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In this paper we provide an analytical description for the transverse dynamics of relativistic, space-charge-
dominated beams undergoing strong acceleration, such as those typically produced by rf photoinjectors. These
beams are chiefly characterized by a fast transition, due to strong acceleration, from the nonrelativistic to the
relativistic regime in which the initially strong collective plasma effects are greatly diminished. However,
plasma oscillations in the transverse plane are still effective in significantly perturbing the evolution of the
transverse phase space distribution, introducing distortions and longitudinal-transverse correlations that cause
an increase in the rms transverse emittance of the beam as a whole. The beam envelope evolution is dominated
by such effects and not by the thermal emittance, and so the beam flow can be considered quasilaminar. The
model adopted is based on the rms envelope equation, for which we find an exact particular analytical solution
taking into account the effects of linear space-charge forces, external focusing due to applied as well as
ponderomotive RF forces, acceleration, and adiabatic damping, in the limit that the weak nonlaminarity due to
the thermal emittance may be neglected. This solution represents a special mode for beam propagation that
assures a secularly diminishing normalized rms emittance and it represents the fundamental operating condition
of a space-charge-compensated RF photoinjector. The conditions for obtaining emittance compensation in a
long, integrated photoinjector, in which the gun and linac sections are joined, as well as in the case of a short
gun followed by a drift and a booster linac, are examirj&1.063-651X%97)10706-1

PACS numbgs): 41.75-i, 41.85—p, 29.17+w, 29.25.Bx

[. INTRODUCTION with each other. Since neighboring longitudinal slices addi-
tionally do not behave in vastly different ways, precluding
Quasilaminar, space-charge-dominated relativistic electhe occurrence of large longitudinal density gradients in the
tron beams have become a subject of great interest with tHeeam charge density, this final condition implies that the
advent of short laser pulse-driven radio-frequeidy pho- ~ beam may be broken up, for analysis purposes, into nearly
toinjectors[1,2] that are able to produce electron beams carindependent longitudinal slices that behave in the same man-
rying current densities well in excess of 1 kA&nwith the Ner as a continulogs beam. Evidence for the validity of this
transition from the nonrelativistic to the relativistic regime Model for photoinjector beam dynamics comes from both
occurring very quickly. The accelerating gradient required tghultiparticle simulations and experiments performed  at
guarantee that the beam will be captured in the rf wave al?rookhaver[3]. . . _ .
relevant wavelengthé5—25 cm ranges from 10 up to 100 This set of conditions, which defines the notion of a

MeV/m: the beam is therefore accelerated from rest at thguasn.ar.mnar bgam |n.th|s paper, is generally attameq in rf
e L photoinjectors, in particular when they are operated in the
photocathode emissive surface, up to relativistic energ

- . O i )épace-charge—emittance compensation redidie This re-
within a fraction of a rf wavelength, whlch IS a pllstgnce gime implies that the beam propagates for one transverse
comparable to one-half of a plasma os_c_lllatpn per_lod in theplasma oscillation, so that the correlations in the transverse
transverse plane. The trapping condition is typically €X-phase space that develop in the first half of the oscillation are
pressed asa>1/2, in terms of the quantity«  yndone in the second half by properly focusing the beam.
=eEy/2km¢®, which represents the dimensionless amplitudepye to the relativistic diminishing of the space-charge forces
of the vector potential associated with the accelerating fieldas the beam accelerates, one can adiabatically nearly termi-
of frequencyv; (k=2mv/c) and amplitudes,. nate the plasma motion and associated emittance oscillations

Furthermore, the random, thermal component to the transas the minimum in the emittance occurs, obtaining maximum
verse emittance is very small compared to the total rms emitbeam brightness at the exit of the photoinjector.
tance, which is dominated by the dilution of the projected In this paper we wish to provide a simple framework in
transverse phase space density due to correlations in thehich the beam dynamics in such a regime can be analyti-
beam distribution function, so that the beam is fairly laminarcally described and the space-charge-emittance correction
in both the transverse and longitudinal planes. This impliesechnique can be quantitatively explained. We begin by us-
that in the transverse plane trajectories do not cross eadhg a heuristic model of the plasma and emittance oscilla-
other, while in the longitudinal plane different slicésf  tions in a quasilaminar beam. This model allows the under-
length small compared to the total bunch length not mix  lying physical mechanisms involved in the complicated
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phase space dynamics of the rf photoinjector to be elucitor such as an rf photoinjector. As discussed in Rébsand
dated. After this discussion, we then construct the quantita[7], these two focusing sources can be cast into a single
tive model for quasilaminar beam propagation. Analyticalexpression,
expressions for the beam envelope from the photocathode
surface up to the gun exit in a long, integrated rf photoinjec- v 2
tor are provided and the predictions for optimum photoinjec- Kr= (m) ’ (43
tor configuration to achieve emittance correction are ex-
tracted from the properties of the envelope itself. A particulag, nere p= CB,/E, [eEy=27'mc?/sin(¢), ' = ak sin(@)]
solution for the beam envelope is found that assures all thg,r the particular case of a constant solenoidal magnetic
bunch slices evolve in transverse space phase with & comig|q ¢ is the particle phase with respect to the rf field wave,
mon phase space angle, which is in fact the desired final statg_ + -+ b0, and &, is the rf phase of the bunch cen-
fco achieve emittanpe compensation. _Th_is particular solutiofiq at injection. The quantity;, which is a measure of the
is termed the invariant envelope, and is in many ways analoxjgher spatial harmonic amplitudes of the rf wave is defined
gous to the equilibrium Brillouin flow of space-charge- in'sec. 111 and is generally quite close to unity in practical rf
dominated beams in constant gradient focusing channels. Al ctures.
though this study is directly applied to a description of rf  \ye have given the expression for the beam perveance in
photoinjectors, the concept of invariant envelope and theq (1 1) above for an unbunched beam of constant current
method of analysis is of interest and applicable to any rela; '\, qur analysis of the quasilaminar beam in Sec. Ill, we
tivistic beam that is space-charge-dominated and accelerateflnerajize this quantity to include the case of bunched beam,
in high gradlt_ant linear accelerators.. . , by incorporating a geometrical fact¢8] g(¢) in the per-

. The equation we base our analysis on is L_awson S EXPrejeance that contains the longitudinal dependence of the
sion for the evolution of the rms envelope in the paraxialyansyerse space-charge field versus the internal bunch coor-

U

72
8+b

limit 5], dinate {=z— v t.
Furthermore, Eq(1.3) ignores possible chromatic aberra-
v Ks € tion effects on the transverse phase space dynamics, due to
o’+o' E)JFKM’_ W_mzo’ (1.1 an energy-phase correlation in the bunch—this analytical

study is carried out assuming a monoenergetic bunch. A re-

_ _ o . lated source of longitudinal-transverse phase space correla-
which governs the evolution of the cylindrical symmetric tjong in this system arises from the phase dependence of the
rms transverse beat spot siz¢z) under the effects of an yansverse rf forces, which gives rise to an emittance increase
external2 linear focusing channel of strengtK,=  [9] at the first iris of the gurcf. Fig. 3. We assume that this
—F./rg?ymc”. Here the prime indicates differentiation gource of emittance, like the chromatic effects, does not give
with respect to the independent variablethe distance along rise to significant changes in the transverse beam dynamics
the beam propagation axismc® is the mean beam energy, of a given ¢ slice of the bunch. This assumption is quite
and B=wvy/c=y1—y “ is the normalized mean beam ve- good, in that these correlations are of a similar form to the
locity. The defocusing space charge term in Eiql) is pro-  those arising from space charge, but smaller in magnitude in
portional to the beam perveaneg, and the final term rep- nearly all cases of interest. In fact, because of the similarity
resents the outward pressure due to the normalized rmg spatial dependence of the forces, it has been observed in
emittance, which in the case of cylindrical symmetry can besimulations that the space-charge-emittance compensation
written as process can also partially mitigate this source of emittance

[10]. Although the solutions found for Eq1.1) can be ex-
By tended to any kind of charge density distribution in the
en=pye=— V2 (r 3y —(rr")2, (1.2 bunch, the actual predictions of the rf photoinjector designed
to achieve emittance compensation will be provided for a
density distribution that is Gaussian in all dimensions.

We use Eq(1.1) under a host of assumptions, which we  The initial model used for the photoinjector analysis as-
now delineate. Equatio(l.1) is of course only valid in a sumes a long multicell rf structure, i.e., an integrated device
paraxial approximation ’<1) and for a narrow energy such as the AFEl(advanced free electron lagénjector at
spread beam. In our envelope analysis, which is applied onlios Alamos[4], and the proposed PW{plane wave trans-
in the region where the beam has attained relativistic velociformer injector at University of California at Los Angeles
ties (the mean beam velocity,= Bc~c), the normalized (UCLA) [11]. The analysis is, however, sufficiently broad
acceleration gradient’ is approximated as constant, so thatthat many characteristics of photoinjectors with storte or
v(z5)=y(z1) + v (z,—2;). In the case of an unbunched two cell) rf guns and a postacceleratidiboostey linac,
beam the perveance takes the fomg=1/2l,, with 1,  where the space-charge compensation takes place in drift
=ed/r.=17 kA (for electron$. Since we restrict the discus- space between the rf gun and the booster linac, can be in-
sion to axisymmetric beams, the focusing gradient can incorferred. In fact, the case of a shaft+1/2 cel) rf gun fol-
porate two different types of focusing, that applied externallylowed by a drift is discussed in Sec. VI. The exact solution
by a magnetostatic solenoidal focusing field, and the ponfor the beam envelope is not found for this case, but the
deromotive rf focusing6] produced by the nonsynchronous operating conditions needed to achieve emittance compensa-
spatial harmonics of the accelerating rf wave, an effect that ifion are deduced from the general properties of the envelope
particularly strong in a high gradient standing wave acceleraequation.




55 ENVELOPE ANALYSIS OF INTENSE RELATIVISTC . .. 7567

Radial nonlinearities in the space-charge field are not exGiven our assumption of space-charge-dominated envelope
plicitly taken into account in this model, as they have a weakmotion, we may ignore the final term on the right-hand side
impact on the rms envelope behavior. The full influence ofof Eq. (2.1), which represents the contributions to envelope
these effects is beyond the scope of this paper, but is impofercing due to the emittance arising from both random, ther-
tant nonetheless—it is more relevant to a discussion of minimalizing sources as well as the effects of nonlinear macro-
mizing the residual emittance after compensation. Somecopic forces. In this analysis, we will be using E2.1) to
comments on these subjects are made in Sec. Il. describe the evolution of longitudinal slices of a beam

In overview, the organization of the paper is as follows. In(meaning infinitesimally small length${ of beam about
Sec. Il we provide a heuristic model to explain the basics ofyiven values o), assuming that the motion of each slice is
the emittance oscillation due to a small mismatch of a spaceessentially uncorrelated to that of nearby slices, and in fact
charge-dominated beam at injection into the focusing chandepends most strongly only the loda ¢) value of the cur-
nel. Section 1l is devoted to the detailed analysis of therent. This means that the normalized thermal emittance cor-
envelope equation and the model for a multicell photoinjectesponding to each beam slice is small. We define this emit-
tors; analytical solutions derived in a perturbative approxi-tance formally as
mation around an exact solution are presented. The concept
of the invariant envelope is introduced and illustrated in Sec. By
IV, and its deep relatiopnship with the space-charge-emittance €nn($)="75" V(2 (2= ('), 2.2
compensation technique is discussed. Predictions relevant to
photoinjector design characteristics needed to achieve an invhere the subscript indicates that the average is performed
variant envelope operation, i.e., emittance compensation, anly over the distribution within a given slice.
presented in Sec. V together with comparisons to numerical We next generalize the expression for the space-charge
simulations of existing rf photoinjector designs. Section VI isterm to include an explicit dependence on the longitudinal
devoted to the case of a short rf gun followed by a drift spaceosition byl —1g(¢), wherel is now defined as the maxi-
where the emittance correction takes place. Finally, the immum current in the beam. The geometrical facti),
plications of the analysis presented in this paper are summavhich is less than unity, is discussed in more detail for a
rized in Sec. VII. finite beams below; for now let us note that in the limit

where the beam is longyg,>o,) in its rest frameg({)
II. AN ILLUSTRATIVE MODEL follows the local dependence of the current very closely.
Upon linearizing Eq(2.1) about the equilibrium Brillouin

The simplified model that we propose for the complicatedflow condition for a slice at a given value ¢f
motion of the beam envelope and emittance evolution in high
gradient linear accelerators is motivated primarily by the 1g(2)
problem of understanding emittance evolution in rf photoin- oed9({))= W
jector sources. In this model we view the rms emittance as 0 '
arising from the differing phase space dynamics of each lonye obtain the equation for small amplitude motion about this
gitudinal slice of the beam, which is assumed to behave as ggpjnt,
independent, cold, laminar, space-charge-dominated plasma

112
: 2.3

evolving under the influence of linear external forces. In this 1g(Q)
case, even though the rms emittance of each longitudinal  d60”"({)+| K.+ 2o By)029(0) 60({)=0 or
slice can be neglected in the analysis, the rms emittance of ol PY) T
the ensemble can be quite large upon summation of the en-
. ge up 50"(¢)+2K, 8(£)=0, 2.4

tire ensemble making up the beam.
In order to understand how this mechanism causes emit-

tance growth, as well as how the emittance growth can b(\_ﬂvhmh gives oscillation frequencies that are dependent on the

reversed by proper focusing of the beam, we begin by eXame_xternal focusing strength, bintdependenbf the beam cur-

ining a simplified model problem, that of an intense, cold,rent' _It is this characterlstlt_: of the space-che_lrge-domlnated,
uniform-density beam nearly matched to an external focusgua.Sllamlnar beam dynamics that allows emittance compen-
sation.

