510 V, andEr as given by Eq.~45!.
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space-charge field. However, an exception to this occurs f
an intermediate range of the kinetic energy, wheref r

1 be-
comes negative. To understand this behavior we mus
back to Eq.~3c! for the radial anisotropy, which can be re
written as

f r
15

1

Ns t
FEr

] f

]u
2¹ r f G5

1

Ns t
U df

dr UF2U ] f

]u U1U ] f

]f UG .
~46!

Equation~46! interprets the formation off r
1 as the result of a

balance between the variations off with the kinetic energy
u and the potential energyf. In this way, f r

1 is negative
whenever the termu] f /]uu dominates overu] f /]fu. This
happens in a region of intermediate kinetic energies, bey
an energy around the inelastic thresholds, where the ex
tions and ionizations strongly deplete the electron ene
distribution.

Two further remarks are required to fully understand t
question. First, as we can see from Fig. 12~b!, the radial
anisotropyalways points toward the wallat r5R, due to the
strong electron drain occurring in this region. This is a dir
consequence of the wall boundary condition deduced h
which yields a vanishing radial anisotropy if the electr
kinetic energy alongr , u' , is smaller than the potential dro

FIG. 8. Electron density radial distribution as a functio
of r /R, for the following work conditions:A, Ez /N53310216

V cm2 andNR51.231017 cm22; andB, Ez /N56310216 V cm2

andNR55.531016 cm22. The calculations were made assumi
Df510 V, andEr as given by Eq.~45!. Solid curves: solutions to
the inhomogeneous EBE. Dashed curves: calculations assum
Boltzmann equilibrium with the space-charge field, i.
ne(r )/ne05exp(f(r)/T̄e), whereT̄e is the radially averaged electro
temperature. Dotted curves: Bessel distribution takingne(R)50.
o

d
ta-
y

s

t
e,

Df, and a forward directed radial anisotropy otherwise@cf.
Eqs. ~14!, ~21a!, and ~22!#. Second, in view of the above
considerations we can expect to have a strong correla
between the behavior in sign off r

1 and the reduced applie
field strength. Figures 13~a! and 13~b! represent a contou
plot of f r

1(r ,u) vs (r /R,u) for the set of conditions I, and fo
Ez /N51.5310216 V cm2 and NR53.131017 cm22, re-
spectively. From these figures we observe that, whenEz /N
decreases, there is a broadening~both in r and u) of the
region wheref is strongly influenced by the excitations an
ionizations, and f r

1 is negative. In fact, for
Ez /N53310216 V cm2, this region starts atu'25 eV,
where acollisional barrier develops, reaching the maximum
values of u'80 eV and r /R'0.8, whereas for
Ez /N51.5310216 V cm2 the starting zone drops tou'20
eV and the maximum values attained move tou*100 eV
and r /R'0.95.

The low field situation represented in Fig. 13~b! repro-
duces in part the results of Urhlandt and Winkler@21#, whose
numerical simulations yield a radial anisotropy pointing
the wall for the lower kinetic energies, and to the axis for t
higher ones, regardless of the spatial position. We do
agree, however, with the observations of these authors
they seem to infer thatf r

1 is always negative, even near th
wall, at high kinetic energies. This conclusion comes out a
result of their semi-empirical wall boundary condition, com
bined with a restricted analysis based only on lowEz /N

a
,

FIG. 9. Electron ionization rate coefficient as a functio
of r /R, for the following work conditions:A, Ez /N53310216

V cm2 andNR51.231017 cm22; andB, Ez /N56310216 V cm2

andNR55.531016 cm22. The calculations were made assumin
Df510 V, andEr as given by Eq.~45!. Solid curves: solutions to
the inhomogeneous EBE. Dashed curves: solutions to the hom
neous EBE.
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values. As a matter of fact, the change in sign off r
1 is by no

means a general feature for allEz /N values; numerical test
showed that forEz /N*4310216 V cm2 this effect no
longer occurs, as the electrons are sufficiently accelerate
the applied field to cross thecollisional barrier without be-
ing significantly affected by it.

