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Solidification of binary alloys: Thermal effects studied with the phase-field model

M. Conti
Dipartimento di Matematica e Fisica, Universita´ di Camerino, 62032 Camerino, Italy

~Received 25 June 1996!

We developed a phase-field model for solidification of binary alloys, accounting for thermal effects due to
the release of latent heat at the solid-liquid interface. The model is utilized to study the planar growth of a solid
germ nucleated in its undercooled melt. Steady state solutions, predicted by previous investigations in the
isothermal limit, are lost, and the front velocity decays with time according to the diffusion power lawv}t21/2.
Due to the transient characteristics of the growth process, the solute segregation at the interface, as described
by the present model, is substantially different from the predictions of the continuous growth model of Aziz
and Kaplan@Acta Metall.36, 2335~1988!#, that is derived assuming isothermal and steady growth conditions.
@S1063-651X~97!10601-8#

PACS number~s!: 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp
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I. INTRODUCTION

The interfacial dynamics in rapid solidification of bina
alloys is addressed through sharp interface or diffuse in
face models. Sharp interface models@1,2# utilize the diffu-
sion equation to describe the transport of heat and so
through the bulk phases; the interface boundary conditi
reflect two different constraints:~i! the energy and solute
conservation across the moving front, and~ii ! constitutive
laws that relate the local interface conditions~concentration
c and temperatureT! to the front velocityv. Point ~ii ! re-
quires a separate modelization of the interface kinetics o
microscopic scale, and was addressed by Aziz@3#, Aziz and
Kaplan @4#, and Aziz and Boettinger@5# within the continu-
ous growth model~CGM!, assuming isothermal and stead
growth conditions. They were able to explain the increase
the partition coefficientk ~i.e., the ratiocs/cl of solute con-
centration in the growing solid to that in the liquid at th
interface! from the equilibrium valueke toward unity at large
growth rates.

A diffuse interface approach to study alloy solidificatio
is based on the phase-field model~PFM!. A phase field
f(x,t) characterizes the phase of the system at each poi
free-energy~or entropy! functional, depending onf, T, and
c as well as on their gradients, is then extremized in resp
to these variables, to derive the dynamic equations for
evolution of the process.

Wheeler, Boettinger, and McFadden~WBM1! @6# applied
the PFM to alloy solidification, in the isothermal limit. The
started from a free-energy functional that included a~“f!2

term. However, in their model the partition coefficient r
sulted in a decreasing function of the front velocity; th
inconsistency, as pointed out by Wheeler, Boettinger,
McFadden~WBM2! @7# in a successive study, is due to th
energy cost required to sustain large concentration gradie
To account for this effect, the model they developed
cluded a~¹c!2 term, acting to oppose the contraction of t
solute profile at large velocities. Within this model, in th
limit of steady growth, the solute segregation at the mov
interface was properly described, and the results of the C
were substantially recovered. Successively, in a numer
study, Conti@8# utilized the model to extend the analysis
551063-651X/97/55~1!/765~7!/$10.00
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the growth process to its transient stage, when the so
profile is not yet fully developed; in these conditions, t
solute segregation at the interface did not fit the results of
continuous growth model.

All the previous studies were conducted neglecting th
mal effects in the system. This approximation is commo
justified observing that, at least for metals, the latent h
released in the process is rejected away from the inter
much faster than solute; thus the temperature field relaxe
times which are much shorter than the time required for
arrangement of chemical species, and solidification is eff
tively isothermal. Within this limit, starting from a uniformly
undercooled melt [c(x,0)5c`], both the sharp interface
model@2# and the phase-field model@7# show the possibility
of a steady growth in the planar geometry, along a line in
v,T plane.

However, in a recent study, Karma and Sarkissian@9#
pointed out that even for metals the latent heat released a
interface can significantly affect the dynamics of the pha
change process; successively Charach and Keizman@10#,
starting from an approximate formulation of the sharp int
face model, in the limit of very dilute solutions, observe
that, due to thermal effects, the steady growth of a pla
germ should be driven into a diffusive regime. Then the
fect of heat diffusion on the solidification of binary alloys
an interesting and still open question.

