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Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors:
A theory of emittance compensation
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In this paper we provide an analytical description for the transverse dynamics of relativistic, space-charge-
dominated beams undergoing strong acceleration, such as those typically produced by rf photoinjectors. These
beams are chiefly characterized by a fast transition, due to strong acceleration, from the nonrelativistic to the
relativistic regime in which the initially strong collective plasma effects are greatly diminished. However,
plasma oscillations in the transverse plane are still effective in significantly perturbing the evolution of the
transverse phase space distribution, introducing distortions and longitudinal-transverse correlations that cause
an increase in the rms transverse emittance of the beam as a whole. The beam envelope evolution is dominated
by such effects and not by the thermal emittance, and so the beam flow can be considered quasilaminar. The
model adopted is based on the rms envelope equation, for which we find an exact particular analytical solution
taking into account the effects of linear space-charge forces, external focusing due to applied as well as
ponderomotive RF forces, acceleration, and adiabatic damping, in the limit that the weak nonlaminarity due to
the thermal emittance may be neglected. This solution represents a special mode for beam propagation that
assures a secularly diminishing normalized rms emittance and it represents the fundamental operating condition
of a space-charge-compensated RF photoinjector. The conditions for obtaining emittance compensation in a
long, integrated photoinjector, in which the gun and linac sections are joined, as well as in the case of a short
gun followed by a drift and a booster linac, are examined.@S1063-651X~97!10706-1#

PACS number~s!: 41.75.2i, 41.85.2p, 29.17.1w, 29.25.Bx
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I. INTRODUCTION

Quasilaminar, space-charge-dominated relativistic e
tron beams have become a subject of great interest with
advent of short laser pulse-driven radio-frequency~rf! pho-
toinjectors@1,2# that are able to produce electron beams c
rying current densities well in excess of 1 kA/cm2, with the
transition from the nonrelativistic to the relativistic regim
occurring very quickly. The accelerating gradient required
guarantee that the beam will be captured in the rf wave
relevant wavelengths~5–25 cm! ranges from 10 up to 100
MeV/m: the beam is therefore accelerated from rest at
photocathode emissive surface, up to relativistic ene
within a fraction of a rf wavelength, which is a distanc
comparable to one-half of a plasma oscillation period in
transverse plane. The trapping condition is typically e
pressed as a.1/2, in terms of the quantity a
5eE0/2kmc2, which represents the dimensionless amplitu
of the vector potential associated with the accelerating fi
of frequencyn rf (k52pn rf /c) and amplitudeE0 .

Furthermore, the random, thermal component to the tra
verse emittance is very small compared to the total rms e
tance, which is dominated by the dilution of the project
transverse phase space density due to correlations in
beam distribution function, so that the beam is fairly lamin
in both the transverse and longitudinal planes. This imp
that in the transverse plane trajectories do not cross e
other, while in the longitudinal plane different slices~of
length small compared to the total bunch length! do not mix
551063-651X/97/55~6!/7565~26!/$10.00
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with each other. Since neighboring longitudinal slices ad
tionally do not behave in vastly different ways, precludin
the occurrence of large longitudinal density gradients in
beam charge density, this final condition implies that t
beam may be broken up, for analysis purposes, into ne
independent longitudinal slices that behave in the same m
ner as a continuous beam. Evidence for the validity of t
model for photoinjector beam dynamics comes from b
multiparticle simulations and experiments performed
Brookhaven@3#.

This set of conditions, which defines the notion of
quasilaminar beam in this paper, is generally attained in
photoinjectors, in particular when they are operated in
space-charge-emittance compensation regime@4#. This re-
gime implies that the beam propagates for one transv
plasma oscillation, so that the correlations in the transve
phase space that develop in the first half of the oscillation
undone in the second half by properly focusing the bea
Due to the relativistic diminishing of the space-charge forc
as the beam accelerates, one can adiabatically nearly te
nate the plasma motion and associated emittance oscilla
as the minimum in the emittance occurs, obtaining maxim
beam brightness at the exit of the photoinjector.

In this paper we wish to provide a simple framework
which the beam dynamics in such a regime can be ana
cally described and the space-charge-emittance correc
technique can be quantitatively explained. We begin by
ing a heuristic model of the plasma and emittance osci
tions in a quasilaminar beam. This model allows the und
lying physical mechanisms involved in the complicat
7565 © 1997 The American Physical Society
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phase space dynamics of the rf photoinjector to be el
dated. After this discussion, we then construct the quan
tive model for quasilaminar beam propagation. Analytic
expressions for the beam envelope from the photocath
surface up to the gun exit in a long, integrated rf photoinj
tor are provided and the predictions for optimum photoinj
tor configuration to achieve emittance correction are
tracted from the properties of the envelope itself. A particu
solution for the beam envelope is found that assures all
bunch slices evolve in transverse space phase with a c
mon phase space angle, which is in fact the desired final s
to achieve emittance compensation. This particular solu
is termed the invariant envelope, and is in many ways an
gous to the equilibrium Brillouin flow of space-charg
dominated beams in constant gradient focusing channels
though this study is directly applied to a description of
photoinjectors, the concept of invariant envelope and
method of analysis is of interest and applicable to any re
tivistic beam that is space-charge-dominated and acceler
in high gradient linear accelerators.

