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Nonresonance optical breathers in nonlinear and dispersive media
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A theory of nonresonance optical breathers in nonlinear and dispersive media is developed. The optical wave
equation with a damping term can be solved by using the reductive-perturbation method. Explicit analytic
expressions for the parameters of these nonlinear waves are obtained. The stability of a breather in the presence
of its interaction with impurity-resonance atoms and a finite conductivity is also discussed in detail.
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[. INTRODUCTION medium, its shape will not remain unchanged: its width will
spread. This is due to the fact that waves of different wave-

The propagation of an optical wave in a medium is ac-lengths propagate in a dispersive medium with different ve-
companied by various changes of its form. The main mechaocities.
nisms that change the forms of waves are dispersion and, if On the other hand, the effects of nonlinearity lead to a
the amplitude of a wave is finite, nonlinearity. The mostProgressive deformation of the initial pulse, which increases
interesting are those wave processes for which the effectdith increasing time. As a result of the competition between
distorting the form of the wave compensate each other exthe nonlinearity, which increases the_ curvature of the prpflle
actly. Under these conditions nonlinear waves of an invarian®f the pulse, and the dispersion, which causes the profile to
profile are formed. Among nonlinear waves of a stationaryoroaden, the shape of the nonlinear wave is stabilized, a
form, solitons and breathers are very often encountered. TH¥€ather state is formed. _ _
propagation of these waves displays its own specific features. The basic sources of the optical nonresonance nonlinear-
In nonlinear physical theories they play as fundamental &1y in solids may be the following. The medium possesses a
role as harmonic oscillations do in the linear wave theory.nonllnear suscept|'bll|ty, pr|pC|paI Qf which are nonlinearities
The conditions for the existence of solitons and breathers ar@f second(quadrati¢ and third(cubic) orders. In the case of
different. A breather is the bound state of a soliton and arfiuadratic nonlinearity, the interaction of wave packets of dif-
antisoliton. It possesses an internal structure. Such a form4grent frequencies can be observed, but in the case of cubic
tion is unstable if its energy exactly equals the sum of thehonlinearity (Kerr-type nonlinearity self-influence of waves
energies of a separated soliton and antisoliton, i.e., if thé@ke place. _ .
binding energy is zero. This condition is not stable, in that Different features of solitons in these systems have been
even a small perturbation leads to decay of the bound statgvestigated in detail. However, a whole class of interesting
into a separate soliton and antisoliton whose velocities ar8Onlinear phenomena, such as the mechanisms of formation
proportional to the perturbation and generally differ. ExaCﬂyOf optical breathers and the effects Ieadlng_ to the|( |nsta}b|llty
such a situation is realized, for example, for the breather of' changes of their parametdfer example, interaction with
the nonlinear Schidinger equatioiNSE), where at the same frée electrons, resonance-impurity atoms, and ofhéave
time a soliton solution of this equation is quite stable. Con-Ot, to our knowledge, been investigated in these systems.
sequently, in one and the same system the existence of soli- 1h€ processes of formation of nonresonance breathers in
tons does not assure the existence of breathers, and vig@nlinear and dispersive media and the stability of a breather
versa. Unlike solitons, breathers can be excited for relatively the presence of its interaction with impurity-resonance at-
small amplitudegenergies or areas of pulsefLl—5]. They =~ OMS and a finite conductivity are also discussed in this paper.
arouse particular interest, because breather solutions of some
eqqations of nonlinear optics are highly stablg. The determi- II. BASIC EQUATION
nation of the mechanisms causing the formation of breathers
and the study of influences leading to a variation of their Consider the mechanism of the formation of a nonlinear
parameters are among the principal problems of nonlineagptical wave in a nonlinear and dispersive medium in the
waves. The mechanisms of formation of breathers are variegase where an optical pulse of widih<T,,, with wave
and depend on the properties of the medium in which arvectork and frequencyw>T !, propagates in the positive
optical wave propagates, as well as on the parameters of thirection along thez axis, whereT, and T, are the longitu-
wave. dinal and transverse relaxation times of impurity atoms.