ing channel. While this model ignores the effects of accel- Thi del b d to illuminate the rf photoiniect
eration and transverse motion due to the high gradient rf IS model can be used to iuminate the i pnotoinjector

fields in the accelerator, it serves to illuminate the fundamenc2>¢ by assuming that the envelopes in the beam ensemble

tal dynamics of the emittance oscillations in these devicesl?e.}t%'n(it the< cathoge ),i“gh% mlsmlatched t(.)”tr;.e channel
When the effects of the high gradient electromagnetic fieldd/'!"! = 0= 0eq ando =0. All envelope osciiiations pro-

are included in the subsequent analysis, analogies to th&eed with the same frequency, given only by the external

simple model will be apparent ocusing strength, but with different amplitude and about

We begin by writing the rms envelope equation for a Cy_equmbr_la tt;at atrr(]e deper_1dent on tthe Cll”t@?ﬁve assumte\:/\;che
lindrically symmetric, space-charge-dominated, coastingapprox'ma ion thag(¢) is proportional to the curreptwe

relativistic, charged particle beam in a focusing channel O]thus have formally
constant strength,

0(2,0) = 0ed9(£)) + [ 00— 0ed9(£))]cog 2KrZ),(2 5

I n eﬁ,th
(By)%c  (By)?d®

(2.9

"+ K o=
7 7720, and
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FIG. 1. Emittance and envelope evolution for a slightly mis- 70 > i
matched beam ensemble beginning with a minimum beam size ar ‘ (b)
vanishing correlated emittance, in linearized limit. — 6.0
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Since the frequency of the oscillations is independent of the & sobl ¥ \\
value of current, but the amplitude is not, the rms emittance ; .
of the beam ensemble grows, but returns periodically tc * 2.0 N
minimum values. ok \w —
This can be seen by noting that under our above assum| e
0.0

tions, the rms emittance defined by E@.2) can be calcu-
lated as follows:

e(2)=(a?(ad'?)—(o0"')?, (2.7
- . FIG. 2. (a) Envelope, andb) emittance evolution of 1300-MHz
where the_ a_ngu!ar bracket 'nd_'cates ar_1 average WEIghteI(fi photoinjector design, from PARMELA multiparticle simulation.
over the distribution of currents in the entire beam ensemble,

i.e., all of the slices. To quantify the effect of the differing
trajectories in the ensemble of beam slices, we assume t
long beam limit expands the effective distribution function in
currents to second order about the maximum curfeat,
near the peak of a symmetric beam current profile that i
continuous though its first derivative, and obtain the emit-
tance evolution

J o’

Jl \ o

=3 Keowouly) [ [sin2K2)]. (28
p
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I{{eom the cathode to the injector end in a scaled UCLA Sat-
urnus photoinjector. The emittance minimum occurring at
the maximum in the envelope is of secondary interest be-
Lause it occurs at large beam size and low energy inside of
the primary focusing magnet of the rf photoinjector.

The qualitative similarity between the behavior predicted
by simple emittance oscillation model and that found in
simulation of rf photoinjectors points the way toward the
further analysis of the photoinjector, which differs from the
model case in both acceleration and nonuniform application
of focusing. One prediction can be gleaned from the simple
model even before we begin, which is that one should allow
the photoinjector beam to go through only one envelope os-
cillation, with further oscillations suppressed by diminishing

Figure 1 displays the emittance and envelope evolutiorthe space-charge forces through acceleration. This must be
for a slightly mismatched beam ensemble, beginning, as idone with some care, and our analysis leads eventually to a
the case of the rf photoinjector, with a minimum beam sizequantitative prescription for obtaining this condition in Sec.
and vanishing emittance as defined by E217). It can be V.
seen that there are two subsequent emittance null points, one This simple model has other aspects that help explain by
at the maximum in beam size, and another when it returns tanalogy the behavior of rf photoinjectors operated in the
its original size. These minima occur where the angles iremittance compensation regime. The artifact of the oscilla-
phase spac@=tan }(o'/o) are independent of the beam tion frequency about the equilibrium being dependent only
current value. This type of behavior is in fact similar to that on the applied restoring force gradient, which is what allows
observed in rf photoinjectors, as can be seen from the mukhe correlated emittance developing in the beam ensemble to
tiparticle simulation shown in Fig. 2, where the beam underperiodically vanish, is not valid to all amplitudes in the beam
goes one envelope oscillation and two emittance oscillationenvelope system. To lowest significant order in the mismatch

1
=— ol
€(2) v 0o( 0l ims) -,
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FIG. 3. Schematic cross section in theZ) plane of a typical rf wherek=2w/\=w/c, anda, are the spatial harmonic co-
multicell cavity of a photoinjector gun: the rf field distribution on €fficients that depend on the actual cavity geometry that can
axis is plotted together with the electric field lines of the §ip, € computed easily by computer codes or derived by experi-
mode in use for electron acceleration. The three different reglons mental bead measurements. Due to the symmetry of the se-
I, II) used to describe analytically the beam dynamics in the photolected mode, all even,’s vanish,a;=1, andE, becomes
injector are shown. the amplitude of the fundamental harmorigpeed-of-light

phase velocity component of the rf wave. All higher har-
amplitudea(l (£))=[ oo~ oeq (1))} 7eq1 (£)), the oscilla- monic amplitudes are therefore normalized to the value of
tion frequency is the fundamental. o
The external solenoid is assumed to be folded around the
first 2+ 1/2 cells of the rf cavity, producing a constant mag-
v(1(0))=2K,[1+ Za( (). (2.9  netic fieldB,=B, from z,=\/8 (half-way through the cath-
ode cel) up toz,=11\/8 (a quarter-way through the third

) o full cell). The beam dynamics in the photoinjector are de-

cludes the vanishing of the correlated emittance. Thus, there (g) The first one and a half cellérom z=0 to z=z,) are
is an additional prediction that can be made on the basis Gfeated by using a ballistic approximation, as described in
mized to produce the best emittance compensation. plasma oscillation begins, driven by the strongly repulsive

It should also be noted that, assuming laminafibere is  space-charge forces. The transverse dynamics are dominated

no “wave breaking” in transverse phase spaaéthin alon-  py the defocusing effects of space charge and a transient rf
gitudinal beam slice is maintained, that phase space correlgick in the region of the first iris.

tions arising from radial nonlinearities must also behave as () | the following cells, i.e., up to the end of the sole-

do the beam slices—that is, they should also be compenygiq field atz=z,, the envelope equation is solved pertur-
sated. Maintenance of laminarity also implies that the beanpatively with a constant beam size space-charge approxima-
excursions from equilibrium are limited in amplitude. tion. Here, the extra focusing applied by the solenoid field, in
conjunction with the ponderomotive rf focusing, overcomes
the transverse space-charge force and turns the beam enve-
lope from divergent to convergent. This is named region |
since it is the first region where the envelope equation is
In order to perform the envelope analysis of the multicellapplied(and applicable
injector presented below, we must first specify a model for () In the final region of the accelerat@beyondz=z,
the rf photoinjector. The model we adopt for the acceleratingiamed region )i the envelope equation is solved initially as
structure is geometry independent, since the accelerating & perturbation about an approximate solution, which pro-
field is written in Floquet form as a sum of its spatial har-vides a general solution to the problem of the beam dynam-
monic amplitudes, and the rf photoinjector cavity is assumedcs up to the end of the photoinjector. In the case of a nearly
to be a multicell structure indefinitely extending along its Optimized injector, this approximate solution can be replaced
symmetry axis. There is, however, some specificity in ouy a special exact solution called the invariant envelope. In
choice of the model for the static longitudinal magnetic fieldthis case, the normalized emittance associated with the per-
produced by the external focusing solenoids: it is assumed tiirbed plasma oscillations is damped gently for a beam
have a hard-edge longitudinal profile extending over a fewearly matched to the invariant envelope, while it can be
cells of the accelerating structure. excited to perform additional oscillations if the beam is over-
A typical multicell rf cavity employed in rf photoinjectors focused by the solenoid, going through successive minima
is shown in Fig. 3, displaying the cross section of an axisymand maxima.
metric iris-loaded structure terminated into a half cell hosting The beam conditions, and o, at the second iris, i.e., at
the cathode(located atz=0) and operated in a Thy., the end of region 0, are reported in Appendix (A,=1
standing mode with one-half wavelength cells following the + 37a/2 at ¢=w/2). With the conditiona>1/2, the trap-
cathode cell. The general expression of the rf field compoping threshold requirement that holds for any rf photoinjec-
nents expanded linearly off axis [i6] tor [9], the beam at this point is quite relativistic, since typi-

lll. BEAM ENVELOPE ANALYSIS FROM CATHODE
SURFACE TO INJECTOR EXIT
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cally v,=5-10. Rewriting the envelope equation assumingexpressed in terms of simple sinusoidal functions. The
B=1 and beam laminaritfneglecting the thermal emit- Cauchy perveanc8 has been introduced in order to under-

tance, Eq. (1.1) becomes line the analogy with the usually defined beam perveance,
) i.e.,1/214y%, which turns out to be invariant only for a non-
7 /B Y _ ks(0) accelerated beam: before attacking the mathematical treat-
oo to g P ysing)) oy3’ G2 mentof Eq.(3.4) it is worthwhile to anticipate that, sincis

invariant in Cauchy space, a sort of equilibrium will be
where the normalized beam energy is given to an excellerdchieved whenever the space-charge term on the right-hand
approximation by y=1+akzsin(¢)+acos@)=1+yz side(RHS) is exponentially damped at the same rate as the
+a cos(p), and we now leave out the explicit indication of combination of focusing and trajectory curvature on the left-
the dependence af on { andz. The ponderomotive rf fo- hand sidgLHS). Since this requires a nonoscillatory behav-
cusing term displays, through the quantiyits dependence ior for the LHS, which actually represents the betatron mo-
on the higher spatial harmonic amplitud&s, tion, this argument leads straight to the requirement of
laminarity (i.e., negligible betatron oscillationswhich is,
) ) consistently, the assumption on which the whole analysis is
77:n§=:1 an_;tan,;—2a, 18,1108 ¢) (a,=0). based.
(3.3 We obtain solutions to Eq3.4) employing two different
techniques appropriate to two distinct domains of propaga-
In Eq. (3.2 the perveancecg () explicitly retains a func- tion. As anticipated, we are proceeding from region 0 to |
tional dependence on the longitudinal positipof the par- and Il by connecting output conditions of each region in
ticular slice in the bunch, so thaty({)=1g({)/2l,. As  input to the following. In region |, defined by, <z<z; (0
shown through more detailed calculations in Appendix B, the<y<y.) with y.=In{[1+(5/2+ 1/4)7a]/y,}, the beam is

geometric factog(?) is given by exposed to external solenoidal focusing. In this domain we
haveQ?= (7/8+ b?)/sir’(¢), whereb=cB,/E,. Region I,
02 A? e A defined by z>z., is solenoid free and henc€=Q,
9(d)=e 2\ 1+ Py 1= 2|2 +In v -1 =(5//8)sin(®). In region | the beam size varies slightly
with respect tar,, allowing the approximatioar= o, in the
for a Gaussian distribution of aspect rafie=o0,/o,, or nonlinear term on the right-hand side of £§.4). The gen-
) 0\ Y eral solutiong, of the resulting linearized equation is
O|1=0) COS(Qy)+0'2 Q
for a uniform distribution of aspect ratib=R/L, whereR is
the beam radius anld is the beam length. In this section we S(0)| eV —cogy) + sin(Qy)
will assume, for the sake of simplicitg({)=1({)/I years SO y Q
thatx(£) does not depend op which is consistent with the + (1107 , (3.5

relativistic approximation that the transverse space-charge-
field amplitude follows the beam current distribution. As a
matter of fact, since the bunch aspect rafigs typically of

the order of 1, the rest frame aspect ratio is such th

Where o=do/dy and o,=05y,/y’. Setting o.= o (Yc)
nd o.=0,(y.), we can perturbatively solve Eq3.4) in
egion Il, assuming that the nonlinear term on the right-hand

A%y*<1 in the domain wher(_a Eq3.2) is applied _(7 side may be represented by a particular solution of the form
>1v,). However, the generalization of E(R.2) to deal with r?iven in Eq.(3.5).

the analysis of bunched beam dynamics will be performed i The perturbative solution in the second regiop then
following sections, together with the analysis of the emit- becomes :
tance compensation mechanism.