The strong variation off with u, beyond thecollisional
barrier around the inelastic thresholds, is also responsible
the fact thatu f z

1u. f from u*20 eV. This observation agree
with the results obtained by Pitchford, O’Neil, and Rumb
@14#, who analyzed the corrections introduced in the mac
scopic coefficients when more than two terms are retaine
the Legendre expansion~1a! of the EDF. A consequence o
this fact was previously reported@62# while deducing a cross
section set for direct excitations and ionization in helium,
fitting the Townsend ionization coefficient. In both works t
conclusion is that a multiterm expansion is required wh
ever high accuracy results are requested.

A similar problem occurs with the radial anisotropy
r5R, where f r

1. f for u*25 eV @see Fig. 12~b!#. This vio-
lation of the two-term approximation is a direct result of t
wall boundary condition@cf. Eqs. ~21a! and ~22!#, as
j(u,Df510 V! *1 for u*25 eV.

The radial drift velocityvd can be obtained from the ra
dial anisotropy using Eq.~26b!. In Fig. 14 we representvd vs
r /R for the set of conditions II, assuming the potential dro
Df54 V and 10 V. The unphysical decrease ofvd near the

FIG. 10. Electron characteristic energy as a function ofr /R, for
the following work conditions:A, Ez /N53310216 V cm2 and
NR51.231017 cm22; and B, Ez /N56310216 V cm2 and
NR55.531016 cm22. The calculations were made assumi
Df510 V, andEr as given by Eq.~45!. Solid curves: solutions to
the inhomogeneous EBE. Dashed curves: solutions to the hom
neous EBE.
by

r

-
in

y

-

s

wall for Df510 V shows that this potential drop is hig
enough to slow down the electron flux across theboundary
layer; in that sense,Df54 V is a more realistic value for
the potential drop. As noted before~Sec. VII!, a self-
consistent determination ofDf requires the inclusion of the
ion kinetics in order to equate the electron and the ion flu
at the wall.

The distribution of the fractional power lost by the ele
trons is shown in Fig. 15 as a function ofr /R, for the set of
conditions I and II. The curves plotted here correspond to
different terms of the electron power balance equation@cf.
Eqs. ~41!–~44e!#: the fractional power lost by the electron
due to the radial transport in the discharge,Q transp/Q, in
elastic collisions,Pel /Q, in excitations,Pexc/Q, and in ion-
izations,Pion /Q. As expected, the main electron power lo
channel is associated with excitation collisions, through
most of the discharge cross section, to become mainly du
the radial transport of the electrons, near the wall.

The two components ofQ transp/Q can be unfolded into
the power lost by the electrons in flowing against the spa
charge field,PEr

, and that due to the radial flux in configu

ration space,Pconv. Figure 16 representsQ/(Q2Pconv),
2PEr

/(Q2Pconv), and2Pconv/(Q2Pconv) as a function of

r /R, for the set of conditions I and II. Note that the positiv
~negative! values in this figure indicate an electron pow
gain ~loss!. Further note that the percentages are now ca
lated relative to thenet power gain, Q2Pconv, because the

e-

FIG. 11. Mean power absorbed from the applied field p
electron at unit gas density as a function ofr /R, for the following
work conditions:A, Ez /N53310216 V cm2 andNR51.231017

cm22; andB, Ez /N56310216 V cm2 andNR55.531016 cm22.
The calculations were made assumingDf510 V, andEr as given
by Eq. ~45!. Solid curves: solutions to the inhomogeneous EB
Dashed curves: solutions to the homogeneous EBE.