The equation we base our analysis on is Lawson’s exp
sion for the evolution of the rms envelope in the parax
limit @5#,

s91s8S g8

b2g D1Krs2
ks

sb3g32
en
2

s3b2g2 50, ~1.1!

which governs the evolution of the cylindrical symmetr
rms transverse beat spot sizes(z) under the effects of an
external linear focusing channel of strengthKr[
2Fr /rb

2gmc2. Here the prime indicates differentiatio
with respect to the independent variablez, the distance along
the beam propagation axis,gmc2 is the mean beam energy
andb[nb /c5A12g22 is the normalized mean beam v
locity. The defocusing space charge term in Eq.~1.1! is pro-
portional to the beam perveanceks , and the final term rep-
resents the outward pressure due to the normalized
emittance, which in the case of cylindrical symmetry can
written as

en5bge5
bg

2
A^r 2&^r 82&2^rr 8&2. ~1.2!

We use Eq.~1.1! under a host of assumptions, which w
now delineate. Equation~1.1! is of course only valid in a
paraxial approximation (s8!1) and for a narrow energy
spread beam. In our envelope analysis, which is applied o
in the region where the beam has attained relativistic vel
ties ~the mean beam velocitynb5bc'c!, the normalized
acceleration gradientg8 is approximated as constant, so th
g(z2)5g(z1)1g8(z22z1). In the case of an unbunche
beam the perveance takes the formks5I /2I 0 , with I 0
5ec/r e>17 kA ~for electrons!. Since we restrict the discus
sion to axisymmetric beams, the focusing gradient can inc
porate two different types of focusing, that applied externa
by a magnetostatic solenoidal focusing field, and the p
deromotive rf focusing@6# produced by the nonsynchronou
spatial harmonics of the accelerating rf wave, an effect tha
particularly strong in a high gradient standing wave accele
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tor such as an rf photoinjector. As discussed in Refs.@6# and
@7#, these two focusing sources can be cast into a sin
expression,

Kr5Fh8 1b2G S g8

g sin~f! D
2

, ~1.3!

where b5cBz /E0 @eE052g8mec
2/sin(f), g85ak sin(f)#

for the particular case of a constant solenoidal magn
field,f is the particle phase with respect to the rf field wav
f5vt2kz1f0 , andf0 is the rf phase of the bunch cen
troid at injection. The quantityh, which is a measure of the
higher spatial harmonic amplitudes of the rf wave is defin
in Sec. III and is generally quite close to unity in practical
structures.

We have given the expression for the beam perveanc
Eq. ~1.1! above for an unbunched beam of constant curr
I . In our analysis of the quasilaminar beam in Sec. III, w
generalize this quantity to include the case of bunched be
by incorporating a geometrical factor@8# g(z) in the per-
veance that contains the longitudinal dependence of
transverse space-charge field versus the internal bunch c
dinatez5z2nbt.

Furthermore, Eq.~1.3! ignores possible chromatic aberr
tion effects on the transverse phase space dynamics, du
an energy-phase correlation in the bunch—this analyt
study is carried out assuming a monoenergetic bunch. A
lated source of longitudinal-transverse phase space cor
tions in this system arises from the phase dependence o
transverse rf forces, which gives rise to an emittance incre
@9# at the first iris of the gun~cf. Fig. 3!. We assume that this
source of emittance, like the chromatic effects, does not g
rise to significant changes in the transverse beam dynam
of a given z slice of the bunch. This assumption is qui
good, in that these correlations are of a similar form to
those arising from space charge, but smaller in magnitud
nearly all cases of interest. In fact, because of the simila
in spatial dependence of the forces, it has been observe
simulations that the space-charge-emittance compensa
process can also partially mitigate this source of emitta
@10#. Although the solutions found for Eq.~1.1! can be ex-
tended to any kind of charge density distribution in t
bunch, the actual predictions of the rf photoinjector design
to achieve emittance compensation will be provided fo
density distribution that is Gaussian in all dimensions.

The initial model used for the photoinjector analysis a
sumes a long multicell rf structure, i.e., an integrated dev
such as the AFEL~advanced free electron laser! injector at
Los Alamos@4#, and the proposed PWT~plane wave trans-
former! injector at University of California at Los Angele
~UCLA! @11#. The analysis is, however, sufficiently broa
that many characteristics of photoinjectors with short~one or
two cell! rf guns and a postacceleration~booster! linac,
where the space-charge compensation takes place in
space between the rf gun and the booster linac, can be
ferred. In fact, the case of a short~111/2 cell! rf gun fol-
lowed by a drift is discussed in Sec. VI. The exact soluti
for the beam envelope is not found for this case, but
operating conditions needed to achieve emittance compe
tion are deduced from the general properties of the enve
equation.



e
a
o
po
in
m

In
o
c
a
h
ec
xi
ce
e
n
nt
n
, a
ic
is
ac
im
m

te
ig
he
in
a

lo
s
s
hi
in
e
e

m
b
am
ld
u
e
t
en
e
ld
th

y
ng
l o

lope
ide
pe
er-
ro-

m

is
fact

cor-
mit-

ed

rge
nal
-

r a
it

his

the

ted,
en-

tor
mble
l

nal
ut

55 7567ENVELOPE ANALYSIS OF INTENSE RELATIVISTIC . . .
Radial nonlinearities in the space-charge field are not
plicitly taken into account in this model, as they have a we
impact on the rms envelope behavior. The full influence
these effects is beyond the scope of this paper, but is im
tant nonetheless—it is more relevant to a discussion of m
mizing the residual emittance after compensation. So
comments on these subjects are made in Sec. II.