To solve EQ.(3.2), we apply a Cauchy transformation by

S({)e Ve
changing the independent variable franto y, defined as  o,=|0o.— % cod Qo(y—VYeo)]
Oc

y=In(+/v,), to obtain
S(¢)e Ve yocloe

d?c
G0 2 e, (3.4 T
_ . S(Qe V1t acla)]
with o=0o(y) and S(§)=1({)/210y2y'?=rs({)! v2y'? de- tloet ¥ siQo(y —Ye) 1/ Qo,
fined to be the Cauchy perveance. The transformation clearly Te
reveals, by removing the termx’(y'/vy) corresponding to (3.6

adiabatic damping in E(3.2), that the single particle beta-

tron motion in the Cauchy space (y) is actually, as long as where ¥= QO+(1+ o.log)?. The combination of Egs.
the space-charge force is neglected, the simple one of a uni3.5 and(3.6), together with Eqs(tA4) and(A5), allows the
form focusing channel with constant normalized focusingdescription of the beam envelope from the initial conditions
gradientQ?: this is basically the reason that the matrix de-at the photocathode surface up to the photoinjector exit.
rived in Ref.[6] for the transverse motion in rf linacs can be While this treatment of the behavior of, is quite general, it



55 ENVELOPE ANALYSIS OF INTENSE RELATIVISTC . ..

3.5
¢ [mm)]
2.5
2-
1.5
S band 100 MV/m
1
0 100 200 300 400 500 600
z [mm]
5
4
6 [mm]

L band 45 MV/m

w
v w1

0 250 500 750 1000 1250 1500
z [mm)]

FIG. 4. Beam envelopes through two different+102 cell rf
guns operated without external solenoid focusing, iBy=0

7571

0 kGayss
¢ [mm)]

TR
——

Vo SRR ol

Sl

i

L band 45 MV/m

0 250 500 750 1000 1250 1500

z [mm]

FIG. 5. Beam envelopes through a-10/2 cell L-band rf gun
(Ep=45 MV/m, | =200 A, Q,=4 nC) at different amplitudes3,
(in kG) of the solenoid magnetic field. Dashed lines give the secular
orbits analytically predicted, while solid lines are numerical simu-
lation results.

gram A=0.83 with ¢,=2.0 mm, givingl =200 A at 4 nC
(z,=174 mm, y,=8.6, a=1.62 (no solenoid field is
present in the data reported in Fig. #he simulations were
performed with the codesTRAP [12] for the S-band gun
(Fig. 4, upper diagrajnandITACA [13] for the L-band case
(Fig. 4, lower diagram A similar comparison is shown in
Fig. 5, where the extra focusing due to the magnetic field of
the solenoid is clearly displayed. It should be noted that by
switching off the space charge term in E¢3.5 and (3.6)

one obtains the dotted curve plotted in Fig. 5, for the case of
Bo=0.5 kG, which is clearly mismatched with respect of the

(v1=2.856 GHzE,=100 MV/m upper diagramyy=1.3 GHZE,  simulation curve, indicating the relevance of the nonlinear
=45MV/m lower diagram Dashed lines give the secular orbits space-charge term in our analysis.
analytically predicted, while solid lines are numerical simulation |t js useful to note, as explained in R¢6], that a tran-
results. Various bunch charges have been used, as indicated.  gjent angular kickAg' =+’ o/2y (corresponding toA o
=+ 0/2) must be added to the secular beam envelope at the

will ultimately prove less useful than one based on the in-gun exit in order to transform it back into the actual enve-
variant envelope given in the next section. lope. What is meant by the distincti@@cularin describing

The whole system, i.e., the beam and the external RF anide envelope is the following: the secular envelope repre-
magnetic field, can be specified by means of ten operation&€nts the actual envelope averaged over the cell-to-cell oscil-
quantities: the main quantities are the laser pulse charactef@tions caused by the alternating gradient focusing effect as-
istics (spot size at the cathode , pulse lengthr,=ca,), the sociated vv_|th the bgckward component in the rf standing
extracted bunch charg®,, the rf field quantitiegfield am-  Wave, as discussed in R¢6]. The good agreement between
plitude E, and rf frequency,(), the magnetic field amplitude 1€ an_aly|t|cglly Ipr.Ed'C;[fd enl\_/glcln_pédashed Ime)s_an_c:_ the
of the solenoidB,, and the initial and final positions for the numerical simulation datasolid line§ gives a significant

lenoid field distributi I dz. Th hat confirmation of the capability of the present model to predict
solenoid ield distribution, namely, andz.. The somewnha orrectly, within the domain of interest, the beam envelope
ancillary parameters associated with description of the r

h teristics.
field are and u (defined in Appendix A which depend on araciensies

- , S - It is interesting to note that the first two terms on the
the set of spatial harmonic coefficiertts. In the following  ight-hand side of Eq(3.5), which scale linearly with the
we will consider the special case ef=u=1, i.e., a pure ;

initial conditionso, and o5, correspond exactly, as far as

first harmonic rf field, because it greatly simplifies the analy-ph=0 is set(no superimposed solenoid fi¢Jdo the linear

sis without significant loss of generality. In the following we transport matrix elements derived in Rg#] for the evolu-

take alsog= /2, which corresponds to the phase of maxi-tion of the secular envelope in rf linacs. Therefore, B35

mum acceleration. represents the extension of the analysis performed in[BEf.
The beam envelopes resulting from this analysis appliedo the case of an external magnetic focusing added to the rf

to a multicell photoinjector are shown in Figs. 4 and 5, withponderomotive focusing, as well as the contribution from the

several different values of the bunch cha@gand solenoid ~ space-charge field, which is given by the third term on the

field amplitudeB, for a typical set of photoinjector param- right-hand side of Eq(3.5).

eters. In the upper diagram of Fig. 4 the bunch aspect ratio is

A=1.25, witho,=1.5 mm, corresponding to a peak current

=100 A atQ,=1nC (I=Qyc/\270,) and 400 A atQ,

=4nC (z,=79 mm, y,=8.7, a=1.64); in the lower dia-

IV. THE CONCEPT OF INVARIANT ENVELOPE

In view of the excellent agreement between the analytical
and numerical solutions to the envelope equation for space-
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charge-dominated, strongly accelerating beams in the pretamping frequency up to a fixed constant. Another way of
ceding section, we now extend our analysis to finding a parviewing this is to note that the ratio between the two funda-
ticular beam propagation mode. This mode will be shown tamental scale lengthg,y and\, is in this case exactly con-
be analogous to the Brillouin flow for space-charge-stant, i.e.,)\p/Lg=27r\/2_/3. This is achieved because the
dom_inated beams in chusing channe!s discussed in Sec. Igca"ng of the plasma frequency af,y 3?2 is exactly
First of all, we begin by transforming the envelope de-matched to the energy gain, including the reduction of the
scription in Eq.(3.4) from the Cauchy spacesty) into @  peam sizer with energy, which scales ag 2 namely,&

dimensionless Cauchyr(y) space, which displays the fun- = (2/y')\1131 4. This constant relationship betwekg and

damental parametric dependence that governs the beam si%g also explicitly indicates that the invariant envelope is in-

evolution. By defining the dimensionless quantity 0/}/§ __deed an equilibrium solution in the Cauchy space. Further, it
(we are now, for the sake of compactness, leaving impliciypyiously displays the equilibriumlike characteristic that
the dependence dob on ¢), the envelope equation in the there are no periodic oscillations associated with it, but

dimensionless Cauchy spacey) reads nearby orbits will oscillate about it; these oscillations will be
42 oy studied in Sec. V.
_72-+QZ7-: - (4.2) The solution7 given by Eq.(4.4) has also the extremely
dy T relevant property that it is the only solution displaying a

constant phase space andlé o= 7/7), independent of ini-

The scahng of Fhe bea”.‘ size with the square root of t.he[ial conditions7, and 7. in all of the three spacdsCauchy
perveance in this analysis naturally agrees with the scalin imensionless 4y), Cauchy @.y), configuration space
laws set down in Ref[17], in that the beam plasma fre- YD y .y, 9 P

We are interested in the third region>z.), where, tak- SPaces the phase space angle is a universal constant, while in
ing the case ofp= =1 and$==/2, which imply thatQ) ~ configuration space the phase space angje yo'/o=

= 0,=1/\/8, the envelope equation reads —v'I2 is a constant(the trace space angle ig'/o=
) ~ —v'12y). The negative sign of, implying a convergent
d_T+ T_ e_y 4.2 beam, is a clear signature of the adiabatic damping due to
dy> 8 1 ' acceleration: on the other hand, the same quantity is vanish-

ing in the case of Brillouin flow, whergsee Eq.(2.3)] &g,
which is a universal scaled equation, independent of any ex= Yol Teq=0.

ternal parameter. Further, the most important attribute fon the invariant

Since the quantityy'S (which has units of a length envelope is that it does not depend on the beam current,
can be related to the transverse plasma ,freque”%hich is embedded in the perveance scaled variahlesd
wp=yAmnee y"me=(c/o)I/21gy" by wp=(cy'/oy) 7 . For this reason the solutichwill be called theinvariant
VSy2ly, it is  interesting to  note  that enyelopeits invariance in phase space angle with respect to
the function 7 can be expressed as=7y'eY%yk,  curent is exactly the basic condition to obtain a vanishing
=[(¥'In)IKk,]Ny2ly with ky=wp/c. In this form it is l|inear correlated emittance as the final state of the beam. In
clearly shown thatr scales as the ratio between the localfact, it is well known that the emittance growth from linear
plasma wavelength ,=2m/k,, which sets the defocusing space-charge effects is due to the angular spread in the phase
length of the beam, and the local incremental energy gaigpace distribution of different bunch slices, which receive
lengthL,=y/y’, which sets both the beam adiabatic damp-different kicks from the space-charge field. In analogy to the

ing and rf focusing lengths. ~ discussion of the emittance oscillations in the beam mis-
Equation(4.2) has, like Eq.(3.4), a general perturbative matched to the solenoid in Sec. Il, these different beam slices
solution, may be represented by different current amplitudes in Eq.

(3.4), with the full beam represented by the ensemble of

D e_y° co§ Qo(y—yo) ]+ e Ve VTelTe beam slices. Since E¢R.8) predicts emittance oscillations of
¢ 7B 0 ¢ =) amplitude scaling like the spread in phase space angles, it is
Ve(14 7] natural_ to anticip_ate that this property of the inva_lriant enve-
+] ot e« :C 7c) Si Qo(y—yo) 1/ Qe lope will be crucial to achieve emittance correction, as dis-
= cussed in detail in Sec. V.
4.3 It is interesting to observe that, under the invariant enve-
lope conditions, the space-charge term in E§1), e V/7
with E=3+[1+7./7.]? and Q= 1/,8. =/3/827Y"2, is dominant over the focusing term, which is
Within this family of solutions there is a notable particu- only one-third of the magnitude of the space-charge term,
lar solution, 7/18=(1/3)\/3/8e Y2, Adiabatic damping of the angular di-
R vergence due to acceleration provides an additi¢daimp-
T=\/8/37Y2, (4.4 ing) term that counteracts the space-charge defocusing in the

. envelope equation, but it should be noted that the second
corresponding tar.= /8/3e Y2, 7,=—\2/3e7Y? andE  derivative of the invariant envelope is always positive, thus
=3. This solution is characterized by having a plasma fre<classifying this trajectory as unstable. This in fact must be
quencyk,= J3/2y'ly, which is proportional to the pondero- the case, since a stable trajectory would imply oscillatory, or
motive rf focusing frequency andimaginary adiabatic nonlaminar, behavior: one of the main consequences of such
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a characteristic of the invariant envelope is the simultaneous o= (2ly" )13l 51, 4.7
damping of the beam spot size and the beam transverse
momentump, = yo'=—'5/2 asy 2

Since we solve the envelope equation under the assump¥therey; is the exit beam energy. This condition is a useful
tion of laminarity, the range of validity of such a hypothesis gxperlmental diagnostic of emittance compensation in prac-
should be investigated. Rewriting E¢.1) by taking into  tICe.

account also the thermal emittance term defined by(E§) The parallel exit condition on the beam envelope points
we find out the analogy between the invariant envelope and the Bril-
louin flow. In fact the two flows can be matched at the exit of
d2r eV [2enmy valo\? 1 a standing wave linac; equating E¢.7) with Eq. (2.3), one
W+QZT=T+(’I—> =. (45 can find that a focusing gradient,=(/3/8y'/y)? pro-

duced by a solenoid of field amplitud®,= \3/2m.cy’/e
. . : N can achieve this match, preserving the beam’s mean angle in
se::)lrr:gntg;ri b:r?r?hles rc;nh:rlhea:]r:jvasr;ggt ;n\llze(:loge T,rot\r/]vi phase space to be vanishing after the linac.

Y @5 g The converse of the exit condition just discussed is the

3y/2 H _ W2 - =7 A h
?ns er q ,r Vt"h'ler thervspa;ﬁe Char{gifi trc‘ermf decre;?srﬁissaséit. following entrance condition: a beam entering a standing
order o preserve the co on of quasifaminartty, SOV}IFVE linac must have initial beam size given by
that the beam can be considered space-charge dominated,

the space-charge term must be larger than the emit-

tance term. This condition holds up to a positign o= (21y")J113l gy, (4.8
=In[\/(8/3)I/2Ioen,thy’72], beyond which the beam enters
the region where it becomes emittance dominated. This p
sition corresponds to an energy given by

Qith vanishing divergence. In other words, the beam must
also enter on a parallel trajectory. The implications of this
condition for operation of a split photoinjector, consisting of

y,=/(813) : (4.6) a sho_rt rf gun followed by a drift space and a booster linac,
2lo€n iy are discussed in Sec. VI.