a

t

55 903SELF-CONTAINED SOLUTION TO THE SPATIALLY . . .
FIG. 12. Isotropic and anisotropic components of the EDF
a function of u, for Ez /N5 3310216 V cm2, NR51.231017

cm22, Df510 V, andEr as given by Eq.~45!, at the following
r /R positions:~a! 0.5 and~b! 1. Solid curves: isotropic componen
f . Dashed curves: axial anisotropic componentu f z

1u. Dotted curves:
radial anisotropic componentu f r

1u.
FIG. 13. Countour plot of log10ufr
1u as a function ofr /R andu,

~a! for Ez /N53310216 V cm2 andNR51.231017 cm22, and~b!
for Ez /N51.5310216 V cm2 andNR53.131017 cm22. The cal-
culations were made assumingDf510 V, andEr as given by Eq.
~45!.
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quantityPconv can represent either a loss or a gain of pow
@depending on whether the divergence in Eq.~44b! is posi-
tive or negative, respectively#. As seen from Fig. 16, the
term 2Pconv becomes positive close to the wall, whic
means that the divergence of the power flow by convectio
negative. Physically, this corresponds to a gain of powe
this region due to heat convection. Such a gain is neces
to overcome the increased losses associated with the r
increase in the space-charge field near the wall~note that
PEr

*uPconvu near the wall!. These results agree, in gener
with the ones presented by Uhrlandt and Winkler@21#.

IX. CONCLUDING REMARKS

In this paper we developed aself-contained formulationto
solve the steady-state spatially inhomogeneous EBE num
cally, including the spatial gradient and the space-cha
field terms, using the classicaltwo-term approximation. The
problem was solved for a dc positive column in He of rad
R, under the action of a total electric field of the for
EW (r )5Er(r )eW r1EzeW z , where the radial componen
Er(r )52¹ rf is the space-charge field (f represents the
space-charge potential!, and the axial one is the applied ele
tric field, assumed to be uniform. Our study was focused
the electron kinetics, so a cubic-type law was assumed
the radial profile off.

We carried out a detailed discussion to deduce the ap
priate boundary conditions for the electron velocity distrib

FIG. 14. Electron radial drift velocity as a function ofr /R, for
Ez /N56310216 V cm2, NR55.531016 cm22, Er as given by Eq.
~45!, and the following potential dropsDf: solid curve, 10 V;
dashed curve, 4 V.
r
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tion function, both in configuration and in energy spac
Special attention was given to the wall region, where
defined an infinitely thinboundary layerwith a potential
dropDf; at the entrance of this layer, we imposed a boun
ary condition expressing that the microscopic radial flux
electrons, as obtained fromf r

1 , exactly matches the flux o
electrons with sufficient kinetic energy alongr to overcome
the potential dropDf. This yields f r

1(R,u)5j(u) f (R,u),
wherej(u) is calculated by considering aloss cone to the
wall; the validity of this condition was tested by considerin
various well-known limiting situations.

We adopted akinetic energy formulation, in opposition to
the total energy formulationrecently used by other author
@20,21#, to work out solutions to the complete spatially inh
mogeneous EBE. In fact, because we are considering
space-charge field as an external parameter, a formulatio
terms of the electrontotal energy ~kinetic plus potential!
would imply the use of an arbitrary potential distribution
an independent variable. Consequently, some important
tortions could be introduced in the description of all pheno
ena, even of those not directly dependent on the poten
energy, like the collisional processes, especially in the ra
of intermediate to high pressures here studied.

Further, the formulation developed in this paper isself-
containedin the sense that the electron particle balance eq
tion is verified. This requires an ionization rate that exac
compensates for the electron loss rate to the wall. This c
dition yields the relationship between the applied reduc
maintaining fieldEz /N, and the productNR, termed thedis-
charge characteristic, which was simultaneously obtained a
an eigenvalue solutionto the problem. Such a formulatio
constitutes the sole correct approach for consistently solv
this nonlocal kinetic problem, as it does not resort to expe
mentaldischarge characteristicsas input data@20,21#.