In the present study this point will be addressed simu
ing the planar growth of a solid germ with the phase-fie
model. It will be shown that due to the release of latent h
the interface temperature evolves with time, and the ope
ing point that characterizes the process in thev,T plane is
shifted from the steady growth line; the process enters
diffusive regime and the front velocity decays with time
v}t21/2.

The solute concentration jump at the interface increa
with time, as predicted by the continuous growth model fo
slowing front; however, due to the unsteady characteris
of the process, the solute segregation as described by
present model does not fit the picture given by the CGM

The paper is organized as follows: in Sec. II a phase-fi
model will be developed that accounts for the evolution
the thermal field; the model will be utilized to study th
765 © 1997 The American Physical Society
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766 55M. CONTI
solidification of a nickel-copper ideal solution. In Sec.
some details of the numerical method will be given, and
Sec. IV the results of the numerical simulations will be p
sented. The conclusions will follow in Sec. V.

II. DEVELOPMENT OF THE MODEL

A. Derivation of the governing equations

The model improves the formulation given by WBM2@7#,
allowing for the time evolution of the thermal field, and ca
tures also many characteristics of the formulation given
Warren and Boettinger@11# in a successive study. The sy
tem is an initially undercooled binary alloy of componentsA
~solvent! andB ~solute!. The entropy of the system is writte
as

S5E Fs~e,f,c!2
e2

2
u“fu22

d2

2
u“cu2Gdv . ~1!

In Eq. ~1!, integration is performed over the system volum
s(e,f,c) is the thermodynamic entropy density that depen
on the internal energy densitye and on the concentration an
phase fields; the coefficientse andd account for the gradien
term corrections. The phase fieldf assumes the valuesf50
in the solid andf51 in the liquid; intermediate values co
respond to the interface between the two phases. Conse
tion laws govern both solute and energy density transpo

ė52“•Je, ~2!

ċ52“•Jc . ~3!

The local entropy production is always positive if the ener
and solute fluxes are written as

Je5Me“
dS
de

, ~4!

Jc5Mc“
dS
dc

, ~5!

and the evolution of the phase field is given by

ḟ5Mf

dS
df

, ~6!

whereMe , Mc , andMf are positive constants.
In the above equations, the variational derivatives

given by

dS
de

5
]s

]e
5
1

T
, ~7!

dS
dc

5
]s

]c
1d2“2c5

mA2mB

T
1d2“2c, ~8!

dS
df

5
]s

]f
1e2“2f. ~9!

In Eq. ~8!, mA and mB are the chemical potentials of th
solvent and the solute; for an ideal solution we have
n
-

y

;
s

va-

y

e

mA5 f A~f,T!1
RT

vm
ln~12c!, ~10!

mB5 f B~f,T!1
RT

vm
ln~c!, ~11!

whereR is the gas constant, andvm is the molar volume;f A

and f B are the free energy densities of the pure speciesA and
B. To evaluatef A, the internal energy density of pureA is
postulated in the form

eA~T!5es
A~T!1p~f!@el

A~T!2es
A~T!#, ~12!

es
A andel

A being the internal energy densities in the solid a
liquid phases, respectively; the functionp~f! is monotoni-
cally increasing fromp~0!50 in the solid top~1!51 in the
liquid. Assuming constant and equal values for the spec
heatCA in both phases, the energy densitieseS

A andel
A are

given by

es
A~T!5es

A~Tm
A !1CA~T2Tm

A !, ~13!

el
A~T!5el

A~Tm
A !1CA~T2Tm

A !, ~14!

whereTm
A is the melting temperature of pureA.

The difference

LA5el
A~Tm

A !2es
A~Tm

A ! ~15!

gives the latent heat per unit volume of speciesA. Then
f A(f,T) can be written as

f A5TGA~f!1@es
A~Tm

A !2CATm
A1p~f!LA#S 12

T

Tm
A D

2CAT lnS T

Tm
A D , ~16!