Since the thermal emittaneg , is typically of the order of 1

mm mrad, and taking the relatively high accelerating gradi- V. EMITTANCE COMPENSATION

ent found in the Iplane—vv_alve transform@WT) linac at External control of the beam spot size and emittance evo-
UCLA, which is y'=30 m™= (Eo=30.6 MV/m), we have ytion in a long rf photoinjector is accomplished through the
v1=1.6[A]. This energy is quite a bit larger than that ob- y4riation of the solenoid field strength, which allows one to
tained at the UCLA PWT16 MeV), which, like all existing |gynch, az=z,, a beam envelope that may be optimized for
standing wave photoinjectors, has a peak energy less than ZRhieving low emittance performance. It is obvious from the
MeV, but with peak beam currents in excess of 50 A con-yrevious section’s discussion that this particular envelope so-

sidered typical. _ lution is of interest from the point of view of emittance con-
Another relevant assumption made above was that of long,| and so we now concern ourselves with the examination

gitudinal laminarity, which means that different slices do not ¢ wyo issues. The first is how to achieve this “matching” of
mix with each other. This assumption is not violated in gen-e peam to the invariant envelope at the end of the solenoid,
eral since, as previously discussed, the longitudinal plasmgpije the second is the investigation of the subsequent phase
period is much longer than the typical time scale of emit-ghace dynamics of a real beam ensemble with a spread in
tance compensatiofi.e., of one plasma oscillation in the (aiactories. Both of these issues are critical in understanding
transverse plane Since the longitudinal plasma frequency, the phenomenon of emittance compensation. We have ar-
which is suppressed in comparison to the transverse fr&s,ed that operation on the invariant envelope is the condition
quency by a geometrical factowy=wp, vg(07) "1,  for optimum emittance compensation, in the sense that the
where for large beam rest frame aspect ragiesl, the num-  peam(the ensemble of all beam sliodsilly matched to the

ber of plasma oscillations in the longitudinal plane is typi- invariant envelope displays no further emittance oscillations.
cally much smaller than 1. The major result of this longitu- |t will be shown below that this is only part of the story;
dinal plasma motion, which, unlike the transverse motionpeam slices that are not directly on the invariant envelope
has little restoring force, is to lengthen the pulse in a laminaperform stable oscillations around the invariant envelope,

do not overtake each other. the full beam ensemble.

When the beam leaves the accelerating structure one must at this point, we wish to find proper gun operating con-
add a positive(defocusing kick Ao’ =+ y'a/2y, as previ-  ditions, in terms of the six free parametéspot size at the
ously mentioned, to obtain the correct connection betweeeathodear, pulse lengthr,, bunch charg€®,,, rf field am-
the secular envelope in the gun and the actual envelope oygjitude E,, frequency v, and magnetic field amplitude
side. Since the corresponding kick in the Cauchy space igo)' able to achieve a beam matched atz. to the invariant
Ao=+0/2, and in Cauchy dimensionledsr= +7/2, itcan  envelope. In order to reduce the number of free parameters
be clearly seen that a beam propagating through the structu{ge need to specify the matching conditions in the Cauchy
on the invariant envelope, for which= — 7/2, will exit the  dimensionless space, we turn to a set of four free parameters,
rf structure as a parallel beam, i.e., witkc=0'=0 and  «, A, A, andb, defined by
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ek o, I cBy y' =eEy/mc?, 1=Qc/\2mwo,, while the Cauchy current
a=o o A= A= o2 b= - density A is given[14] in terms of the current density by
z r

(5.1) A=27J/y'? and is linked to the Cauchy pervean8eby
A=2lgy,S/0?. The merit of the set of four parameters

These quantities are physically described as follawisi the  given in Eq.(5.1) consists in the possibility of expressing the

dimensionless amplitude of the rf vector potentidl,the = beam conditions, and 7, at the exit of the second celk(

bunch aspect ratio\ the Cauchy current density, atdthe  =z,) entirely in terms of these four, as reported in Appendix
magnetic-to-rf focusing ratio. These tuning parameters ard, instead of the previously used six parameters.
linked to the six previous free parameters by 27 v/c, The matching conditions &=z, can be expressed as

[e”Ye—cogQy,) +sin(Qy)/Q]

V8/3e 7 Ve2= 7,c0q Qy,) + THsin(Qy )/ Q + 1107 (5.2a
) e Ye—Q sin(Qy.)—cog )
\/ZIBe’yC/ZIQTZSin(QyC)—Tzcos{QyC)—i—[ Tn((lf;;z) i y°)], (5.2b
2

where 7,= 7,(a,A,A,b) and 7,=7,(a,A,A,b) are given by Eq(A7), while y.=In{[1+(5/2+ 1/4)ma]/(1+3mal2)} and
02=(1/8+b?). The first two parameters are restricted by practical considerations to a limited range, thatis=B7and
1/4<A<?2. Therefore, we solve the two expressions in E§<3 and(5.2b) by expressing their roots as;= A4(«,A) and
bs=bs(a,A), which can be well approximated by the expressions

KAl J235- 2660+ 283A — 188¢A+ 80AZ—5.3A3— 15.64- 13.2A|? 5 3
sLkAJ= 1.33+0.94A 5.3
and
77.8+4.8A 5.7
bs=10 2/ 5.7a—28.5+ — 0.15A((a,A)+ \/As(a,A)(F,Z— 0.84+ 0.28A) - 7.1A}. (5.4

These quantities are plotted in Figs. 6 and 7, respectivelyin the bunch tail would actually see a vanishing accelerating
as functions ofx at different values foA, i.e.,A=2, 1, 1/2, field at the cathode surface due to the canceling of rf field by
and 1/4. In general, the Cauchy current dendityincreases the space-charge oneSuch a correlated energy spread, i.e.,
with & up to a maximumu ., beyond whichA 4 is no longer the dependence of energy on the phase or slice position in

defined. The behavior of the values fnf are plotted in Fig. the bunch, produces chromatic aberrations in the transport
7, for the same values oA, up to each corresponding through the solenoid field and rf focusing channel, which can

e prevent the emittance correction process from proceeding
m-?xhe upper part of the operating diagram in Fig. 6 thecorrectly. An obvious cure is the use of off-crest acceleration

region above the dotted line, is in fact forbidden, because 0 compensate the space-charge-induced energy spread with

) : - . an opposite effect from the rf field. In practice, this may
this region the bunch charge is in excess of the maximum . . -
which %an be extracted fro?n the cathode surface. This fun'—,m ply operation f'ar'off' crest if the Cauchy current density
damental limitation, as predicted theoreticdllys] and ob- approaches the limit given by E(p.5).

. . : It is interesting, for the sake of illustration, to plot the
served experimentally16], sets the maximum achievable current densitgd and cathode spot size, corresponding to
current density) .y, according to the nonrelativistic Child- P ' P 9

Langmuir law, in the formJ. [A/cm?]=300y'/c[psl, the line A(e,A=1), drawn in the Cauchy operating dia-

: p y " gram of Fig. 6, once the rf frequenay;=27w has been
\clglr:dbfeoizasgtoirr: girr:qcsh&sdb[gz]<1180/y ). The condition fixed to some representative values, namely, 650 MHz, 1.3
max

GHz, 2.856 GHz, and 6 GHz, as shown in Figs. 8 and 9. As
anticipated from the Cauchy operating diagram, each fre-
324 (5.5 quency has a definite window in the rf field amplitude in
ao [ °rf]’ ' which operation of the injector in the space-charge-
compensation regime is possible: the dashed lines set the
The dotted line plotted in Fig. 6 represents the limitationmaximum current density limit corresponding to a bunch
A max for a typical bunch length of,=2°. Clearly, the op- length of 5 ps for the upper line and 10 ps for the lower line.
timum operating points should be relatively far from the The cathode spot size, , plotted in Fig. 9, corresponds to a
A max line, because of the severe energy spread induced Byunch charge of 1 nC; it is given by the relation
the longitudinal space-charge field at extraction from the= 3/(c/\J2m)Q,AIAy'?, showing the expected scaling as
cathode surfacéf operating on the line, the photoelectrons Qé’s as anticipated in Refl17].

Amal kA]=
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FIG. 8. Current density] plotted (solid lineg vs the cathode
peak field E, [MV/m], at different rf frequenciegindicated in
MHz), for a multicell photoinjector operated in the emittance cor-
rection regime. The dashed lines show the limit of maximufor
0-8 1 1.2 A g e 1.8 2 two different bunch lengths.

FIG. 6. Operating diagram in thex(A) plane for an indefinitely ~ the prescribed\s andbs for a chosem. Let us rewrite Eq.
long multicell photoinjector. (3.4) in the third region y>y.) by explicitly showing the
dependence of the Cauchy perveacand the ponderomo-
In order to better illustrate the predictions of the operatingtive focusing frequency), on the slice positior in the
diagram in Fig. 6, we choose a point on the diagram, specifibunch:
cally one on theA=1 line atae=1.3, which corresponds to

2
Ag=144 KA. Choosing the rf frequency to be 1300 MHz d7+ . 1 o(y,,0)= ﬂ e Ve
(L band we obtainEy=36 MV/m for the peak cathode field dy? " 8sit((¢)—k) " a(y,.0) '
ando,=0.87 mm for the cathode spot size amd=1.36° rf (5.6

for the bunch length, once we choose the bunch ch@ige where the Cauchy perveance now becom&ks)

be 1 nC. The peak current comes out tolb€137 A while —19(2)/121gy4(2) ¥ ()% the average accelerating gradient

bs=0.85 implies a magnetic fiel8,=1.02 kG. The three /=1’ g - . .

representative currents, corresponding to three slices, are (§) = ak sin($)—k) .(V\.".th () deﬂ_ned as the bunch av-
this casgcf. Appendix B, Eqs(B9) and(B10)] I=137,1" erage phage and the initial normalized gngrgyc(g)zl
=163, andl ~=97. The numerical integration of the enve- +(3mal2)sin()—ki)+a cos(4)—kJ). As indicated by the

lope equation is shown in Fig. {d@ (solid lineg, where the subscript{ in the independent variablg;, Eq. (5.6) repre-

case foBy= 0 (no solenoid focusingss also plotteddashed sents actually a family of equations, one for each ;Iice lo-
lines). The corresponding three slice emittance is shown incated at a distanc¢ from the bunch central slice, in the

Fig. 10b): as predicted, the normalized emittance is ac:tuallyvalrlable
corrected only for the case of a beam following the invariant ()
envelope. =In{—}
We are now in a position to discuss in more detail how 2(0)
the emittance correction process works when the injector is 1+ akz sin({ ) — k) + a cog{¢)—k?)
operated under the invariant envelope mode; i.e., it is set at =In 7o) .
2
2.25 433 MHz
1300 MHz
O, [mm]?
Los 6000 MHz
1.5
1.25
1
0.75
0.8 1 T2 1.2 T.6 10 20 30 40 50 60 70
o Ey [MV/m]
FIG. 7. Parameten,, plotted as a function of, at some values FIG. 9. Cathode spot size, , plotted vs the cathode peak field

of the bunch aspect ratia, for an indefinitely long multicell pho- Ey [MV/m], at different rf frequencies, for a multicell photoinjec-
toinjector. tor operated in the emittance correction regime.
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25 I
€ .| gives the Cauchy pervean8a slice dependence through the
fmm mrad]{ geometrical factog(¢). This condition makes the transfor-
1‘51 mation from Cauchy spacec(y) to the dimensionless
1 Cauchy space1y) dependent ord, an effect that is absent
0s in continuous beams, as previously discussed in Sec. Il and
analyzed further in Ref[7]. In this spirit we also set the
0 1000 2000 3000 4000 average phase of the bunch 192, which corresponds to
z [mm] maximum acceleration. We therefore write Ef.9), under

these approximations, ag(z,{)=(2/v")J1g({)/3yl,. It ob-
viously is straightforward to generalize the following analy-

FIG. 10. (a) Envelope andb) emittance evolution as predicted sis to include the arbitrary accelerating phase.

by the operating diagram in Fig. 6, obtained by numerical integra-
tion of the envelope equation, with and without solenoid focusing

applied(solid and dashed lines, respectively

This family of equations can be transformed, in analogy t

Eq. (4.2), to read

(0}

Under the assumption of a monoenergetic bunched beam,
the Cauchy transformation fromto y is again{ indepen-
dent, and we now writes=S(¢)=(1/214y,7'?)g({). We

have already shown that the invariant envelope is character-
ized by a phase space angle independent of the Cauchy per-
veanceS, and hence on the current. We now demonstrate

d2 1 e Ve that this condition corresponds to a vanishing correlated
“—taoooz oo |V ==, (5.7 emittance growth. Since we are dealing with transverse
dy;  8sir((¢)—k¢) 7(Y¢rd) forces that are linear in the radial coordinate, the transverse

where 7(y,,0)=0(y;,{)/VS({). The invariant envelope

then reads

trace space distribution of the quasilaminar beamm’() is
represented by an ensemble of straight segments, one for
each slice in the bunch, as depicted schematically in Fig. 11.
In this figure only two of these line segments are drawn, one

—yl2
= 2e 7 , (5.9 for the central slicélocated at =0, having spot size, and
V1+1/2 sirf({¢)—k¢) divergencec, ), which is subject to the peak space-charge
L , , . field and another for a slice located &t o, (with trace
which in configuration space is simply space variables_ ando’ ), where the space-charge field is
Ig(&) 112 smaller for typically encountered current distributions, and

da@=y

As already discussed in Sec. IV, we know that the neces

2
(0 \ 29D [1+1/2 sirt((h) —k{)]

this reduction is represented by the geometrical factor
d(o,)<1. The normalized rms transverse emittance, defined
by the relatione,(z)=Bye(z)= ye(z), with €(z) given in

Eq. (2.7), is explicitly evaluated as

sary condition for vanishing correlated emittance growth is

that the phase space angles of different slices are equal. In
this respect, any effect that induces a correlation, i.e;, a
dependence, will produce an emittance increase through the
spread of phase space angles of the different slices. The rf Y - —_ Y , ,
effects are basically chromatic, and their phase dependence ) Vool -0 0’)?= 2 ool —o_al].
is typically quite a bit weaker than the dependence of the

effective perveance ihg(¢{) in Eq. (5.6), sincex>o,. We
thus neglect the chromatic contributions to the dynamics, and
concentrate on the charge dependent effects in which thas can be seen from Ed@5.10), the rms emittance in this
longitudinal correlation of the transverse space-charge fieltiwo-slice case is identical to the common geometrical defi-

y ! ! ! !
n(2)=5 (ot +o2) (o +a?) (oo +olo)?