In overview, the organization of the paper is as follows.
Sec. II we provide a heuristic model to explain the basics
the emittance oscillation due to a small mismatch of a spa
charge-dominated beam at injection into the focusing ch
nel. Section III is devoted to the detailed analysis of t
envelope equation and the model for a multicell photoinj
tors; analytical solutions derived in a perturbative appro
mation around an exact solution are presented. The con
of the invariant envelope is introduced and illustrated in S
IV, and its deep relationship with the space-charge-emitta
compensation technique is discussed. Predictions releva
photoinjector design characteristics needed to achieve a
variant envelope operation, i.e., emittance compensation
presented in Sec. V together with comparisons to numer
simulations of existing rf photoinjector designs. Section VI
devoted to the case of a short rf gun followed by a drift sp
where the emittance correction takes place. Finally, the
plications of the analysis presented in this paper are sum
rized in Sec. VII.

II. AN ILLUSTRATIVE MODEL

The simplified model that we propose for the complica
motion of the beam envelope and emittance evolution in h
gradient linear accelerators is motivated primarily by t
problem of understanding emittance evolution in rf photo
jector sources. In this model we view the rms emittance
arising from the differing phase space dynamics of each
gitudinal slice of the beam, which is assumed to behave a
independent, cold, laminar, space-charge-dominated pla
evolving under the influence of linear external forces. In t
case, even though the rms emittance of each longitud
slice can be neglected in the analysis, the rms emittanc
the ensemble can be quite large upon summation of the
tire ensemble making up the beam.

In order to understand how this mechanism causes e
tance growth, as well as how the emittance growth can
reversed by proper focusing of the beam, we begin by ex
ining a simplified model problem, that of an intense, co
uniform-density beam nearly matched to an external foc
ing channel. While this model ignores the effects of acc
eration and transverse motion due to the high gradien
fields in the accelerator, it serves to illuminate the fundam
tal dynamics of the emittance oscillations in these devic
When the effects of the high gradient electromagnetic fie
are included in the subsequent analysis, analogies to
simple model will be apparent.

We begin by writing the rms envelope equation for a c
lindrically symmetric, space-charge-dominated, coasti
relativistic, charged particle beam in a focusing channe
constant strength,

s91Krs5
I

2I 0~bg!3s
1

en,th
2

~bg!2s3 . ~2.1!
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Given our assumption of space-charge-dominated enve
motion, we may ignore the final term on the right-hand s
of Eq. ~2.1!, which represents the contributions to envelo
forcing due to the emittance arising from both random, th
malizing sources as well as the effects of nonlinear mac
scopic forces. In this analysis, we will be using Eq.~2.1! to
describe the evolution of longitudinal slices of a bea
~meaning infinitesimally small lengthsdz of beam about
given values ofz!, assuming that the motion of each slice
essentially uncorrelated to that of nearby slices, and in
depends most strongly only the local~in z! value of the cur-
rent. This means that the normalized thermal emittance
responding to each beam slice is small. We define this e
tance formally as

en,th~z![
bg

2
A^r 2&z^r 8

2&z2^rr 8&z
2, ~2.2!

where the subscriptz indicates that the average is perform
only over the distribution within a given slice.

We next generalize the expression for the space-cha
term to include an explicit dependence on the longitudi
position by I→Ig(z), whereI is now defined as the maxi
mum current in the beam. The geometrical factorg(z),
which is less than unity, is discussed in more detail fo
finite beams below; for now let us note that in the lim
where the beam is long (gsz@s r) in its rest frameg(z)
follows the local dependence of the current very closely.

Upon linearizing Eq.~2.1! about the equilibrium Brillouin
flow condition for a slice at a given value ofz,

seq„g~z!…5S Ig~z!

2I 0~bg!3Kr
D 1/2, ~2.3!

we obtain the equation for small amplitude motion about t
point,

ds9~z!1FKr1
Ig~z!

2I 0~bg!3seq
2 g~z!Gds~z!50 or

ds9~z!12Krds~z!50, ~2.4!

which gives oscillation frequencies that are dependent on
external focusing strength, butindependentof the beam cur-
rent. It is this characteristic of the space-charge-domina
quasilaminar beam dynamics that allows emittance comp
sation.