In Eq. ~16! the functionGA~f! is given by

GA~f!5 1
4W

Af2~12f!2, ~17!

that is a symmetric double well potential with equal minim
at f50 andf51, scaled by the positive well heightWA.
With the choicep~f!5f3~10215f16f2! the bulk solid and
liquid are described byf50 andf51, respectively, for ev-
ery value of temperature.

The free energyf B is given by an equation similar to Eq
~16!, with the material parameters labeled with the sup
scriptA replaced with the ones related to theB species. The
free energy of the solution is given by

f5~12c!mA1cmB. ~18!

Using the thermodynamic equation

]s

]f
52

1

T

] f

]f
, ~19!

Eqs. ~6!, ~9!, ~10!, ~11!, ~16!, ~18!, and ~19! yield the dy-
namic evolution of the phase field as
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55 767SOLIDIFICATION OF BINARY ALLOYS: THERMAL . . .
]f

]t
5Mf@e2“2f2~12c!HA~f,T!2cHB~f,T!#, ~20!

where the functionHA(f,T) is defined as

HA~f,T!5G8~f!2p8~f!LA
T2Tm

A

TTm
A , ~21!

and a similar expression holds forHB(f,T).
Starting from Eqs.~3!, ~5!, and~8!, and observing that

“

mA2mA

T
5

]

]f

mA2mB

T
“f1

]

]c

mA2mB

T
“c

1
]

]T

mA2mB

T
“T, ~22!

where

]

]f

mA2mB

T
5HA~f,T!2HB~f,T!, ~23!

]

]c

mA2mB

T
52

R

vm

1

c~12c!
, ~24!

]

]T

mA2mB

T
5G~f,T!, ~25!

with the functionG~f,T! defined as

G~f,T!52Fp~f!

T2
~LA2LB!1

1

T
~CA2CB!G , ~26!

the dynamic equation for the concentration field is written

]c

]t
52“•HDcc~12c!

vm
R

“~d2“2c!

1Dcc~12c!
vm
R

@HA~f,T!2HB~f,T!#“f

1Dcc~12c!
vm
R

G~f,T!“T2Dc“cJ . ~27!

In Eq. ~26! we use the approximationes
A(Tm

A)
2CATm

A5es
B(Tm

B)2CBTm
B ; in Eq. ~27! the standard defini-

tion of the solute diffusivityDc has been recovered, taking

Dc5
Mc

c~12c!

R

vm
. ~28!

The evolution of the thermal field is easily derived from Eq
~2!, ~4!, ~7!, ~12!, and ~15!, taking Me5aT2 ~a being
the thermal conductivity of the alloy!, and assuming
e(f,T)5(12c)eA(f,T)1ceB(f,T):
s

.

]T

]t
1@~12c!LA1cLB#

p8~f!

C

]f

]t
5DT¹

2T. ~29!

Here and in the following the approximation is mad
CA5CB5C, andDT is the thermal diffusivity of the alloy.

The model is then synthesized through Eqs.~20!, ~27!,
and ~29!. As the solute diffusivity is quite different in the
solid and liquid phases, in the followingDc will be taken as

Dc5Ds1p~f!~Dl2Ds! , ~30!

Dl and Ds being the diffusivities in the liquid and solid
respectively.

B. Nondimensional equations

The governing equations can be written in nondime
sional form scaling lengths to some reference scalej, and
time to j2/Dl ; the nondimensional temperature is defined
u5C(T2Tm

A)/LA and the functionsHA,B(f,T) andG~f,T!
are scaled as H̃A,B(f,T)5(vm/R)H

A,B(f,T) and
G̃(f,T)5(vm/R)(L

A/C)G(f,T). We allow Mf to depend
on the local composition as

Mf5~12c!Mf
A1cMf

B , ~31!

and we introduce the following nondimensional paramete

L̃5
LB

LA
, ẽA,B5

e

jAWA,B
,

D̃5
DT

Dl
, u*5

C~Tm
A2Tm

B !