(5.10
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nition of emittance; it is simply the area of the triangle given

by the origin and the two rms phase space points correspond- €n(2)= % [(o_+80)o.—0o_(c_+80")|
ing to the slices.
It should be emphasized at this point that each slice is Y'S,T .
represented for simplicity by a straight segment in phase ~ T2 |67+267]. (5.13
space, which is a zero emittance distribution, because we are
neglecting the thermal emittaneg ,, according to our as-  Expressinge,(z) in terms of physical quantities associ-

sumption of quasilaminarity. In practice, this emittance,ated with the invariant envelope, we find that
which is added in squares with spatially correlated sources of

emittance, can be estimated to g~ o, VkT/m.c?, where 1 (lg(o,)\ Y2 , ,
the effective(rest frame temperaturelT of the beam elec- En(2)57 315y |60y"+2y60"|

trons is determined by the photoemission process, which for

metal photocathodes is less than 1 eV, and semiconductor o , ,

cathodes are expected to be one order of magnitude smaller. ) |60y’ +2y50”], (5.12
With these thermal effects, each beam slice’s phase space

would be a_bi-Gal_Jssian distribut_ion whose rms ellipse hgs ayhere we seg(0)=1. We can see that the normalized emit-

area(the slice emittance proportional to the thermal emit- (4nce s proportional to the beam size, which is monotoni-
tanceme, 1h. The emittance,(z) defined by Eq(5.10 rep- )y decreasing on the invariant envelope; we shall now
resents a reversible emittance growth that can be corrected, o that the term inside of the absolute value sign is in fact

by proper beam manipulation, as we are discussing, Whilg,nded, and so the emittance also displays a generally
the thermal emittance,, , does not arise from reversible monotonically decreasing behavior.

transformations and is, in this sense, a true Liouvillian in- \ye first study the behavior of deviations from the invari-
variant, as discussed in Refl5]. It should also be recalled 4t envelope in Cauchy space, by linearizing E§.6)
that we are neglecting the emittance due to nonlinear spacgyound the solution represented by Eg8) to obtain, for the

charge fields in this discussion as well. _ small-amplitude motion about the invariant envelope
Assuming for the sake of discussion that the

two representative slices follow their own invari- eV

ant envelopes, we have 7,=7_=7=.8/3"Y? S+ 0287— —5— =567+
which implies o, =(2/v")J(1/3l3¥)g({=0) and o_ T
=(21y")J(1/315y)g({=0o,). For the invariant envelope, we
have 7/7=—1/2, and thuse’=—(y'/2y)o, and o’ =
—(v'2y)o_ . Itis readily verified that under these condi- 57
tions where the normalized emittance defined by GqL0 01=07.c08 w(y—Y) ]+ — sifw(y—Y.)],
vanishes, the invariant envelope is the propagation mode @ (5.14
where all the bunch slices are aligned in the transverse phase

space. S ot VST 3

Clearly, to achieve this ideal beam propagation mode ev- T o Sa(y=yo) ]+ 67ccog w(y=Yo)].

ery slice in the bunch must be matched at the invariant en-

velope, that is,  0c(O)/INS(D)=Tc=\8/37Y"  for sr around the invariant envelope with frequenay
=\8y,/3y. V{. This is an impossible condition to fulfill =207+ 1/4, with the constants of integration derived from
and, in practice, only a small section of beam can be exactlgonditions aty=y,. SinceQ?=(1/8)sirf(¢)=1/8, the mo-
matched. In this regard, the matching discussed above, dealon around the invariant envelope is stable, so that any beam
ing with the conditionsA and bs necessary to operate the injected slightly mismatched to the invariant envelope will
photoinjector on the invariant envelope, is clearly a rmsfollow a trajectory oscillating about it.

matching, because the beam conditiepsind 7, [Eqgs.(A7) This stable motion has, like the small amplitude oscilla-
and(A8)] are given in terms of the rf and space-charge kicksions discussed in Sec. I, frequency independent of the
averagedin the rms sengeover the Gaussian charge distri- space-charge strength. This is in fact a general property of
bution. Because of this, only a beam slice equivalent to rmshe superposition of a linear focusing force with associated
beam is matched; the other beam slices can be COﬂSideI’edﬂf@quencyQ and a repulsive inverse power law forgewer
general to be mismatched from their invariant envelopes.-- ), which has a particular equilibriumlike solution, in this
The dynamics of these mismatched envelopes can be angase the invariant envelope. The small amplitude oscillations
lyzed by perturbation of Eq5.6) or its equivalent about the about this particular solution then have frequency
invariant envelope of the matched slice. We thus assume |m’ which depends on the power exponent of the re-
the following a rms matching and take the equivalent rmspyy|sive force, bunotits strength, and is always proportional
beam slice to bes_=0=7\S, with S,=S,=S({ to the linear focusing force strength.

1
2, —
ZQ+4

87=0, (5.13

showing an oscillatory behavior

=0,), matched to the invariant envelopg while o, =(7 It can be seen in this case that the total potential must
+671)VSy [with Sy=(¢=0)] is slightly mismatched by a exhibit a local parabolic well at the intersection point of the
quantity 7 from its invariant envelope. attractive and repulsive force terms. The potential terms that

Substitutingo . ando_ in Eqg. (5.10, and recalling that give rise to these forces are shown by the Hamiltonian asso-
o' =(y'ly) ™S, we obtain ciated with Eq.(5.7),
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p2 [7]2 ) where ¢=(1V2)In(yly,), Soc=a.—(2/y")J1/3lgy., and
Hly. =5 +|7| —e7%Inm, p=7 (519 55! =q!+ I3,y for the mismatchedcore envelope. It

can be seen that the determinant of the matrix of the
in the conjugate variablesr(p,). The HamiltonianH is not  (§o,80') transformation is simplyy. /v, which is expected
a constant of the motion, as indicated by the explicit depenfrom adiabatic damping of the transverse oscillations. Thus
dence on the independent varialyle The perturbed Hamil- we see that theormalized offset emittancassociated with
tonian, however, is a constant for small amplitude motionthe phase space of the perturbed oscillations centered on the
about the invariant envelope. The resultant simple-harmonig,yariant envelope is conserved. This is to be expected from
small amplitude motion can be seen to be manifestly Liouthe Liouvillian nature of the perturbed envelope system.
villian, and the ¢, p,) phase space ar¢an emittance, which Before discussing a general distribution, we first examine

we discuss further belowis a constant of the motion as well. the pehavior of the two-slice case introduced in E&sl2).
This fact guarantees that the normalized emittance mush this case the emittance is given by

damp asy Y2 as illustrated by the two-point emittance
given by the second form of E@5.17).

To further illustrate these points, it is perhaps more in- 1 [1g(o,)\ 2
structive to view the oscillations around the invariant enve- e(2)=— ( 30 ) |(Sacy' +280y.)cod i)
lope in physical variables at this point. The physical space Y oY
analogue to Eq5.13, which describes oscillations about the + (80l ye— Saey' V2 sin(4)]. (5.18
invariant envelope can be written as
’ 1\ 2
so'+| - 50'+% 2| so=0. (5.16  Equation(5.18 shows the expecteg¢ Y2 damping of the

normalized emittance, with anharmonic oscillations of peri-
odicity 2 times shorter than the period of the perturbations
about the invariant envelope.
Ye _ . For the case of a genenadslice distribution, with a sym-
—,) do¢sin(y),  with metric spread in mismatch amplitude about the invariant en-
Y (5.17  velope, it can be shown by extending the above arguments
1 , that the normalized emittance that is projected by this distri-
So'=— — (7_) Saesin(y) + 50&(&) cog ), bution of phase space orbits offset from the origin in phase
V2 \Y Y space has the form

This equation has the general solution

do=8a.coq ) +Vv2

(50’2)4-77(5050")4-(%) (602)

] 1/2

] 11/2 (519)

en(2)= y{ (6080’3 —(S0da' Y2+ &

2( 80?)

i+ 52| ((yda")2)+ ¥ (Sa(yda’)) +

4
2

where we have defined the normalized offset emittance of
the distribution, p
A’)/G

o= yV(802)(60'?)— (b0 ba’)?, (5.20

and the indicated averages are over theslice distri-
bution. The normalized offset emittance is a constant of
the motion; it can be evaluated, for example, at the beginn- /
ing of invariant envelope propagation aseq
=y (80 )(Sal?)—(Sa.dal)?. It is also clear from Egs.
(5.17) that the term inside the square brackets in@®&dL9 is
bounded and oscillatory. Therefore we can write the general Full
form of emittance evolution as emittance

Invariant envelope

_ v Offset emittance
en(2)= e+ X (a+b cof[y+6.]), (521 A=re o

wherea, b, and ¢, are constants describing the orientation  F|G. 12. Schematic drawing of the phase space of a photoinjec-

of the offset distribution, and) is as defined below EQ. tor beam rms matched to an invariant envelope. The offset phase
(5.17). space area is a Liouvillian invariant.
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A schematic picture of the phase space of a beam that is 1
matched in the rms sense to the invariant envelope is showr
in Fig. 12. For the sake of illustration, the familiar form of an
ellipse is used to indicate the offset phase space distribution
boundary. This ellipse has an invariant areay;, and ro-
tates with the same frequency as the envelope oscillations,
w=4w,/v3. Figure 12 illuminates, by a phase space dia-
gram, the physical mechanism of emittance compensation;
reassuringly, there is a Liouvillian space of orbits about the
invariant envelope with conserved phase space area—the
phase-space-centered rms emittance of the beam damps ¢
the offset from the origin &,0') of the distribution ap-
proaches the origin in phase space. The normalized offset 00 , , , o
emittance can be therefore thought of as a strict lower bound "o 50 100 150 200 250 300
on the phase-space-centered normalized emittance of the dis z (cm)
tribution. One cannot actually extrapolate the damping of the
emittance to this level, however, as this would violate the g|g. 13. PARMELA simulation of 1% 1/2 cell, 2856-MHz rf
assumption of quasilaminarity, which requires that the offsepnotoinjector currently under design at UCLA. The solenoid field is
be larger than the spread of beam sizes in the distributionecalized in the initial 2.5 cells of the structur®=1 nC ando,

This argument implies the normalized emittance must be=0.78 mm (=111 A), andE,=60 MeV/m. Resulting evolution
several times larger tha#,, when the emittance compen- of rms emittance, and beam envelope, as well as the invariant en-
sation process is halted by nonlamirferossover beam tra-  velope are plotted. Compensation occurs far after the photoinjector
jectories. exit.

As a final note on the dynamics of emittance compensa-
tion in a long accelerating structure, we point out that as thepproximate the analytical model we have used. The beam
beam exits the focusing solenoid, it has just passed its maxgharge is 1 nC and the rms bunch length is 0.78 mm, with an
mum in beam size and local minimum in emittance. Theassociated current of 111 A, and the peak acceleration gra-
emittance would, in the absence of acceleration, tend to risdient on axis in this structure is 60 MeV/nw&0.98). The
again, but this rise is held in check by the 2 damping  evolution of the rms emittance, the rms beam envelope, and
effects predicted by Eq$5.18—(5.21). The emittance tends the invariant envelope obtained from this simulation are
not to damp much for one-quarter of a perturbed beanshown in Fig. 13. It can be seen that the beam envelope is
(plasma oscillation after this point, because the orientationclose to the invariant envelope in the photoinjector, but
of the offset ellipse major axis moves towards normal to theslightly larger and more convergent. After the photoinjector
nominal phase space angle of the invariant envelope. Onlgxit the beam envelope converges to below the invariant en-
after the ellipse major axis begins rotating back towardsselope, and compensation of the emittance takes an addi-
alignment with the average phase space angle does the emiiend 2 m drift. The convergence of the beam to a denser
tance damping become more apparent, as has been dedudedus in the drift also serves to increase the plasma frequency
from multiparticle simulations. In fact, this rotation tends to and decrease the length to compensation.
occur after the beam exits the accelerating structure, because This example illustrates that one must be careful in inter-
the phase advance of the plasma oscillation is slowed by thgreting the y 2 dependence of the emittance evolution
acceleration process. This can be quantified as follows: thfpund in the above analysis. It may be more illustrative to
phase advance between where the beam is focused onto tbast the assertion in a different light, by stating that the emit-
invariant envelopdthe exit of the solenoijdand where the tance scales as, and that the invariant envelope propagation
emittance minimum occurs must be between one-quartds the generalized equilibrium mode that must be followed to
and one-half of a wavelength, ar/2<(1W2)In(y/y)<w  achieve this scaling with bunch size.