This model can be used to illuminate the rf photoinjec
case by assuming that the envelopes in the beam ense
begin~at the ‘‘cathode’’! slightly mismatched to the channe
with s5s0,seq ands850. All envelope oscillations pro-
ceed with the same frequency, given only by the exter
focusing strength, but with different amplitude and abo
equilibria that are dependent on the current@if we assume the
approximation thatg(z) is proportional to the current#. We
thus have formally

s~z,z!5seq„g~z!…1@s02seq„g~z!…#cos~A2Krz!,
~2.5!

and
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s8~z!52A2Kr@s02seq„g~z!…#sin~A2Krz!. ~2.6!

Since the frequency of the oscillations is independent of
value of current, but the amplitude is not, the rms emitta
of the beam ensemble grows, but returns periodically
minimum values.

This can be seen by noting that under our above assu
tions, the rms emittance defined by Eq.~1.2! can be calcu-
lated as follows:

e~z!5A^s2&^s82&2^ss8&2, ~2.7!

where the angular bracket indicates an average weig
over the distribution of currents in the entire beam ensem
i.e., all of the slices. To quantify the effect of the differin
trajectories in the ensemble of beam slices, we assume
long beam limit expands the effective distribution function
currents to second order about the maximum current~i.e.,
near the peak of a symmetric beam current profile tha
continuous though its firstz derivative!, and obtain the emit-
tance evolution

e~z!>
1

&
s0~dI rms!U ]

]I S s8

s D U
I5I p

>
1

2
AKrs0seq~ I p!

dI rms
I p

usin~A2Krz!u. ~2.8!

Figure 1 displays the emittance and envelope evolu
for a slightly mismatched beam ensemble, beginning, a
the case of the rf photoinjector, with a minimum beam s
and vanishing emittance as defined by Eq.~2.7!. It can be
seen that there are two subsequent emittance null points
at the maximum in beam size, and another when it return
its original size. These minima occur where the angles
phase spaceu5tan21(s8/s) are independent of the bea
current value. This type of behavior is in fact similar to th
observed in rf photoinjectors, as can be seen from the m
tiparticle simulation shown in Fig. 2, where the beam und
goes one envelope oscillation and two emittance oscillati

FIG. 1. Emittance and envelope evolution for a slightly m
matched beam ensemble beginning with a minimum beam size
vanishing correlated emittance, in linearized limit.
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from the cathode to the injector end in a scaled UCLA Sa
urnus photoinjector. The emittance minimum occurring a
the maximum in the envelope is of secondary interest b
cause it occurs at large beam size and low energy inside
the primary focusing magnet of the rf photoinjector.

The qualitative similarity between the behavior predicte
by simple emittance oscillation model and that found i
simulation of rf photoinjectors points the way toward the
further analysis of the photoinjector, which differs from the
model case in both acceleration and nonuniform applicatio
of focusing. One prediction can be gleaned from the simp
model even before we begin, which is that one should allo
the photoinjector beam to go through only one envelope o
cillation, with further oscillations suppressed by diminishing
the space-charge forces through acceleration. This must
done with some care, and our analysis leads eventually to
quantitative prescription for obtaining this condition in Sec
V.

This simple model has other aspects that help explain
analogy the behavior of rf photoinjectors operated in th
emittance compensation regime. The artifact of the oscill
tion frequency about the equilibrium being dependent on
on the applied restoring force gradient, which is what allow
the correlated emittance developing in the beam ensemble
periodically vanish, is not valid to all amplitudes in the beam
envelope system. To lowest significant order in the mismatc

nd

FIG. 2. ~a! Envelope, and~b! emittance evolution of 1300-MHz
rf photoinjector design, from PARMELA multiparticle simulation.
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amplitudea„I (z)…5@s02seq„I (z)…#/seq„I (z)…, the oscilla-
tion frequency is

n„I ~z!…5A2Kr@11 3
16a„I ~z!…2#. ~2.9!

This anharmonicity in the beam ensemble generally p
cludes the vanishing of the correlated emittance. Thus, th
is an additional prediction that can be made on the basi
this observation: excursions in the beam size should be m
mized to produce the best emittance compensation.

It should also be noted that, assuming laminarity~there is
no ‘‘wave breaking’’ in transverse phase space! within a lon-
gitudinal beam slice is maintained, that phase space cor
tions arising from radial nonlinearities must also behave
do the beam slices—that is, they should also be comp
sated. Maintenance of laminarity also implies that the be
excursions from equilibrium are limited in amplitude.

III. BEAM ENVELOPE ANALYSIS FROM CATHODE
SURFACE TO INJECTOR EXIT

In order to perform the envelope analysis of the multic
injector presented below, we must first specify a model
the rf photoinjector. The model we adopt for the accelerat
structure is geometry independent, since the acceleratin
field is written in Floquet form as a sum of its spatial ha
monic amplitudes, and the rf photoinjector cavity is assum
to be a multicell structure indefinitely extending along
symmetry axis. There is, however, some specificity in o
choice of the model for the static longitudinal magnetic fie
produced by the external focusing solenoids: it is assume
have a hard-edge longitudinal profile extending over a f
cells of the accelerating structure.