LA
,

m5
Mf

Be2

Dl
, E5

vm
R

d2

j2
, ~32!

W̃A,B5
vm
R

WA,B, aA,B5
LA,B

CT`

LA,B

Tm
A,B

j2

e2
ẽA,B,

n5
Mf

A

Mf
B ,

whereT` is the far-field temperature.
Then, if (T2T`)!T`, the nondimensional equations o

the model become

]f

]t
5@~12c!n1c#m¹2f2@~12c!n1c#m

3H ~12c!FG8~f!

ẽA2
2
p8~f!aAu

ẽA
G

1cFG8~f!

ẽB2
2
p8~f!aB~u1u* !

ẽBL̃
G J , ~33!
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]c

]t
5“•$l~f!“c2c~12c!l~f!“~E“2c!

2c~12c!l~f!@H̃A~f,T!2H̃B~f,T!#“f

2c~12c!l~f!G̃~f,T!“u% , ~34!

and

]u

]t
1@~12c!1cL̃#p8~f!

]f

]t
5D̃“2u, ~35!

where, in Eq.~34!, l~f! is defined as

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D . ~36!

C. Numerical values of the parameters

The model parametersaA,B, ẽA,B, W̃A,B, m, andn were
associated with the physical properties of the alloy com
nents by WBM1@6# and Warren and Boettinger@11#; below
only the results are synthesized:

aA,B5
LA,B

CT`

jLA,B

6&sA,B
, ẽA,B5

hA,B

j
,

W̃A,B5
vm
R

12sA,B

&Tm
A,BhA,B

, m5
bBsBTm

B

DlL
B , ~37!

n5
bAsATm

ALB

bBsBTm
BLA

,

wheresA,B is the surface tension of pureA or B; andbA,B is
the kinetic undercooling coefficient, that relates the interfa
undercooling to the interface velocity throug
v5bA,B(Tm

A,B2T). In the phase-field model for a pure su
stance, the interface thickness is a free and independen
rameter, that has been indicated in Eq.~37! throughhA,B. As
e is not allowed to depend on concentration, Eqs.~32! and
~37! force the condition

hB

hA
5

sATm
B

sBTm
A . ~38!

The gradient concentration coefficientd, following the sug-
gestion of WBM2@7#, will be chosen so thate/d!1.

Table I summarizes the values of the thermophys
properties of nickel (A) and copper (B) utilized to estimate
the above parameters@12#. The length scale was fixed a
j52.131024 cm; a realistic value ofhA was selected as
hA51.6831027 cm. With e/d58.7531023, it results that
aAT`/Tm

A5395.62, aBT`/Tm
B5347.28, ẽA58.0031024,

ẽB58.0231024, W̃A50.965, W̃B50.961, D̃51.553104,
L̃50.735,m5350,n51.01, andE5831023.
-

e

pa-

l

III. NUMERICAL METHOD

The evolution of Eqs.~33!–~35! has been considered i
one spatial dimension, in the domain2xm<x<xm , with xm
large enough to prevent finite-size effects. We imposed
boundary conditionsfx5cx5Tx50 at the domain’s walls.
Initially in the undercooled melt, at uniform temperature a
concentrationT` and c`, a solid germ is nucleated at th
center of the domain atx50; the germ thickness is the min
mum required to prevent remelting and to ensure the suc
sive growth. The germ composition was assumed to
c(0,0)5c`. To discretize the equations, a second order
space and first order in time finite-difference approximatio
were utilized. Then an explicit scheme was employed to
vance forward in time the phase field and concentrat
equations; the linear temperature equation was more co
niently integrated with a fully implicit method. To ensure a
accurate spatial resolution, the computational domain w
divided into two parts; in an inner region, of interest to t
evolution of the phase and concentration fields, the g
spacing was selected asDx50.5ẽ. In the outer region only
the more diffuse temperature field changes with time; her
grid spacing Dx55ẽ was utilized. A time step
Dt50.25310210 was required for numerical stability. To
verify the consistency of the numerical scheme, at each t
step both energy and solute conservation were checked
all the simulations the energy balance was verified wit
0.1%, and the mass balance within 0.001%.