In recent years there has been growing interest in th&Vithout specifying the physical nature of the dispersive pro-
analysis and characterization of nonlinear dispersive systentess, we describe the dependence of the dielectric tensor
in optics[6—8]. In the propagation of a pulse in a dispersive €;; on two variables—the wave vectkrand frequency» of
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the wave[7,8]. We will investigate the case where the me-

dium is isotropic, €;; = €,8;;, Where &; is the Kronecker P(2)=J X(Z,t,X1, X5, b1, 1) E(Z— X, t—1y)

symbol ande, is the dielectric constant. The wave equation

for the x component of the strength of the electric fi&dn XE(z=X1—Xp,t—t1—tp)dt;dtadxidx%;,  (5)

this case reduces to the form
, , P(3’=f p(Z,t,X1, X0, X3, 11,10, t3) E(Z— X, ,t—1y)
, 0 E oD

=7, 1) XE(z—X1— Xz, t—t1—ty)

_ o XE(Z—X{—Xy—Xg,t—t;—t,—1t3)
wherec is the speed of light in vacuum,

X Ay %0 Xadt,dt,dts, )
D=D,+4nwP (2)  wherey andp are the quadratic and cubic susceptibility ten-
sors. The nonlinear optical response characterized by the pa-
is thex component of the electric displacement vector, ~ rametersy andp leads to many interesting phenomena. Non-

linearity of the second order is responsible for second
harmonic generatior{doubling of the frequengy for the
D|(Z't)=f €o(zy.t1)E(z— 2, t—t;)dzdt; (3)  9generation of sum and difference frequencies, for parametric
amplification, and for other effects caused by processes of
the three-frequency interaction of the waves. Nonlinearity of

is the linear part of the quantity, and the third order reduces to effects of the four-frequency inter-
action of the waves, such as self-focusing, Raman scattering,
p=p2 4 p@d 4) and others. Note that we do not consider here the physical

origin of the nonlinear coefficientg and p; we regard them
as material parameters and study the nonlinear optical phe-
is the nonlinear part of the polarizatioR®) and P® are  nomena to which they give rigd,8].

nonresonant nonlinear polarizations of the second and third Substituting Eqs(3)—(6) into Eqg. (2), we obtain the fol-
orders: lowing expression:

D(z,t)=f eo(zl,tl)E(z—zl,t—tl)dzldtl+477J X(Z,1,X1, X0, 1, 1) E(z—Xq ,t =1 E(Z— X — Xp,t —t; — 1))

X dtldtzdxldxz+47'rf p(Z,1,X1,%5,X3,t1, 10, t3) E(Z— X, t =t ) E(Z=X1 = X5, t =t — 1)

XE(Z—X1—Xo—Xg,t—t;—t,—t3)dXx;dx,dx3dt;dt,d 5. (7)
By combining Eqs(7) and (1), we obtain the following nonlinear wave equation for

PE &
_CZEZJFWH eo(zl,tl)E(z—zl,t—tl)dzldt1+4wf X(Z,1,Xq,X0,t1,15)E(Z2—Xq ,t—11)E(Z— X1 — X5,t —t;—15)

thldtzdxldxz+477f p(Z,1,X1, X2, X311, 1o, t3) E(Z= X, t =t ) E(Z=X1 = X5, t =t — 1)

xE(Z_Xl_XZ_X3,t_tl_t2_t3)dX1dX2dX3dt1dt2dt3} =0. (8)
We can simplify Eq(8) significantly. For this purpose, we represent the functoim the form
E=2 EZ, ©)

where E, are slowly varying complex amplitudes of the optical wakie=e''**~“Y and | runs through the values 1,
+2,... . To guarantee the reality of the quanfity we setE,=E*,. We note that such a representation of the solution of a
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nonlinear wave equation has been widely used in the theory of nonlinear Waveg. This approximation is based on the
assumption that the envelopEs vary slowly in space and time as compared with the carrier wave parts, i.e.,