A typical multicell rf cavity employed in rf photoinjector
is shown in Fig. 3, displaying the cross section of an axisy
metric iris-loaded structure terminated into a half cell host
the cathode~located atz50! and operated in a TM010-p
standing mode with one-half wavelength cells following t
cathode cell. The general expression of the rf field com
nents expanded linearly off axis is@6#

FIG. 3. Schematic cross section in the (r ,z) plane of a typical rf
multicell cavity of a photoinjector gun: the rf field distribution o
axis is plotted together with the electric field lines of the TM010-p

mode in use for electron acceleration. The three different region~0,
I, II ! used to describe analytically the beam dynamics in the ph
injector are shown.
-
re
of
i-

la-
s
n-
m

l
r
g
rf

d

r

to

-
g

-

Ez5E0 (
n51,odd

`

ancos~nkz!sin~vt1f0!,

Er5
kr

2
E0 (

n51,odd

`

nansin~nkz!sin~vt1f0!,

Bu5c
kr

2
E0 (

n51,odd

`

ancos~nkz!cos~vt1f0!, ~3.1!

wherek52p/l5v/c, andan are the spatial harmonic co
efficients that depend on the actual cavity geometry that
be computed easily by computer codes or derived by exp
mental bead measurements. Due to the symmetry of the
lected mode, all evenan’s vanish,a151, andE0 becomes
the amplitude of the fundamental harmonic~speed-of-light
phase velocity! component of the rf wave. All higher har
monic amplitudes are therefore normalized to the value
the fundamental.

The external solenoid is assumed to be folded around
first 211/2 cells of the rf cavity, producing a constant ma
netic fieldBz5B0 from zb5l/8 ~half-way through the cath-
ode cell! up to zc511l/8 ~a quarter-way through the third
full cell!. The beam dynamics in the photoinjector are d
scribed using a three stage procedure:

~a! The first one and a half cells~from z50 to z5z2! are
treated by using a ballistic approximation, as described
Ref. @7#. In this region, named region 0, the transver
plasma oscillation begins, driven by the strongly repuls
space-charge forces. The transverse dynamics are domin
by the defocusing effects of space charge and a transie
kick in the region of the first iris.

~b! In the following cells, i.e., up to the end of the sol
noid field atz5zc , the envelope equation is solved pertu
batively with a constant beam size space-charge approx
tion. Here, the extra focusing applied by the solenoid field
conjunction with the ponderomotive rf focusing, overcom
the transverse space-charge force and turns the beam e
lope from divergent to convergent. This is named regio
since it is the first region where the envelope equation
applied~and applicable!.

~c! In the final region of the accelerator~beyondz5zc ,
named region II!, the envelope equation is solved initially a
a perturbation about an approximate solution, which p
vides a general solution to the problem of the beam dyna
ics up to the end of the photoinjector. In the case of a nea
optimized injector, this approximate solution can be replac
by a special exact solution called the invariant envelope
this case, the normalized emittance associated with the
turbed plasma oscillations is damped gently for a be
nearly matched to the invariant envelope, while it can
excited to perform additional oscillations if the beam is ov
focused by the solenoid, going through successive min
and maxima.

The beam conditionss2 ands28 at the second iris, i.e., a
the end of region 0, are reported in Appendix A~g251
13pa/2 at f5p/2!. With the conditiona.1/2, the trap-
ping threshold requirement that holds for any rf photoinje
tor @9#, the beam at this point is quite relativistic, since typ

o-
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7570 55LUCA SERAFINI AND JAMES B. ROSENZWEIG
cally g2>5–10. Rewriting the envelope equation assum
b>1 and beam laminarity~neglecting the thermal emit
tance!, Eq. ~1.1! becomes

s91s8
g8

g
1sS h

8
1b2D S g8

g sin~f! D
2

5
ks~z!

sg3 , ~3.2!

where the normalized beam energy is given to an excel
approximation by g511akz sin(f)1a cos(f)[11g8z
1a cos(f), and we now leave out the explicit indication o
the dependence ofs on z andz. The ponderomotive rf fo-
cusing term displays, through the quantityh, its dependence
on the higher spatial harmonic amplitudes@6#,

h5 (
n51

`

an21
2 1an11

2 22an21an11cos~f! ~a050!.

~3.3!

In Eq. ~3.2! the perveanceks(z) explicitly retains a func-
tional dependence on the longitudinal positionz of the par-
ticular slice in the bunch, so thatks(z)5Ig(z)/2I 0 . As
shown through more detailed calculations in Appendix B,
geometric factorg(z) is given by

g~z!5e2z2/2sz
2X11

A2

g2 H S 12
z2

sz
2D F121 lnSAg D G21J C

for a Gaussian distribution of aspect ratioA5s r /sz , or

g~z!512
2A2

g2 F1112S z

L D 2180S z

L D 4G
for a uniform distribution of aspect ratioA5R/L, whereR is
the beam radius andL is the beam length. In this section w
will assume, for the sake of simplicity,g(z)>I (z)/I peak, so
thatks(z) does not depend ong, which is consistent with the
relativistic approximation that the transverse space-cha
field amplitude follows the beam current distribution. As
matter of fact, since the bunch aspect ratioA is typically of
the order of 1, the rest frame aspect ratio is such t
A2/g2!1 in the domain where Eq.~3.2! is applied (g
.g2). However, the generalization of Eq.~3.2! to deal with
the analysis of bunched beam dynamics will be performe
following sections, together with the analysis of the em
tance compensation mechanism.