IV. NUMERICAL RESULTS

The model presented above was proposed in its isot
mal version by WBM2@7#; they developed an asymptoti
analysis fore/d!1, and solved in this limit the time indepen
dent equations. Given the far-field concentration, steady
lutions were found for the growth process when the syst
temperature is belowT0, i.e., the temperature for which th
Helmholtz free energy density has equal values in b
phases. The same conclusions were recovered by Cont@8#
for the long time solution of the fully time dependent equ
tions.

In the present section the isothermal approximation w
be relaxed; then the steady growth turns into a diffusive
gime, with the interface velocity decaying with time a
v}t21/2. Excepting for temperature, dimensionless units w
be used throughout this section. The velocity scale is gi
by v05Dl /j54.7631022 cm s21. Figure 1 shows, in the

TABLE I. Material parameters for the Ni-Cu alloy.

Nickel Copper

Tm ~K! 1728 1358
L ~J/cm3! 2350 1728
vm ~cm3/mole!a 7.0 7.8
s ~J/cm2! 3.731025 2.831025

b ~cm/K s!b 160 198
Dl ~cm2/s! 1025 1025

aAn average value of 7.4 will be taken.
bFrom the estimation of Willneckeret al. ~Ref. @12#!.
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(c,T) plane, the portion of the phase diagram of the al
that will be explored in the following. The initial concentra
tion of the melt is set toc`50.072 14, that belongs to th
solidus line atT51699.8 K. Two values of the far-field tem
perature will be chosen to illustrate the numerical resu
namely,T`51695 and 1700 K; in these conditions the is
thermal model reaches long time steady solutions, with
front velocity given byv52.143104 and 7.733103, respec-
tively. When the evolution of the thermal field is allowe
through Eq.~35!, a thermal gradient forms at the movin
front, in order to diffuse away the latent heat; then the lo
temperature increases with time and the interface temp
ture and concentration no longer match the steady gro
conditions. This behavior is shown in Fig. 2, where the
terface temperature is represented versus time. The
curves start from different values ofT`, below and above the
solidus line atc5c`; however, the operating point in bot

FIG. 1. A portion of the equilibrium phase diagram of the Ni-C
alloy, computed from the data given in Table I. The vertical li
corresponds to the value ofc` used in the simulations. From top t
bottom are represented the liquidus line, theT0 line ~dotted!, and
the solidus line.

FIG. 2. Interface temperature vs time:T`51700 K ~upper
curve! andT`51695 K ~lower curve!.
y

,

e

l
a-
th
-
o

cases evolves into the region of the phase diagram confi
between the liquidus and solidus lines, and the initial diff
ence is reabsorbed with time; this result is in agreement w
some first calculations based on the sharp interface mo
that show, in the very dilute solution limit, that the final sta
does not depend on the initial melt temperature@10#.

For the same values ofT`, Fig. 3 shows the interface
velocity versus time~dotted lines!; to accommodate the
reader, the steady solutions of the isothermal limit are a
plotted in the graph~solid lines!. The log-log plot indicates
that for the present model the front velocity scales with
familiar diffusive lawy}t21/2.

In Fig. 4 we display the temperature field sampled at th
different times, forT`51700 K; the curves show the pro
gressive spreading of the thermal field. The effect is char
teristic of the diffusive growth, as the interface velocity d
cays with time, and correspondingly the characteristic len
of the thermal fieldDT/v increases.

FIG. 3. Interface velocity vs time. Solid lines: isothermal a
proximation ~T`51695 and 1700 K, from top to bottom!; dotted
lines: present model~T`51695 and 1700 K, from top to bottom!.