JE,
Jz

<K|E|,

<wl|E,

and is called the slowly varying envelope approximation.
On substituting Eq(9) into Eg. (8), we obtain

d d & 92 & E
>z (W+iBy =—iag —— 5 E+dm > 1203 —x B B +iA, —— E,,
(g T TNTIP0 G0 gz 0 5727 00 g2 Y0 Grag | ST = X Bi-y By 1A —-—
: . B X1 OEiy o X1 = JE; - - -
+|(A1+A2)E|,|/ ?_| Bl-‘rZW at E|/_| Bl+BZ+2W E|,|/ 7_pE|,|/,|//E|/E|//
. aé|_|r_|u A A X ~ 5é|r ~ A ~ ~ &Ew X pP aé|_|r_|n A A
+|alTE|rE|u+|(a1+a2)E|_|,_|nWE|n+|(a1+a2+a3)E|_|,_|"E|, W_I bl‘f‘ZE TEI, "
. P\~ ﬁép ~ i P\~ ~ aéw
—I1 bl+b2+zm EI?I,iIHTEI,,_I b1+b2+b3+zm E|,|/,|NE|/ 7 :O, (10)
where
W, =12(c%k?— w?k)), ag=1(2kc®—1w?A)), Bo=—lw(2k+IwB/),
Yo=lw(2A +lwT), &=—(1?w?D|+Kk+2lwB), wue=c?—w??C,
_ _ il (wt—k2) ,_ 9K
K= eg(lk,lw)= | €p(z,t)e dtdz A—m,
B'— (9K| C—l 6’2K| D _1 0”2K| T.= ﬁZK|
o) TV 20(K)2 T 2 0(lw)? T a(k)d(lw)
X”,:fX(z—x,z—y,t—tl,t—tz)e’”(kx"”tl)""(ky"‘"Z)dxdydtldtz,
axi x| _dx _Idx
Al_(?(lk)’ A2_0(|'k)' Bl_a(|w)’ Bz_a(vw)’
P:P|,|',I":f P(Z,t,X1, %0, X3, 11, by, tg) e 1 (KK ot =i 1M (og = wty) =il (kg ~wta) g d x,d xad t, d t,d s,

_ ap _ ap
(k) bl_a(lw)’

a

_ ap bo— ap
az_a[(|'+|")|<]’ 270+ ]’
ap ap

The analysis of Eq(10) can be carried out by two different methods, depending on whether we investigate the problem of
the evolution of the initial perturbatiofCase ) or we consider the propagation in the medium of a pulse, which is specified
on the boundary of the mediuf@€ase ). Although the corresponding equations appear different, we must note that in some
sense they are identical to each other.

In the first case, the quantiti€§ can be represented ps—4,14,1%
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+ o + oo

Ezt)=3 X eYub(R(Lm), (11
where
: dQ
- —C - - -
Y,=eMQT O r=eQ(z—vgt), T=€2, RrToL
and e is the small parameter. .
In the second case, we can represent the quaatis
4+ + oo
(zt)= 21 n; eXnf{ T (&), (12)
where
~ = z do\ !
X,=en(Qz=0, §=e(t——), v= €z, u=(—~) .
u dQ

Such a representation allows us to separate fﬁpmme still more slowly changing quantlthz{“) andf(“) Consequently,
it is assumed that the quantitied, Q, ¢}, and f(}) satisfy the inequalities»>Q, k>Q, w>Q, k=>Q, |a¢(Viat|
<Q[e{)], |90 D152 <Q|e(%)|, |t at| < £, |af(“)/az|<Q|f(“)|

Ill. BREATHER SOLUTION OF EQ. (10) IN THE FIRST CASE

We begin by considering the solution of EQ.0) in Case |, i.e., an initial-value problem. In this analysis we use the
expansion(11). On substituting it into Eq(10), we obtain the equation

a 9 J
W|n+6\]|n(9§+€ H|n &§2+6 h|n_+0(6)