[recalling that the phase advance is defined @s

=(1M2)In(y/yy)]. This gives a multiplication of the energy VI. PHOTOINJECTORS WITH COMPACT GUNS

beyond the solenoid of between 9.2 and 85. Even the smaller AND BOOSTER LINACS

of these numbers implies a structure over 25 cells long,

which is longer than any integrated photoinjector yet built by ~ While the long rf photoinjector analyzed thus far is en-
a factor of 2. Thus the final compensation must occur withincountered in practice, with the noted examples of the LANL
the drift space after the exit of the accelerating structure(Los Alamos National Laboratoyyphotoinjectors APEX
where the beam is smaknd nearly parallel, as is discussed (advanced photoinjector experimgm@tnd AFEL, it is much

in Sec. VI, and its plasma frequency nearly constant, in-more common experimentally to employ a compact rf gun
stead of diminishing ago,x vy lxz™1 in the accelerating N+ 1/2 cells,N<3) followed by a drift space and a booster
case. linac. In this configuration, the beam is focused near the end

These effects are illustrated well by a PARMELA simu- of the gun by a strong solenoidal field. The beam then drifts
lation of a new 1% 1/2 cell, 2856-MHz rf photoinjector cur- after focusing, undergoing a diminishing phase of an emit-
rently under design at UCLA. In this case, a solenoid fieldtance oscillation as the beam becomes smaller, eventually
as calculated by the magnetostatic simulation cedisson minimizing as a space-charge-dominated beam waist is
is localized in the initial 2.5 cells of the structure to closely reached. The booster linac entrance is placed at this point to

6.0 F

n

4.0

20F

0*10 (mm), € (mm-mrad)
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case in practice, of course, is one full cell. We will also
consider, as a particular case, the possibility to slightly vary
(a) the length of the first half cell, as it is known from experi-
ence that a slightly longeftypically 0.625 instead of 0)5
first cell gives better performances in terms of emittance cor-

. &, [mm mrad] | rection. This generalization, while a departure from the
i : ‘ model employed in the previous sections, is hecessary for an
a5 | AN ___ G [mm] ) accurate comparison of the theory to actual rf photoinjector
AN configurations.

The basic strategy of the analysis presented in this sec-
tion, in which we must specify the optimum envelope behav-
ior in the drift space, is not a search for an invariant en-
velopelike solution, but a matching of the beam envelope
from the drift space to the invariant envelope of the booster
linac. The model in this case is slightly changed with respect
to that shown in Fig. 3: first, the poiat is now located at a
0 500 Tooo T wsoo 2000 B0 3000 aso0 “asco  variable position given by.=[(1+d)/2+N](\/2), which

z [mm] becomes the end of the rf gun cavity structure, and the be-
ginning of the drift section. Here the quantityaccounts for
a change in the first half cell length, i.els=0.25 indicates a
25% lengthening(0.625 cell. We will also show that, as
(b) expected, the optimum field profile for the solenoid magnet
is different from the previouglong gun case, where the
magnetic field begins arg;=\/8 and ends atg,=(5/4
3 - - - €, [mm mrad] +1/8)\. For the compact injector the field start position is
shifted downward atzg;=\/2, while the end position is
shifted downward atg,=(7/4)\A. As discussed in the fol-
lowing, the longer magnetic field profile is needed to provide
more focusing from the solenoid in a case where the pon-
deromotive rf focusing in the following cells is not only
missing, but the exit defocusing transient kick at the end of
the gun must be overcome.

— O [mm]

________ The beam energyy. (at z=z.) now becomesy.= vy,
== +(N—21)7a, with
0 L) . . . . .
500 1000 1500 2000 2500 3000 3500 4000 3 5 5 2\ d?
Z[mm] Vo= 1+§7Ta 1+1—2d— §+? ﬂ

again the energy at the second iris positi@s derived in
Appendix A). Since the drift space downstreamzfis free
from any accelerating and/or focusing force, the rms enve-
lope equation becomes, in this case,

FIG. 14. (a) Envelope and emittance evolution of the beam in
the TTF-FEL photoinjector as obtained from particle-in-cell simu-
lation. The analytical prediction of the correct invariant envelope in
this case is shown for comparison (in).

begin acceleration, extending further the process of emit- o — —— 0t o, 6.1)

tance compensation. This waist should be chosen to both o 07y

give a small emittance at the waist point and to match onto

the invariant envelope associated with the beam current arihere o’ =d?s/dz* and P=1/214y] is now defined as the

energy, as well as the linac accelerating gradient. An illusbeam perveancéhe assumptiony.>1 is understood Ac-

trative example of such a system is shown in Fig(al4 cording to the assumption of quasilaminarity, we neglect the

which displays the rms envelope and emittance evolution ogmittance term and cast E(.1) into the space ¥,z) as

the beam in the TTF-FEKTesla Test Facility—free electron

lase) photoinjector as obtained from a particle-in-cell simu- v'=1lv=0, (6.2)

lation performed withTACA [13]. The analytical prediction ,

of the correct invariant envelope in this case is shown fowvherev(z)=0(2)/JP. Typical values for the perveance are,

comparison in Fig. 1d). It is very close to this optimization N case of a 100-A beam gf.=1+5mn/2=9, P=4X10"",

found by performing many such simulations, thus validatingS© that for a 1-mm beam spot size the quantitis of the

the approach to photoinjector design we have deduced frofrder of 1, as is’" whena" is a few mgad. Equation6.2)

this analysis. can be derived from a Hamiltoniad = p3/2—In v (with p,
The numbeiN of full cells in the gun is a variable in this =¥'), whereH is now a constant of the motion, so that

analysis, but the validity of the approach followed here is —

confined to a few cells. The most commonly encountered v'=Nrt+2In(vlv), (6.3



55 ENVELOPE ANALYSIS OF INTENSE RELATIVISTC . .. 7581

which gives the trajectory solution for E¢6.2) in integral  =0. Since v depends onP through the initial conditions
form: (ve,v.), the conditiondv/dP=0 is equivalent to
vlve d — dv dv!
X z-z; 6.4) d_Ff: d_F::O’ (6.89

1 rlP+2Inx e

. . . gvhich in turn is equivalent to the condition
This equation actually represents a universally scale

beam spreading curve, representing a universally scaled d7g
space-charge beam blowup. d_AZO'
The integral in Eq(6.4) is not analytically solvable unless
the approximatiodl— »/v|<1 is assumed, which is in fact dr,
typical of a rf gun operated in the emittance compensation d_AZO’ (6.8b

regime, as the beam size oscillations must be kept small both

to prevent nonlaminar trajectories and to keep the oscillationvhere the Cauchy current density is given hy

frequency nearly independent of the perveance. Indeed, ir1/(y' o).

practice, the beam exits the gun with a small negative diver- It should be noted, however, that the invariance of the

genceoy, so that it is transported up to a space-chargephase space angle at the end of the drift given by(&q) is

dominated waist with a spot size usually slightly smaller thanachieved only through the invariance of the initial conditions

o.. In this case the approximate solution is versus the current. The reason for this is that the phase space
angle v'/v associated with Eq6.5) is not intrinsically in-

(2) 5 ve— veAZ variant, unlike the case of the invariant envelope, where the
vV(Z)=v|2— | —F—— e i
¢ Vv +AzZ phase space angle is a constaht=—1/2. In this respect,
2 12 Eqg. (6.2 does not display any invariant envelope solution,
1+v ; ; SO ;
% c (6.5 i.e., any solution for whichw'/v=const equivalent to the
1+[(ve— viAZ) (vevl+Az)]? T Brillouin flow condition given in Eq(2.2), where the phase

o ) o space angle is again a constatit/ oc,=0.
where Az=z—z7;. It is interesting noticing that Eq(6.5 To better clarify this point let us examine the equation for
actually represents a generalization of a previous result desma|| deviationsSy around an equilibrium solution, of Eq.
rived by Reiser[18]. The initial conditions ¢.,v.) are (6.2). Assumingdv/vo<1, we find
given, in terms of the beam conditions at the gun exit

; ov
(7e,70). by o'+ 7 =0, 6.9
0
Tc 7? vz , . Te| (| Ye 12
ve=r |5, 0 veT et ) (6.6 giving stable oscillations with frequency 1%/ around the

equilibrium solutiony,. As far as the beam envelope can be
recalling that ¢.,».) correspond to actual envelope vari- represented by the approximate solutidtg. (6.5)] in the
ables, which Eq(6.6) connects to £, ,7.), which are secular drift space, implying that the beam size varies slightly be-
envelope variables. tween the initial conditiorv, and the beam spot at the waist
In order to match to the invariant envelope at the entrancew, we may identifyy, roughly with the expression of Eq.
of the booster linac, we need to find the conditions undef6.5), so that the drift space up to the waisind slightly
which the phase space angle corresponding to the solution forther away is comparable to a quasi-Brillouin flow condi-
Eq. (6.2 is invariant with respect to the beam curréntor,  tion with alocal stability condition similar to the one de-
equivalently, to the perveand®. This is also equivalent to Scribed in Sec. II. Since the beam size, in the absence of any
requiring focusing, grows indefinitely after the waist, the frequency of
oscillation 1b, around the equilibrium solution is decreasing
, and the nonlinearitiegsee Eq.(2.9)] in the oscillations pre-
Yap Y ﬁ) =0. 67 clude any further vanishing point in the correlated emittance,
as clearly illustrated in examples shown below.
Since dv'/dP=(1/v'v)dv/dP [see Eq.(6.3)], we have It is interesting to notice that Eq&6.8) are equivalent to a
d(v'/v)/[dP=(1/v'v?)(1—v'?)dwv/dP. Therefore, d(¢’/  vanishing correlated emittance at tvaist position; this re-
o)/dP=0 if either »'?=1 for all z [which is not possible to quires that the waist positioAz,=z,—z. and the waist
fulfill, because it is not a solution of Ed6.2)] or dv/dP  beam spot size,, are independent of the perveance,

dP  ~ dP 2

d(a'/o’)_d(v'/v) 1 ( dv’ dv

with
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0.8
, L
....... f(v,)
0.6}
|
—_— g(V c) FIG. 15. Plot of the function
! l !

0.4k ] f(VC)=fe,Véz,2dX/\/vC2+2|nX
(dot9: the solid line gives a fit of
the function, namely, g(v()
=1.0%./1.69+ v/?

0 +0.423)e 702007,

0 1 2 3 4 5
1
vl
, 1 72/2
_ ’ — — —v
Az,=vf(vy), f(V")_J’ewéZ/Z —Vé2+2 — V= vee e ' (6.10
|
Note the elegant expression foy, as a function oy, and  =z), as reported in Appendix A, we approximate the enve-

v, which physically indicates that a beam focused toolope equation in the region of drift with applied solenoid
strongly (i.e., ».<—2) will not come to a laminar space- field (i.e., z,<z<zg,) as
charge-dominated waist but will likely come to an emittance-
dominated nonlaminar waist. V' +Kv=1,, (6.12

The functionf(»() is plotted versus/ in Fig. 15. For the
purpose of further analysis, we note tHgt)) can be ap- Wherev,=a,/1/(215y3), andK,=(by'/v,)? and so the
proximated (within a 5% errof by the function g(v.) space-char_ge te_rm_is taken as a constant, its_ value assumed at
—1.09./(1.69+ V,2)+0 423%e ~0.296/.2 . in the range v/| the gun exit. This is yalld at the present point only_ fo.r al
=<6. This range easily covers all rf photoinjectors of interest *+1/2 cell gun, for Whlch the beam energy at the exif, is

A ‘constant all over the drift space: however, the treatment can

T o fepuerert e beeasly gonraized o e case da 12(1.+)ce gun
waist. The conditions in Eq6.10 are now written explicitly In the N=1 the drif space is divided into two parts. In the

. L " . first one, fromz=2z,= (3/4)\ up toz=z.=2zg,=(7/4)\, the
in terms of the initial conditions at the start of the drift as beam is subject to a focusing solenoid field, while for

>z, the drift is in free space. Under this approximation Eq.
dv, df(vg) dyl 0 (6.12 can be easily solved to find

fve) gp *ve ~qur ap =2
gy L7609 (1- cose) sing
V.= 1,CO +v, —
oK
dv, dvé 2 \/—’ (6.13
aP Vel o ap =0. (6.11)
vl =—v,JK,sing+ \/_+ v} CO,
This system of equations allows solutions different from V2
dv./dP=dv//dP=0 if the determinant of the coefficient _ _
matrix, detM=—uv/f(s)+df(x)/ds], is vanishing. By Neref= VKi(2-2,), and hence
applying the Leibniz formula for the derivation of definite Ao’ si
integrals, we findd f()/dv,=1-v.f(».), so that deM dve _ dve| g (12COF)|, vz sinf
=— ., which can never be vanishing, implying that the con- dP  dP VoK, dP JK,'
ditions dv./dP=d»!/dP=0 and[dAz,/dP=0; du,/dP (6.14
=0] are in fact equivalent. dv,

In order to derive t_he solution to E¢6.8) in terms of the 9P
beam conditions %,,7,) at the second iris positionz(