FIG. 4. Temperature profiles at three different time
t52.531026 ~solid line!, 5.031026 ~dashed line!, and 9.031026

~dotted line!. T`51700 K.
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770 55M. CONTI
The solute concentration field, sampled at the same tim
is shown in Fig. 5 for the same value ofT`. The ~“c!2

correction in the entropy functional~1! penalizes the growth
of large concentration gradients; as shown by the curves
concentration jump across the interface develops alon
characteristic length of the order of 1022, that is much larger
than the length scale of the phase-field transition. T
damped oscillation of the profile ahead of the interface is
to the fourth order diffusion equation, and is not expected
the classical second order diffusion problem@7#.

The continuous growth model@3–5#, that is developed
within the isothermal approximation and assumes ste
growth, predicts a monotonic increase of the partition co
ficient k with the front velocity; the functional form ofk can
be given by

k~v !5
ke1v/vd
11v/vd

, ~39!

wherevd is a characteristic kinetic velocity which is ofte
taken asDl /a0 , a0 being an interatomic dimension. Equatio
~39! reduces tok5ke at equilibrium~maximum segregation!,
and describes the progressive suppression of solute seg
tion ~k→1! at large interface velocities.

Although the present data refer to a slowing front, t
curves shown in Fig. 5 are in qualitative agreement with
predictions of the CGM: as time elapses, the front veloc
decays and the concentration jump at the interface increa
i.e., k decreases. However, a finite relaxation time is nec
sary to develop the solute profile, and the latter cannot fol
instantaneously the time variation of the front velocity; a
result the concentration jump given by Eq.~39! is larger than
the actual one, shown in Fig. 5. Att5931026 the dotted line
indicates a value ofk50.99, while Eq. ~39! would give
k50.93 ~8!.

To evaluate the solute segregation on the moving fro
we computed the maximum valuecmax of c(x,t), that iden-
tifies the concentrationcl on the liquid side of the interface
on the solid side we associated the concentrationcs to the
value ofc(x,t) corresponding tof(x,t)50.05.

FIG. 5. Concentration profiles at three different time
t52.531026 ~solid line!, 5.031026 ~dashed line!, and 9.031026

~dotted line!. T`51700 K.
s,

he
a

e
e
r

y
f-

ga-

e
y
es,
s-
w
a

t,

Figure 6 showscmax for T
`51695 and 1700 K~dotted

lines, upper and lower curves, respectively!; the solid lines
indicate the solutions computed from the isothermal mo
~T`51700 and 1695 K, from the top to bottom!. The solute
segregation reflects the unsteady characteristics of the
cess. The isothermal curves of Fig. 6 show that the relaxa
time t* of the solute peak becomes shorter as the growth
increases. As a consequence, in the isothermal approx
tion during the first transient solute, partitioning is more e
fective at large growth rates; at long times, as expec
lower values ofcmax correspond to higher values of the fro
velocity.

The dotted lines indicate that in the present model
creasing the far-field temperature~i.e., decreasing the growth
rate! results in lower values ofcmax; then the solute segre
gation would be more effective at higher velocities. Th
appearent paradox is easily explained referring to the ab
considerations: ast* is comparable with the relaxation tim
of the temperature field, the short time features of the so
tion survive along the growth process.

V. CONCLUSIONS

Rapid solidification of binary alloys is generally ad
dressed in the isothermal approximation, due to the la
ratio of heat to solute diffusivity. Within this approximatio
both the continuous growth model and the phase-field mo
admit steady solutions for the growth in planar geometry.
this paper it has been shown that even for metals the eff
due to the evolution of the thermal field cannot be neglect
The steady growth regime predicted by previous studie
turned into a diffusive regime, with the front velocity deca
ing with time asv}t21/2. The relaxation times of the therma
and concentration fields are comparable, and the solute
centration at the interface cannot instantaneously follow
local temperature and velocity conditions. Then the sol
segregation, as described by the present model, reflects
unsteady characteristics of the process, and does not fi
predictions of the continuous growth model.

: FIG. 6. Solute concentration on the liquid side of the interfa
vs time. Solid lines: isothermal approximation~T`51700 K and
T`51695 K, from top to bottom!; dotted lines: present mode
~T`51695 K andT`51700 K, from top to bottom!.
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