> e“z|Yn[

a,l,n
(@) (a”)
fa, F ’ ,qD(a) (P(D‘,)_ie f . a(’D|*|',n7ﬂ' (P(a +’F , !QD(Q) a‘PIQn/
o L n" =1’ n—n’¥1",n’ In,",n (94:/ I”,n’ L7 @1 n—n’ ﬂé’
a ,l',n
B E €” e )\I,n,l’,n’,l",n”QDfﬂr 1" n— n/_nrr§0|(ra ?(Pf/‘ryn)u} :O, (13)
a' a1

where

W, =W, +aQ+ BQ— yQQ+ 502+ uQ?,

J|‘n=% [a+Bvg+2Qu+250vy— y(Q2+Quy)],

2 i
Hl,n: - % (M+5v§— ng), hI,n:ﬁ (B+260—vQ),
(14
X117

Bl+2|—

B,+ BZ+2XI—|”

F|’n’|r’nr:477|2w2 +n Q |

X110+ (N=n")QA; —n"Q(A;+Az) +(n—n")Q

2Q
2,Q+b Q0+ —

)\| nl’n’ " nrr:477|2(.02
PLLTLEL L IL()

p+n

+(a,Q+b(2)n" +[(a+az)Q+(by+ bs)Q]n"],

a=nag, B=nBy, y=n’yy, 6=n’8, wu=n’u,.

The explicit forms of the quantitie§ , ;. ,» andf, |, ,» are not needed because they do not enter into the final results.
To determine the values fo’”,‘]), we equate to zero the terms corresponding to like poweks A a result, we obtain a
chain of equations: in first order ig
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in second order ir,

~ d
VVI,n‘PI(,Zn)_"‘]I n _g

and in third order ine,

¥ 1) _
Wl,n(PI(,n)_

0; (15

— > Finin @ no @i =0; (16)

I",n’

J A J < 2 1 1 2
WI n<P|n+JIn5§ (P|n+HIn£Z(PI(n)+hIn o7 SDl(ln) " ’I”Z” [Fl,n,l’,n’((P:)w nr€0|(r)nr+(Pl(f)|/ nr(P|(r) /)
N7 n"=—ow
(1) (1)
. agolfl’,nfn’ 1 >y 1 ﬁ(PI’,n’ 1 1 1
—1 f|‘n’|r’nr (9—£ QD|(',)nr+fl'”'l"”’(’ol(—)l’,n—n’ a—g a7’ 1, ”(Pl( )|, e n’_nH(P|(r)nr(P|(”)n" =0
17
|
In dispersive mediaWy=W. ;=0 and Wj;~,#0. In Equation(21) is the well-known NSE, which, under the
what follows, we shall also be interested in a breather thatonditionp;q,>0, has the soliton solution
vanishes at— *+ . Consequently, according to E¢L5), a
only the following terms of all the quantities!}) differ from =2l e " 22
Zero: (,D(l)+1 or go(l) 1. Here we consider the situation ! " cosh 2@y,
Whereg0(+1)_+1¢0 and<,o+1+l 0 in detail. The relation be-
tween the quantitie$) and Q, for fixed values ofl =n= where
+1, is determined from the equation
Q- yQQ+ 507+ uQ?=0 o= 2| 2(et— ) - 1
+ 80— + 607+ =0. 18 L= o - ¥o:
aQ+BO—y0Q mQ (18 BN Jor
Substituting Eq.(18) into Eq. (14), we easily see that the
following relation holds: z Ug )
¢2,= ="\ 46— ——=|t—Yo.
Y Vp

‘Jil 1:0. (19)

T+

The quantitiesty, 7, ¢q, andy, are scattering data, which
) _ 0 Lo 0 ( _

From(Eq (16), we obtain the connection betweel?).,  ,iice when the NSE is solved by the inverse scattering trans-
andeXq ! form (IST) [14,16. Substituting the soliton solutiof22) into