\/_

sing dv;
—JK,sin 6— l —2 cosh.
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FIG. 16. Operating diagram in thex(A) plane for a shor{1
+1/2 cell photoinjector.
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FIG. 17. Parameteb®”, plotted as a function ofr, at some
values of the bunch aspect ratho

<1.5. Its dependence oA is fairly linear in most of the
diagram, so that the following scaling laws hold:

A if a=1.5,

t
AOp“{A(:s—a) if a<15, ©.19

The determinant of the coefficient matrix is derived to be

detM2=1+(1—cose)/VgKr, which clearly implies deM,
>1, indicating that the only solution idv,/dP=dv,/dP
=0, which we know to be equivalent to

dT2
dA

dr
=0, —-2=0,

dA (6.19

wherer, and, are specified in Eq$A7) and(A8) as func-

tions of (a,A,A,b). Following the same procedure as in

which can be cast in terms of the bunch cha@ye cathode
spot sizeo, , accelerating gradient’, and rf wave number
k!

oly'? if a=15

Qboc[o_?,y/Z(:s_,y//k) (62@

if a<1.5,

which resemble the scaling laws reported in R&f].
As in Fig. 6, the Cauchy perveande, ., [see Eq.5.5]

Sec. V, we solve these two equations by expressing thegompatible with the maximum charge limit is plotted in Fig.
roots asA=A(a,A) andb=b(a,A). The system is highly 16 (dotted line for a bunch lengthr ,=2° (the higher ling
nonlinear, so that we start by expressing the first part of Eqsand0¢:4o (the lower ling. The parameted®, which rep-

(6.15 as
dr, 1 [[A2y,\Y2 w{(A) In v, B
H‘X{( I ) i ey L k)

(6.16

"/l

Substituting back into the second part of E¢6.15, we
obtain an equation i\, «, andA. By a fitting procedure we
obtain the following solutions:

which can be solved for the variable

w{(A)A
4l g

|n Y2
y2—1

b=\/2( 1+(1—

ACPTKA]=57.3- 12.4a+ 2.6302+ 26.2A— 1.78A

+1.86A2 (6.17
and
- 1.67 2.07
bOPl=1.49+ W_W' (6.18

The Cauchy perveanc&®! is plotted in Fig. 16(solid
lines as a function ofa for some usual values k. It is
interesting to note thad° is nearly independent ok for
a=1.5, while it decreases almost linearly with for «

resents the ratio between magnetic and rf focusing, turns out
to be nearly independent of the aspect r&tioas shown in

Fig. 17, whereb®'is plotted as a function of for different
values ofA [it should be noted that Eq6.18 displays a
simplified form forb®, which has already removed the very
weak dependence oi]. It should be also noted thaf* is
much higher than the analogous paramdigisee Fig. 7
required in the case of the indefinitely long photoinjector.
This is due to the facts that, not only is the additional rf
focusing applied in the long photoinjector missing here, but
the transient defocusing at the end of the gun occurs at a
large beam spot size; these effects create the need for en-
hanced focusing from the external solenoid.

The current density) corresponding to the\g lines is
plotted (solid lineg in Fig. 18, for some selected rf frequen-
cies (0.65, 1.3, 3, and 6 GHz at aspect raticA=1. The
maximum limits for the current density are also reported, in
the case of oy=5 psec (higher dashed line and o,
=10 psec(lower dashed line The required cathode spot
size o, (for the case of a 1-nC bunch chaygee plotted in
Fig. 19, for the same set of frequencies and at different
bunch aspect ratios.

It should be noted that the operating point to achieve the
emittance compensation shown in Figs(dd4dand 14b) has
been derived by the operating diagram in Fig. 16, selecting
the pointa=1.8, A=1/2, A=56 kA, giving at theL band
Eo=50 MV/m, ¢,=0.76 mm, andI=78A, I*=97A,
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3000}
2500}
J
[A/cm?2]**°°F
FIG. 18. Current density plotted as a func-
1500¢ tion of the cathode peak fiel&, [MV/m], at
different rf frequencies, for a short photoinjector
1000t operated in the emittance correction regime.
500}

10 20 30 40 50 6IO 7‘O

Eo [MV/m]

| ~=53 A (for a 1-nC bunch chargeThe magnetic field pa- ', since the term inside square brackets is a function of
rameter isb®P'=0.94, corresponding tBo=1.57 kG. only @ andA [0P'=b®(yc—y2)/y2l. _ .
We have already solved exactly for the beam waist size Noc\)/gtemploylng ECI-(OG-tl@ we finally find the waist posi-

2 i iza@yoP i i i
vu=1vee "¢ 2, but have not explicitly given an expression t!on z,’" and spot sizer,; under optimum operating condi-
for the position of the space-charge-dominated waist wheH{°Ns:
the gun is operated under the conditions specified by Egs.

(6.17) and (6.18), as required to achieve emittance correc- Z\?vpt:%)\Jr i [10.8x+ 1.48¢%— 1.18A— 1.07aA— 3],

tion. We restrict the discussion here to the casblsfl, but Y’

the results are easily extendible No=2. At the gun exit ¢ (6.22
=7,) we have [cf. Eq. (6.6)] vP'=(75"Vy")y,, vy

= (73"+ 7312), where the superscript opt indicates that we _ VI[A] 3 ) 3
have substituted Eq$6.17) and (6.18 into (A7) and (A8), o Lmm]= y'[m [3.76+1.56x—1.58x"+0.26

so that75™, 757, v,°"" are now functions of onlyr and A, ) )
while v3P" can be represented by a function @fand A di- +0.56A+0.9142A—0.11a"A—0.152A7].
vided by y', e.g., v3"=f(a,A)/y’'. Substituting »5", (6.23

v5Pt for v,, v in Eq. (6.13, we find
As an example, for ar-band injector operated at;

(1—cosH°P sing°P =1.3 GHz, with E;=56 MV/m (y'=55m%, and a=2)
opt_ _— f COS?Opt-i'— 2+ ropt = 7 . R i
R f (boP)Z  Y2T P2 Tpopt Y2 the optimumA at A=1 will be A°"'=68 kA, while b°
(6.21) =0.92, so that the solenoid field will b8,=1.7 kG.
Assuming a bunch charg®,=1nC, the laser spot size
s opt . singoPt - at the cathode o, wil be, recalling that o,
v = —1, sing° y,+ T oo Yot v;Pcoss, =3/(c/2m)Q,AIAy'?, 0,=0.84 mm. The beam current
will be given by | =Qyc/\27mo,=Q,cA/\2mo, =142 A,
where, againy/°®is a function of onlye andA, andv?"  so that the beam spot size at the waist will b&"
can be represented by a function efand A divided by = =0.94 mm, while at the gun exit,=1.9 mm. The waist
2.25
G, [mm] *| ‘
1750 A=1/2 ]
\\ A=1
1.5}
1 a5t \ ] FIG. 19. Cathode spot size, , plotted vs the
A=1/4 \ cathode peak fieldE, [MV/m], at different rf
1t \ ] frequencies, for a short photoinjector operated in
the emittance correction regime.
0.75 ]
- \-
10 20 30 20 50 60 70

Eo [MV/m]
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TABLE |. Properties of invariant envelope flow, where possible, in various types of beam transport and

acceleration.

Beam transport Invariant envelope Space Emittance damping
Standing wave linac Secular Cauchy Yes

2aVI2 dimensionless

V7l2 sirf{¢)+1
Standing wave linac Secular Cauchy Yes
plus solenoid e V2 dimensionless
\(7/8+b?)/sin?{g)+ 1

Traveling wave Actual Cauchy Yes
linac 2e7Y? dimensionless
Traveling wave Actual Cauchy Yes
linac plus solenoid e Y2 dimensionless

Vb?/sinX )+ 3

Drift No Real dimensionless No
Drift plus solenoid Brillouin Flow Real dimensionless No
oeq= VPIK,

will be located azo?'=0.793 m. It is remarkable to note that =0.83 mm, and the beam current becornes44 A, so that

the waist position scales with explicit dependence only orthe main parameters are almost unchanged, as is the waist
the rf field and wavelength, not the bunch charge and/oposition, which isz2”'=0.804 m. On the other hand, since
current (which are derived quantitigsin agreement with

what is obse

rved in Refl7].

W
the beam does not expand as much before solenoid focusing,

the beam spot size at the waist is now larger, beijff

For the case where the first half cell is lengthened by=1.3 mm.

20%, as is done in many new rf gun designs, we have recal- The behavior of the emittance evolution after the injection
culatedA°* and b°"' to obtain

A°PTKA]=58.33-11.83+ 2.52¢%+ 27.34A— 1.8160A

of the beam into the booster linac is closely related to that
discussed at the end of Sec. V concerning the case of a long
injector. In the present case, however, the beam has been

+1.88A2 (6.243  already compensated at the entrance of the linac, in the sense
that the beam has undergone a full envelope oscillation, and
and has achieved a local minimum in both emittance and enve-
lope. Therefore the emittance will again tend to rise, but the
1.52 1.86 damping effects of operation near the invariant envelope
boP'=1.38+ Ta o™ (6.240  hold this rise in check. A further diminishing of the emit-

tance is expected after an additional perturbed beam enve-

i.e., behavior very close to that of the standard half cell. ThéOpe (plasma period, as is illustrated in Fig. 1d. This

predicted position and spot of the waist now become ‘double”_compensation_shows the power of the split gun—
booster linac configuration.

1
ZP'=IN+ — [9.940+2.5%22+0.18A— 2.65¢A— 2.96],
Y VIl. CONCLUSIONS

(6.29
AT We have discussed, in some detail, the properties of the
op _ _ 2 3 invariant envelope, which is a particular beam propagation
UWTmm] y'[m [5.242.14a=1.77a"+0.27a mode characterized by a phase space angle that is a global
) 5 constant. Under the hypothesis of quasilaminarity, which is
+0.1907+0.950A—0.058°A—0.19A"]. equivalent to the assumption that the beam is space-charge

(6.26  dominated and the number of plasma oscillations considered
are small(in order to avoid transverse and longitudinal mix-
Taking the same example as before, i.e., for an injectoing), we have shown that the invariant envelope is a propa-

operated at thelL band (@;=1.3GHz) and E, gation mode that damps the correlated emittance—provides
=55.7 MV/m (hencey’ =54.6 m  anda = 2) the optimum  emittance compensation—so that the possible emittance di-
A, atA=1, is nowA°P'=70.4 kA, whileb®'=0.89, so that lution of a beam, due to longitudinal-transverse correlations
the solenoid field will beBy=1.64 kG. The relaxation of the caused by either space charge or any other sadufcetc),
magnetic field required reflects the additional rf focusing thattan be corrected by transporting the beam under an invariant
the elongated cell provides. With a bunch char@Qg  envelope mode. While we have concentrated here on stand-
=1nC, the laser spot size at the cathadeis now o, ing wave linacs, the invariant envelope exists in other types
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of structures, with and without externally applied focusing=(2/y")1/3l,y, can be easily achieved by simply tuning
forces, as summarized in Table I. the accelerating gradient’ for a given energy, current, and

In general, rf linacs allow acceleration under the invariantspot size of the beam at the booster entrance. It is remarkable
envelope both in standing and traveling wave operatiorto note that this prescription on the matching condition has
where the correlated emittance oscillations are damped duseen observed in several simulations of rf photoinjectors
to acceleration, as on the invariant envelope the beam spdi20].
and eventual compensated emittance diminishes a$ If the booster linac is as well approximated as the pure
For completeness, we have shown in the table the invariaritaveling wave structure the matching conditions may seem
envelope associated with the cases of both traveling andifferent because the invariant envelope is expressed in terms
standing wave linacs with additional uniform solenoidal fo- of the actual physical orbit-=(2/y")1/21yy. It should be
cusing. Traveling wave linacs operated with an extra magnoted, however, that this orbit still has the same associated
netic focusing may be in principle equivalent to standingphase space angle = — vy’ o/2y, and that physical transient
wave linacs, where the focusing is provided by the rf pon-kick applied at the booster entrance is identical to that ap-
deromotive effect, as long as the magnetic focusing fatio plied in the standing wave case. Thus a parallel beam should
=cBy/E, is chosen to have the valle= \/7/2. still be injected into a traveling wave booster in order to

Drift spaces, on the other hand can be operated in theatch the invariant envelope conditions, as is again in agree-
invariant envelope only with an external focusing to set up ament with the results of multiparticle simulatiofl]. It can
true Brillouin flow condition: the motion in the drift space therefore be seen that the natural matching of a parallel beam
after a compact photoinjector is, in this respect, only an apfrom a drift to the invariant envelope in an accelerating sec-
proximation of the invariant envelope. In any event, spacetion is in fact due to the fortuitous relationship between adia-
charge-driven emittance oscillations are not damped in driftshatic damping in trace space and the transient kick the par-
so that one must quickly accelerate the beam after the driftjcles feel as they enter the accelerator. This relationship can
starting from the first emittance minimum, in order to avoid be explained by a Hamiltonian approach to the dynamics; the
the onset of wave-breaking procesges., nonlaminar ef- radial entrance kick is set by the need to conserve canonical
fects due to nonlinearitigswhich transform the reversible momentum. As the particle enters the accelerator, it must
emittance oscillation into an irreversible, thermal-like emit- pick up a radial mechanical momentum opposite to the radial
tance growth as discussed in REE9]. field momentum, which is proportional te’, a condition