To solve Eq.~3.2!, we apply a Cauchy transformation b
changing the independent variable fromz to y, defined as
y[ ln(g/g2), to obtain

d2s

dy2
1V2s5

S~z!

s
e2y, ~3.4!

with s5s(y) andS(z)[I (z)/2I 0g2g825ks(z)/g2g82 de-
fined to be the Cauchy perveance. The transformation cle
reveals, by removing the terms8(g8/g! corresponding to
adiabatic damping in Eq.~3.2!, that the single particle beta
tron motion in the Cauchy space (s,y) is actually, as long as
the space-charge force is neglected, the simple one of a
form focusing channel with constant normalized focus
gradientV2: this is basically the reason that the matrix d
rived in Ref.@6# for the transverse motion in rf linacs can b
g

nt

e

e-

at

in
-

rly

ni-

-

expressed in terms of simple sinusoidal functions. T
Cauchy perveanceS has been introduced in order to unde
line the analogy with the usually defined beam pervean
i.e., I /2I 0g

3, which turns out to be invariant only for a non
accelerated beam: before attacking the mathematical tr
ment of Eq.~3.4! it is worthwhile to anticipate that, sinceS is
invariant in Cauchy space, a sort of equilibrium will b
achieved whenever the space-charge term on the right-h
side ~RHS! is exponentially damped at the same rate as
combination of focusing and trajectory curvature on the le
hand side~LHS!. Since this requires a nonoscillatory beha
ior for the LHS, which actually represents the betatron m
tion, this argument leads straight to the requirement
laminarity ~i.e., negligible betatron oscillations!, which is,
consistently, the assumption on which the whole analysi
based.

We obtain solutions to Eq.~3.4! employing two different
techniques appropriate to two distinct domains of propa
tion. As anticipated, we are proceeding from region 0 to
and II by connecting output conditions of each region
input to the following. In region I, defined byz2,z,zc (0
,y,yc) with yc5 ln$@11(5/211/4)pa#/g2%, the beam is
exposed to external solenoidal focusing. In this domain
haveV25(h/81b2)/sin2(f), whereb5cB0 /E0 . Region II,
defined by z.zc , is solenoid free and henceV5V0

5(h/A8)sin(f). In region I the beam sizes varies slightly
with respect tos2 , allowing the approximations5s2 in the
nonlinear term on the right-hand side of Eq.~3.4!. The gen-
eral solutions I of the resulting linearized equation is

s I5s2 cos~Vy!1ṡ2

sin~Vy!

V

1

S~z!Fe2y2cos~Vy!1
sin~Vy!

V G
s2~11V2!

, ~3.5!

where ṡ[ds/dy and ṡ25s28g2 /g8. Setting sc5s I(yc)
and ṡc5ṡ I(yc), we can perturbatively solve Eq.~3.4! in
region II, assuming that the nonlinear term on the right-ha
side may be represented by a particular solution of the fo
given in Eq.~3.5!.

The perturbative solution in the second regions II then
becomes

s II5Fsc2
S~z!e2yc

scC
Gcos@V0~y2yc!#

1
S~z!e2y1~yc2y!ṡc /sc

scC

1F ṡc1
S~z!e2yc~11ṡc /sc!

scC
Gsin@V0~y2yc!#/V0 ,

~3.6!

where C5V0
21(11ṡc /sc)

2. The combination of Eqs
~3.5! and~3.6!, together with Eqs.~A4! and~A5!, allows the
description of the beam envelope from the initial conditio
at the photocathode surface up to the photoinjector e
While this treatment of the behavior ofs II is quite general, it
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will ultimately prove less useful than one based on the
variant envelope given in the next section.

The whole system, i.e., the beam and the external RF
magnetic field, can be specified by means of ten operatio
quantities: the main quantities are the laser pulse chara
istics~spot size at the cathodes r , pulse lengthsz[cs t!, the
extracted bunch chargeQb , the rf field quantities~field am-
plitudeE0 and rf frequencyn rf!, the magnetic field amplitude
of the solenoidB0 , and the initial and final positions for th
solenoid field distribution, namely,zb andzc . The somewhat
ancillary parameters associated with description of the
field areh andm ~defined in Appendix A!, which depend on
the set of spatial harmonic coefficientsan . In the following
we will consider the special case ofh5m51, i.e., a pure
first harmonic rf field, because it greatly simplifies the ana
sis without significant loss of generality. In the following w
take alsof5p/2, which corresponds to the phase of ma
mum acceleration.