Eq. (11), we obtain for the envelopk, the breather solution
(2) F+2+2+1+1 (1)

Pip+2= W— (¢ +l,t1)2- (20 [1-511,12
*2x2 . 2il p e illey t 0102
Substituting Eqs(18)—(20) in Eg. (17), we obtain an equa- E= \/— cosh ¢, +0(€?). (23
tion for the quantitiesy(y,t)= o ¢} q !
Using the IST, we can obtain the breather soluta8) for
il ﬂJr jlm+|¢|| =0, l=n==1, (21  any initial valueE(t=0,2). The appearance in E¢23) of
at - ay; the factore "(Q7= ndicates the formation of periodic
beats(slow in comparison with coordinates and time, with
where characteristic parametefs andQ), as a result of which the
Mo+ L 7—pt soliton solution(22) for (p(l) is transformed into the solution
Q= y= S h=ilhy,, (23) for the envelopeE,. Consequently, in dispersive and
hy \/E ’ nonlinear media with quadratic and/or cubic nonlinearity, an
optical nonlinear wave of the type of the breatti28) can
Hi 14670 propagate.

AT
IV. BREATHER SOLUTION OF EQ. (10
IN THE SECOND CASE

Faia)
Mi=(F—1,-1+Fii22) = , . . .
21,2 Here we consider the same problem in Case Il, i.e., we
now investigate a boundary-value problem. In this case, we
Li=Ni it N =1 use expansiolil2) for the solution of Eq(10). On substitut-
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ing Eqg. (12) into Eqg. (10), as was done in the preceding it is necessary to begin with the introduction of the corre-

section, we obtain the NSE in the following form: sponding terms into the wave equation. In particular, the
5 expression
O (I ( 2
where

must be added to E¢8), where[9,17,19

1 z
xi=eafiy, Ti=— (t_ u

\/ﬁ u

N
P1=|_212|E|(i i—:‘)) 28)

_ w+ Su?—yu M,+L,

plzuz(aJrZMQ_ 7))’ OIFm- v_vi'gh 70 the ?ndex of refraction and th_e effective congjuc_-
tivity, takes into account the contribution to the polarization

of the medium caused by the conductivity, while the quantity

In this case, the relation between the quantifﬁaandé
has the same form as given by H@A8) if we substitute() _
~ - P2=ngdos: (29
andQ for Q) andQ in the latter and
describes the effects of the one-photon resonance interaction

—il 8.
x1=2ilg e ™ ' (25)  of the optical pulse with the system of two-level impurity
cosh 275, atoms that are contained in the medium, whegeis the
concentration of optically active impurities adg is the ma-
where trix element of the electric dipole moment of a two-level
impurity atom. The dependence of the quanfty on the
_ 2% s o 260 strength of the electric field& is governed by the optical
61, = ﬁ” 4(&o"—n) N 2~ ¢o. Bloch equation$10]
ds(t)
t 1 = — wSy(t)
6= =+ 450——)2_)/0- at e
N uvp
By substituting Eq(25) in Eq. (12), we obtain the breather asz_m:wosl(t)+,<0|5(t,z)53(t), (30)
solution of Eq.(10) in the second case: at
. 2ily e 1o +0t-Q2) dss(t)
= +0(€?). 26 =~ koE(t,2)s,(1),
| \E COSh 2752| ( ) ( ) ot

Using the IST, we can obtain the breather soluti@8) of where

Eq. (10) for any boundary value of the quantiB(z=0). 2d,
Ko=) si(t)y=(o;(1)) ( i=1,2,3.