A transport line made by different sections that are allthat guarantees that a generalized Brillouin equilibri@im
operated under their own invariant envelope mode is ofariant envelopecan be obtained.
course a globally invariant envelope beam propagation. The As a final related example, in the case of a long multicell
final design of a photoinjector that is be operated in the idealf photoinjector structure we recall that the beam, if trans-
emittance correction regime will be therefore made up by arported under the invariant envelope, must also leave the pho-
interlocked sequence of accelerating and drift sections progeinjector cavity with zero divergence. Due to the typical
erly matched and operated under invariant envelopes. Catdgh energy of the beam, as in the case of the- 12 cell
must be taken that this array includes the final transport froAFEL photoinjector{22], the beam envelope is assumed to
the booster linac to the application, so as to avoid emittancetay parallel for a long drift after leaving the photoinjector
growth after initial compensation: this is of course true as faf23]. Therefore, a parallel matched beam emerging from a
as the beam is still space-charge dominated in the sense disng multicell photoinjector is therefore a sign of proper op-
cussed above in this paper. In general this means, for transration in the emittance compensation regime, as experimen-
port that is longer than one-quarter of a plasma wavelengthally observed24]. To restate the conclusions of the previ-
that the beam be focused often enoutipically by quadru- ous paragraphs, parallel beams, which are the analogue of
poleg to approximate Brillouin flow after the photoinjector the invariant envelope in a drift, match invariant envelopes
linac, with the beam controlled so as to not make large exupon both entrance and exit to accelerating sections.
cursions in spot size. For discrete focusing elements such as We have pointed out that most emittance compensated
qguadrupoles, this means that the elements must be placgthotoinjectors are operated near the optimum conditions pre-
within one-quarter of a plasma wavelength of each other. dicted by the theory presented in this paper. These condi-

In matching different sections one should, however, bdions, in which the beam is nearly matched to generalized
careful about what kind of orbit the invariant envelope isequilibria, have been discussed in detail in this work, and
expressed asecularor actual. In standing wave linacs the prescriptions for obtaining them have been given for many
envelope is given in terms of a secular orbit, i.e., an orbitcases of interest. These prescriptions, and the general physi-
averaged over the cell-to-cell oscillations, so that at the eneal reasoning behind their generation, can therefore be con-
trance of the structure one must subtract a focusing kick o$idered to be guides for optimized performance of space-
strengthAo’' = — vy’ /2y to the beam envelope conditions charge-dominated beams undergoing acceleration, focusing,
of the previous section in order to match the secular enveand drifts.
lope. In the case the previous section is the drift space be- In the future, this work will be extended to allow an esti-
tween the short rf gun and a booster linac, one should posimate of the residual emittance of a beam after compensation.
tion the space-charge-dominated waist directly at thelhe most readily identifiable sources of residual emittance
entrance of the linac, as discussed in Sec. VI: the initiakre thermal cathode effects, radial nonlinearities, amplitude
divergence of the secular envelope in the booster will be irdependence of beam oscillation frequencies, and beam phase
this way o' = — v’ /2y, which is exactly the first condition space bifurcations. The effects of radial nonlinearities
on the invariant envelope. The second condition, iee., (within a slice under laminar conditions are not problematic,
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since the radial electric field will depend only on the beam+3wa/2. The solenoid field starts at=\/8 and extends to
size and the enclosed current. Under these conditions, the=(1/8+5/4)\, and the transverse forces imparted to beam
envelope approach can be easily extended to show that thédectrons during acceleration are represented by a defocusing
source of emittance behaves exactly as the linear longitudif term Ap"™, a defocusing space-charge teryc, and a
nally correlated emittance discussed so far in this papeffocusing termAg produced by the magnetic field of the so-
Likewise, amplitude-dependent frequency effects, anharmdenoid. Expressed in terms of two auxiliary quantitigs,
nicity of different slice motion, which do give rise to a re- =>7a, (u=1 for an ideal first harmonic field for which
sidual correlated emittance due to dynamical nonlinearityg, =1, a,=ag=---=0) and ugc= 7l {(A)/4 4y %2, they
are treatable within the context of a laminar beam analysisigke the form

On the other hand, thermal cathode effects and phase
space bifurcations are beyond the reach of laminar beam
analysis, by definition. Because cathode effects are truly sto-
chastic and not dependent on beam dynamics, they therefore
can be considered to be an uncorrelated source of emittance, Ap"=u
which can neither grow nor diminish. This source of residual

1+pu

Cpin(y) | (1= (al4))?)In(y,)
-1 8

emittance must be determined by experimental study of the w |n(715(/7—2)
photoelectric emission process. The subject of phase space X| 1+ u— 20y.-1) |’ (A1)
bifurcations is perhaps the most challenging from the ana- 7
lytical point of view. The bifurcation in this case is due to

: ) " waists. i wh ] In(y2)
beam slices that have “crossover” waists, in which the elec Age=(p+ psd| 1— —=-|, (A2)
trons cross the axis, and the minimum beam size is deter- y2—1

mined by the slice emittance. This type of event is termed

wave breaking in phase space, and represents a complete

local violation of the laminarity condition. When bifurca- Ag=Db2In*(yy/yp)/2. (A3)
tions are typically encountered, one enters a hybrid regime

where the beam tails are emittance dominated while the |y practice the rf term, which is a function only of is

beam core is still in laminar space-charge flow. While it ispearly constant with a slight oscillation around the value
not clear how to deal with this case within the context of thej pg all over the range 1#2a<3, as shown in Ref.7], for

present approach, it is clear that this effect is a major conghe case ofs= 7=1. In the following we will therefore take
tributor to emittance growth in rf photoinjector beams, andAprle_o&
must therefore be seriously explored.

In addition to these extensions to cylindrically symmetric
beam analysis, the generalization of this analysis to highly
asymmetric beamd,> o) and emittancee,> €, photoin- 0y=0,(1+Age—Ap), (A4)
jectors[20,25 is straightforward. This subject which is of
high interest for linear collider electron source applications,
is planned to be explored in a forthcoming investigation. ,

02=0orp™ 2_,),2 02, (A5)

Finally, the beam exit conditions, and o, are
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(A6)
APPENDIX A

The space-charge impulse faciog: contains a geometric
form factor £(A) (see Appendix B which depends on the
bunch aspect ratioA approximately asé&(A)=1/(2.45
ally goa54—0.550372),

According to the normalization applied in Sec. IV to

The expressions for the beam exit conditiensando, at
the second iris locatiom=z, are reported in this Appendix.
The expressions given have been derived for a Gaussi
charge distribution in the bunch, of dimensiomsand o,
with the range of validity specified by>1/2 andQ,[ nC] s ; ;
<E[MV/m]/10, as extensively discussed elsewhgTé transfprm the ft'ransversg bejr_n sn;anto _the dlmgn5|onless
The formulas reported here correspond to the particular cas%_uam"[y 7, defined asr= ‘T_/ S wit __S_I/ZI‘”’ Y2, W€
=2 examined in Ref[7], augmented with the focusing 9ive here the corresponding quantities= o,/S and 7,
effects of the solenoidal magnetic field. =y,05/y'/S. Using the quantityA defined in Sec. VA

Let us define the beam energy and y, at the firstand  =1/v'20?, the dimensionless beam conditions, 7,, and
second iris locations, namelyy;=1+mwa/2 and y,=1 79" become:
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1/2
Tf(z'i”) {1+(u+ ”ﬁﬁm)[l— ';'z(fﬂ—bzln% vzlmlz], (A7)
C [ 2lgy,\ M2 1 In(y2)| 7L(AA In(y) Y2 Y2 TLA)A
72:( A ) {0'5&5{1_ 72_1%_ I (”n—l)*bz'”2(%)/4_'[’2'”(%)[”(“ I )
x(1—M)—b2|n<ﬁ)/2H, (A8a)
y2—1 Vb

- orb 2lgy2 v m{(A)A o | Y2
Ty, = T 1. 4|0 —b<ln ')’_b

Wf(A)A)( |n(‘}’2)> ( ‘}’2) /
1+| pt 1- —b%n? =] / 2
( # 4l y2—1 Yb
which are functions of only four parameters; A, A, andb (recalling thaty,, y,, andy, are functions only o).

Let us assume now that the first half cell may be different, in length, from an exact quarter of rf wavelength, so that the first

iris is located a; = (1+ d)\/4 and the second one at=z,+ A /2. Following the calculations by Serafit6] we can express
the beam energieg, and y, in the form

) , (A8b)

Ta 5 5 ) 3ma 5 5 2\ d?
’)/1:14—7 1+Zd— 1—6+ﬂ d-|, 72:1+T 1+1—2d— §+? ﬂ’ (A9)
while the termAp"™ and Agc become
In(yp)| 71— (a/4)?)In(y,) # In(y2372) 2
M M vl 2 _ 1NY2 <9
Ap mll+pu -1 } 8 1+u 27— 1) 1+ 3 d 5| (A10)
In(y,)
Asc=[R(1+0.2478) + pscl 1= =7 |. (A11)
—
The actual orbit divergence at the second ii§,,, is found to be
, ’ 2 d2
Uorb:'y_z (0% 1.0 1+§d_? +ﬂsc_2A8(1+ASC_AB)/|H('}’2/')’b) . (AlZ)
Finally, the dimensionless beam exit conditionsand 79" at the second iris are
2lgy,| 2 A)A In
72:( m) 1+(,u(1+0.247€d)+ (A ) _In(r2) —b2|n2(72/7b)/2], (A13)
A 4|0 '}/2_1
and

21 12 2 d? w(AA w{(A)A In(y,)

- orb_ 072 ca_ 2l 72 _ Y2

o2 298 o1 2 ) O o TR0
—bzln2<ﬁ)/2} . (A14)

Yb

APPENDIX B

The transverse rms kick due to the space-charge field is represented by theifastor Eq. (A2) for a Gaussian
distribution of transverse sizeé, and longitudinalo,, with total chargeQ,,. As extensively reported elsewhdrg], wsc is
calculated by averagin@n the rms sengethe transverse electric field component of the buﬁﬁﬁ (at rest in the laboratory
frame),

. B Q = exp{— (12[r?o?(1+x)+ 2 o2(1+A%X) ]}
A e e By

over the charge density distribution

Q 2
p(10)=——p—7— EXF{——z—ﬁ

32,2
(2m)* oo, 207 .
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to get

Y2

1 ) 12
S SE EfJVme(lr,g)E,(lr,g)r dr d¢ dg} : (B2)

which can be cast in the formgc= 7l §(A)/4l0'y'20',2, with

& @ 1+A%X))(1+A%X,) + 2+ A% (X +X,)] 13 2
E(A) = f XmJ' dx, [( 1)( 2) (X1 22)] . B3
0 0 [(1+%x)(1+X5)+2+ X1+ X5]
&(A) can be represented within 1% error in the rangef0<6 by the function
A)= . B4
SN = 5 251 1.8 0. 55872 (B4)

Sinceusc is actually the global rms space-charge kick on the bunch, we are interested in evaluating thgJgplied
on the central bunch slice, locatedét 0, and the ongug- applied to the slice located gt o,. These are given by

1/2

e [\ [7 [“ae [ otr0e2
M 2Egy o 20 J, de 0p(r,O)Er(r,O)rdr (B5)
and
_ TV T 1/2 o, fzwd foo E2 g 1/2 86
ks 2By o [12] @ )y 99 Op(r,cfz) ((ro)rdr| (B6)
which can be cast in the formée=ml £7(A) /4l gy 202 and wge= 7l €~ (A)/4l oy' 202, with
Y ) [(1+A2X1)(1+A2X2)]_1/2 1/2
+ =
G {Jo dxljo dx; [(1+Xq)(1+Xp) +2+ X +X,]° (67)
and
. de fwd exp{—[—1—1/(1+A%X,)— 11+ A%x,)]/2} 112 B8
EAI= 0 | 0% F s S () 2 Xt P (LT APy (L4 ABxy) |72 (B8)
It is convenient to redefine the kickuse and ugc in terms of rescaled currentd™ and 17: ugc
=7l T (A)E(A) /4 gy %02 and uge=ml ~(A) £(A)/4l oy' 202, where
A= 2.45+1.8205/4—0.55032 B9
(M) =1 1 841 1,985 0 6572 B9
and
- 2.45+1.82A54— 0,550
I~ (A)=I (B10)

3.84+ 1.74A°4—0.340372

are valid approximations fdr* andl~ in the range 8<A<6. At A=1 we havel "=1.19 andl~ =0.71.
In order to calculate the geometrical form factyff) we consider here only the linear componé&q}({) of the space
charge field in Eq(B1), i.e.,

v e (W2e%1+AR)

9(5):E|in(§):fo dx(l+x)2\/(1+ﬁx)'

which is the source of the perveance texy({) in the envelope equation; we want to study its dependence on the slice
position ¢ for low aspect ratioA=A/+y in the rest reference frame. For highly relativistic beams, i&:1 the transverse
space-charge-field dependence versus the longitudinal pogitesembles the behavior of the charge density distribution: in
fact, we have

9(§) —— exd— %202,
)
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as expected. For small we approximateg({) with its Taylor expansion up to second orderAraroundA= 0, to obtain

2
2 — V(1 —
g(§):67{2/202 1+A2? 1—? §+|I’1X)—l ]+O(A4) (B11)
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