The beam envelopes resulting from this analysis app
to a multicell photoinjector are shown in Figs. 4 and 5, w
several different values of the bunch chargeQb and solenoid
field amplitudeB0 for a typical set of photoinjector param
eters. In the upper diagram of Fig. 4 the bunch aspect rat
A51.25, withs r51.5 mm, corresponding to a peak curre
I5100 A atQb51 nC (I5Qbc/A2psz) and 400 A atQb
54 nC ~z2579 mm, g258.7, a51.64!; in the lower dia-

FIG. 4. Beam envelopes through two different 1011/2 cell rf
guns operated without external solenoid focusing, i.e.,B050
~n rf52.856 GHzE05100 MV/m upper diagram,n rf51.3 GHzE0

545 MV/m lower diagram!. Dashed lines give the secular orbi
analytically predicted, while solid lines are numerical simulati
results. Various bunch charges have been used, as indicated.
-

nd
al
er-

rf

-

-

d

is
t

gramA50.83 with s r52.0 mm, givingI5200 A at 4 nC
~z25174 mm, g258.6, a51.62! ~no solenoid field is
present in the data reported in Fig. 4!. The simulations were
performed with the codesATRAP @12# for the S-band gun
~Fig. 4, upper diagram! and ITACA @13# for the L-band case
~Fig. 4, lower diagram!. A similar comparison is shown in
Fig. 5, where the extra focusing due to the magnetic field
the solenoid is clearly displayed. It should be noted that
switching off the space charge term in Eqs.~3.5! and ~3.6!
one obtains the dotted curve plotted in Fig. 5, for the case
B050.5 kG, which is clearly mismatched with respect of t
simulation curve, indicating the relevance of the nonline
space-charge term in our analysis.

It is useful to note, as explained in Ref.@6#, that a tran-
sient angular kickDs851g8s/2g ~corresponding toDṡ
51s/2! must be added to the secular beam envelope at
gun exit in order to transform it back into the actual env
lope. What is meant by the distinctionsecularin describing
the envelope is the following: the secular envelope rep
sents the actual envelope averaged over the cell-to-cell o
lations caused by the alternating gradient focusing effect
sociated with the backward component in the rf stand
wave, as discussed in Ref.@6#. The good agreement betwee
the analytically predicted envelopes~dashed lines! and the
numerical simulation data~solid lines! gives a significant
confirmation of the capability of the present model to pred
correctly, within the domain of interest, the beam envelo
characteristics.

It is interesting to note that the first two terms on t
right-hand side of Eq.~3.5!, which scale linearly with the
initial conditionss2 and ṡ2 , correspond exactly, as far a
b50 is set~no superimposed solenoid field!, to the linear
transport matrix elements derived in Ref.@6# for the evolu-
tion of the secular envelope in rf linacs. Therefore, Eq.~3.5!
represents the extension of the analysis performed in Ref@6#
to the case of an external magnetic focusing added to th
ponderomotive focusing, as well as the contribution from
space-charge field, which is given by the third term on
right-hand side of Eq.~3.5!.

IV. THE CONCEPT OF INVARIANT ENVELOPE

In view of the excellent agreement between the analyt
and numerical solutions to the envelope equation for spa

FIG. 5. Beam envelopes through a 1011/2 cell L-band rf gun
~E0545 MV/m, I5200 A, Qb54 nC! at different amplitudesB0

~in kG! of the solenoid magnetic field. Dashed lines give the secu
orbits analytically predicted, while solid lines are numerical sim
lation results.
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7572 55LUCA SERAFINI AND JAMES B. ROSENZWEIG
charge-dominated, strongly accelerating beams in the
ceding section, we now extend our analysis to finding a p
ticular beam propagation mode. This mode will be shown
be analogous to the Brillouin flow for space-charg
dominated beams in focusing channels discussed in Sec

First of all, we begin by transforming the envelope d
scription in Eq.~3.4! from the Cauchy space (s,y) into a
dimensionless Cauchy (t,y) space, which displays the fun
damental parametric dependence that governs the beam
evolution. By defining the dimensionless quantityt[s/AS
~we are now, for the sake of compactness, leaving imp
the dependence ofS on z!, the envelope equation in th
dimensionless Cauchy space (t,y) reads

d2t

dy2
1V2t5

e2y

t
. ~4.1!

The scaling of the beam size with the square root of
perveance in this analysis naturally agrees with the sca
laws set down in Ref.@17#, in that the beam plasma fre
quency is the same for any envelope of the samet.

We are interested in the third region (z.zc), where, tak-
ing the case ofh5m51 andf5p/2, which imply thatV
5V051/A8, the envelope equation reads

d2t

dy2
1

t

8
5
e2y

t
, ~4.2!

which is a universal scaled equation, independent of any
ternal parameter.

Since the quantityAS ~which has units of a length!
can be related to the transverse plasma freque
vp5A4pnee

2/g3me5(c/s)AI /2I 0g3 by vp5(cg8/sg)
ASg2 /g, it is interesting to note tha
the function t can be expressed ast5g8e2y/2/gkp
5@(g8/g)/kp#Ag2 /g with kp5vp /c. In this form it is
clearly shown thatt scales as the ratio between the loc
plasma wavelengthlp52p/kp , which sets the defocusin
length of the beam, and the local incremental energy g
lengthLg5g/g8, which sets both the beam adiabatic dam
ing and rf focusing lengths.