The system formed by the EBE and the appropriate n
malization condition for the EDF was solved using a pow
ful multigrid method, conveniently modified to treat mixed
i.e., Dirichlet and Neumann, boundary conditions toget
with eigenvaluecalculations. We obtained the isotropic an
anisotropic components of the EDF, from which we deduc
the radial distributions of all relevant macroscopic quantiti
electron density, electron transport parameters and rate c
ficients for excitation and ionization, and electron pow
transfer. These radial distributions were shown to be be
the values calculated for a homogeneous situation, due to
loss of electrons to the wall. As expected, this nonlocal eff
becomes more important as the reduced applied field
creases.

The solutions obtained for the EDF revealed that, for s
ficiently low maintaining fields,Ez /N&4310216 V cm2,
the radial anisotropy presents negative values in a boun
energy region, above acollisional barrier around the inelas-
tic thresholds, in which this anisotropy is directed toward t
discharge axis; however, at the wall, the radial anisotro
always points to the wall, due to the strong electron dr
occurring in this region. The general analysis presented h
concerning the radial anisotropy, clarifies the physical
havior of f r

1 previously reported by other authors@21#. In all
cases, however, the electron drift velocity points to the w
meaning that we can characterize the radial electron trans
in the discharge as adiffusion-controlled regime, in which
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FIG. 15. Average fractional power lost by th
electrons vsr /R, for the following work condi-
tions: solid curves,Ez /N53310216 V cm2 and
NR51.231017 cm22; dashed curves,
Ez /N56310216 V cm2 and NR55.531016

cm22. The calculations were made assumin
Df510 V, andEr as given by Eq.~45!. The
labels correspond to the following power los
channels:A, radial transport in the discharge~dif-
fusion against the space-charge field1 convec-
tion flow in configuration space!; B, inelastic ex-
citations;C, ionizations; andD, elastic collisions.
ce

va

u
ro
it
ow
o
e
f
e

t

tive
fer
tic
he

e
is-

C.
up-
-

s

the electrons do flow toward the wall against the spa
charge field and the friction force due to collisions.

Further, we observed thatu f z
1u. f for u*20 eV, irrespec-

tively of the discharge position, and thatf r
1. f for u*25 eV

at r5R. These results show that, for our conditions, the
lidity of the two-term approximationfails, so that a multi-
term expansion is required for higher accuracy@14#.

We also analyzed the fractional power transfer distrib
tion in the discharge, to conclude that the main elect
power loss channel is associated with the inelastic exc
tions, throughout most of the discharge cross section. H
ever, near the wall, the power flow due to the radial transp
of electrons becomes predominant. In this region, the
hanced power losses associated with the rapid increase o
space-charge field are balanced by a gain of power du
heat convection.

The present model gives aself-containeddescription of
the nonlocal electron kinetics, for a range of intermediate
-

-

-
n
a-
-
rt
n-
the
to

o

high pressures, allowing the characterization of a dc posi
column in terms of the radial transport and the power trans
distribution. The complete resolution of this nonlocal kine
problem still requires, however, the determination of t
space-charge potential and the potential dropDf in a self-
consistentway, by coupling the Boltzmann equation for th
electrons with the fluid-type equations for the ions, and Po
son’s equation. Work is in progress in this direction.
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FIG. 16. Average fractional power gained/lo
by the electrons vsr /R, for the following work
conditions: solid curves,Ez /N53310216 V cm2

and NR51.231017 cm22; dashed curves,
Ez /N56310216 V cm2 and NR55.531016

cm22. The dotted line corresponds to a zer
power transfer. The calculations were made a
sumingDf510 V, andEr as given by Eq.~45!.
The labels correspond to the following powe
transfer channels:A, acceleration by the applied
field; B, diffusion against the space-charge fiel
and C, convection flow in configuration space
The positive~negative! values indicate a powe
gain~loss! by the electrons. Percentages were c
culated relative to the net power gain from th
A1C mechanisms.
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