V. THE STABILITY OF THE BREATHER

The wave equationl0) describes the situation where the Here,(o7) is the average value of the Pauli operaioy 7 is
propagation of nonlinear optical waves in a nonlinear disperPlanck’s constant, ana, is the frequency of the two-level
sive medium is not influenced by such factors as, for exatoms. In the interaction of an optical pulse with a resonantly
ample, the interaction of the optical radiation with impurity- absorbing medium, the most significant effects are usually
resonance atoms contained in the medium or with thermal opbserved at exact resonance. Therefore, for simplicity, we
coherent phonons, the effect of a finite conductivity, or oth-consider equationg30) at exact resonance, i.e., with
ers. Depending on the nature of their influence upon the wo.
wave process, these effects can be divided into two groups. In the present section we will consider the solution of Eq.
The effects that lead to a change in the phase of the nonline&®), taking into account the terr27) in Case |, under the
wave enter into the first group, and the second group incondition
cludes the effects causing the damping of breathers. We con-
sider the effects associated with these two groups and influ- |Qol <1, (39
encing the breather by means of two examples: by the linear
coherent interaction of optical radiation with impurity- Where
resonance atoms contained in the medium, and by taking into .
acqoun_t the conductivity. Wg can use perturbation theory, Qo(Z,t)=Kof E(z,t’)dt’
taking into account that the influence of these phenomena —
upon the breather is weak. For a systematic investigation of
the influence of the effects mentioned above on the breatheis the area of the envelope of the optical pulse.
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For the determination of the explicit form of the quantity v 02 -
P,, we expand the quantity; in a perturbation-theory series Q)= —=1z- - K24+ —2 )t,
in the small nonlinearity parametey 2\pi 2p; (36)
¢ O, =K| | 2y |t
= o (a) 2 = - | —= v ,
5= 3 Bl T

o ) ) ] K is a parameter proportional to the amplitude of the soliton,
Substituting this expansion and expressff) in the set of 54, is its velocity.

equations(30), and taking into account Eq&28) and (29), Using the results of the numerical calculations carried out
we obtain in [15], we can assume that a good approximation to an exact
X solution of Eq.(34) will be expression(35) if the parameter
P K depends on time a
4 72 1=—47‘r|w0€2 1z Yn<p1+O(e4), pends I S
(32) Ki(t)=K;(0)e 2", (37)
P, I 1 By substituting Eq(37) in Eqgs.(35) and(36), and using Eq.
4w It2 :53R70% n Z Yn‘PI( h+0(e?), (11), we can obtain a breather solution of E§), with Eq.
’ (27) taken into account in the following form:
where R 2\ 112 el[1t+ (@ +Qz-wt)] ,
E ( ) (1) +0(€9). (39
amngddo? cosh®z
= —_— = +
7o +1. In this expression, the quantitiesblI and @y, contain the

quantity K,(t) instead ofK. Hence, Eq.(38) is a breather
The plus sign corresponds to the initial condition, in whichsolution with damping [',>0).
the impurity atoms are initially in the ground state, i.e., at

t— —, s3= —1 (attenuating mediuim The minus sign cor- VI. CONCLUSION
responds to the case wheretat —~, s;=+1, i.e., all the
impurity atoms are initially in the excited statemplifying In the present paper we have shown that in the propaga-
medium). tion of intense optical radiation through(gquadratic and/or

If we combine Eqs(27) and (32) with Eq. (8), we can  cubid nonlinear andspatially and/or temporaljydispersive
write the NSE in the following form: medium, an optical breather can arise. The explicit form of

the breather, when we consider the initial-value problem
F (Case }, is given by Eq.(23), and, if we investigate the
+ri+ 2 + |2 = (33)  boundary-value problertCase I), the form of the breather is
given by expressioii26). The dispersion equation and con-
nection between the quantiti€sandQ () andQ) are given
where by the relationdV..;,=0 and Eq.(18).

The physical interpretation of the formation of a breather
drwo R is the following. In the propagation of the pulse in a disper-
“h rl:h_I 70, l=n=*1. sive medium, its shape will not remain unchanged. The

width of the pulse will increase during propagation. This is
due to the fact that waves of different wavelength propagate
in a dispersive wave with different velocities. In the NSE,
this effect is taken into account through the terms
Py 19y?, xi19T?, 3°0,1ay?.

||( ‘;bl +F|IJI|

We can remove the term,y; from this equation by
changing the phase of the quantity. Indeed, let us rewrite
Eq. (33) for the quantity®,=¢,e """

20, 20 On the other hand, the effects of nonlinearity lead to a
,|( +T ®|) 2' +]0,|20,=0. (34)  progressive deformation of the profile of the pulse, which
Iy increases with increasirtg In the NSE, the nonlinear effects

are taken into account by the terms|%s, |xi|%x .
The soliton solution of this equation with,=0 is obtained |©|?0, .
by means of the IST in a manner analogous to the way in As a result of the competition between the nonlinearity,
which Eg.(22) was obtained. Now it is more convenient to which increases the curvature of the profile of the pulse, and

write the solution of Eq(34) in the form the dispersion, which causes the profile to spread out, the
shape of the nonlinear wave is stabilized; a breather state is
el Py, formed.
0,=v2K coshd, ’ (35 It should be noted that our results and their interpretation
|

are applicable to pulses with sufficiently smooth envelopes,
under the condition that the size of the pulse is large in
where comparison with the wavelength, i.&l.>1. Moreover, the
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length of the breather should be significantly greater than the The results of Sec. V are valid for situations where the
characteristic length of the periodic “beatsl/Q>1, where effects of the linear interaction of the pulse with resonance
L is the length of the breather. atoms is ofO(€%). If these effects are weaker, for example,

We must note that in Secs. Ill and IV we have consideredf O(e*) or smaller, then we must use another method of
situations wherep!) . ;#0 andf{ +1;é0 Analogously, we  solution of the NSE with damping ternt84). Such methods
can investigate situations Wheqzé}hlio andf)_,»#0.  can be found, for example, {21-23.

In Sec. V, we investigated the stability of the breather In Sec. V, we considered the case of exact resonance
relative to its interaction with resonance-impurity two-level = @o and homogeneous broadening of the spectral line. Ex-

atoms, and in the presence of a finite conductivityCase |, ~ tension to the case # w, and inhomogeneous broadening of
the initial value probler) and whenl’,>0. the spectral line do not present difficulties. It is obvious that
Analogously, we can consider this question in Case II. in this case we should not expect qualitatively new results

In Sec. V, we found that a linear-resonance interaction ofompared to those given above.
the optical pulse with impurity atoms leads to a change in the In conclusion, we note that the NSE contains not only Eq.
phase of the pulse, and that the phase is positive or negatié2) or (25 or (35), but alsoN-soliton solutions with a more
depending on whether we have the situation of attenuatiogomplicated behavior. In particular, for many-soliton solu-
(Wwhen 7,=1) or amplification(when r,= —1). It should be tions of the NSE there are characteristic oscillations of the
noted that this situation differs in principle from the situation €nvelope and strong compression of the pulse peaks already
of self-induced transparency, in which the interaction of thein the initial stages of propagation of the wave. Under these
wave with the resonance atoms is essentially nonlinear. ~ conditions, we cannot always use the slowly varifying enve-

The effects of conductivity reduce to the damping of thelope approximatiort9), and still less Eqs(11) and(12) (the
breather’'s amplitude according to an exponential (8. If separation fromg, of the more slowly varymgz/;(“) and
we consider other effects which lead fig<O (see, for ex- f(")) Therefore, the scheme presented above is not valid for
ample,[19,20), then the amplitude of the breather will in- such solutions, and for that a completely different method is
crease during propagation &s(t) =K,;(0)expI't. We note  neededsee, for exampld,6]).
that the results of Sec. V are valid for breathers whose am-
plitude is small, as in Eq(31). But at the same time, the
results of Secs. Il and IV are valid for breathers with any
amplitude, because here we have not used the inequality The work of A.A.M. was supported in part by National
(3D). Science Foundation through Grant No. DMR 93-19404.
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