Equation~4.2! has, like Eq.~3.4!, a general perturbative
solution,

t5Ftc2 e2yc

tcJ
Gcos@V0~y2yc!#1

e2y1~yc2y!ṫc /tc

tcJ

1F ṫc1 e2yc~11 ṫc /tc!

tcJ
Gsin@V0~y2yc!#/V0 ,

~4.3!

with J5 1
81@11 ṫc /tc#

2 andV051/A8.
Within this family of solutions there is a notable partic

lar solution,

t̂5A8/3e2y/2, ~4.4!

corresponding tot̂c5A8/3e2yc/2, ṫ̂c52A2/3e2yc/2, andJ
5 3

8. This solution is characterized by having a plasma f
quencyk̂p5A3/2g8/g, which is proportional to the pondero
motive rf focusing frequency and~imaginary! adiabatic
e-
r-
o
-
II.
-

ize

it

e
g

x-

cy

l

in
-

-

damping frequency up to a fixed constant. Another way
viewing this is to note that the ratio between the two fund
mental scale lengths,Lg andlp , is in this case exactly con
stant, i.e.,l̂p /Lg52pA2/3. This is achieved because th
scaling of the plasma frequency asAnbg23/2 is exactly
matched to the energy gain, including the reduction of
beam sizeŝ with energy, which scales asg21/2, namely,ŝ
5(2/g8)AI /3I 0g. This constant relationship betweenLg and
lp also explicitly indicates that the invariant envelope is
deed an equilibrium solution in the Cauchy space. Furthe
obviously displays the equilibriumlike characteristic th
there are no periodic oscillations associated with it, b
nearby orbits will oscillate about it; these oscillations will b
studied in Sec. V.

The solutiont̂ given by Eq.~4.4! has also the extremely
relevant property that it is the only solution displaying
constant phase space angled (d[ṫ/t), independent of ini-
tial conditionstc and ṫc in all of the three spaces@Cauchy
dimensionless (t,y), Cauchy (s,y), configuration space

(s,z)#. In fact, d̂5 ṫ̂/ t̂5 ṡ̂/ŝ521/2, so that in both Cauchy
spaces the phase space angle is a universal constant, wh
configuration space the phase space angled̂c[gŝ8/ŝ5
2g8/2 is a constant~the trace space angle isŝ8/ŝ5

2g8/2g!. The negative sign ofd̂, implying a convergent
beam, is a clear signature of the adiabatic damping du
acceleration: on the other hand, the same quantity is van
ing in the case of Brillouin flow, where@see Eq.~2.3!# dBr
5gseq8 /seq50.

Further, the most important attribute ofd̂ on the invariant
envelope is that it does not depend on the beam curr
which is embedded in the perveance scaled variablestc and
ṫc . For this reason the solutiont̂ will be called theinvariant
envelope; its invariance in phase space angle with respec
current is exactly the basic condition to obtain a vanish
linear correlated emittance as the final state of the beam
fact, it is well known that the emittance growth from line
space-charge effects is due to the angular spread in the p
space distribution of different bunch slices, which rece
different kicks from the space-charge field. In analogy to
discussion of the emittance oscillations in the beam m
matched to the solenoid in Sec. II, these different beam sl
may be represented by different current amplitudes in
~3.4!, with the full beam represented by the ensemble
beam slices. Since Eq.~2.8! predicts emittance oscillations o
amplitude scaling like the spread in phase space angles,
natural to anticipate that this property of the invariant en
lope will be crucial to achieve emittance correction, as d
cussed in detail in Sec. V.

It is interesting to observe that, under the invariant en
lope conditions, the space-charge term in Eq.~4.1!, e2y/ t̂
5A3/8e2y/2, is dominant over the focusing term, which
only one-third of the magnitude of the space-charge te
t̂/85(1/3)A3/8e2y/2. Adiabatic damping of the angular di
vergence due to acceleration provides an additional~damp-
ing! term that counteracts the space-charge defocusing in
envelope equation, but it should be noted that the sec
derivative of the invariant envelope is always positive, th
classifying this trajectory as unstable. This in fact must
the case, since a stable trajectory would imply oscillatory,
nonlaminar, behavior: one of the main consequences of s
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a characteristic of the invariant envelope is the simultane
damping of the beam spot sizes and the beam transvers
momentump'[gŝ852g8ŝ/2 asg21/2.

Since we solve the envelope equation under the assu
tion of laminarity, the range of validity of such a hypothes
should be investigated. Rewriting Eq.~4.1! by taking into
account also the thermal emittance term defined by Eq.~2.2!
we find

d2t

dy2
1V2t5

e2y

t
1S 2en,thg8g2I 0

I D 2 1

t3
. ~4.5!

When the beam is on the invariant envelopet5 t̂, the
second term on the right-hand side of Eq.~4.5! grows
as e3y/2, while the space-charge term decreases ase2y/2.
In order to preserve the condition of quasilaminarity,
that the beam can be considered space-charge domin
the space-charge term must be larger than the e
tance term. This condition holds up to a positionyl
5 ln@A(8/3)I /2I 0en,thg8g2#, beyond which the beam ente
the region where it becomes emittance dominated. This
sition corresponds to an energyg l given by

g l5A~8/3!
I

2I 0en,thg8
. ~4.6!

Since the thermal emittanceen,th is typically of the order of 1
mm mrad, and taking the relatively high accelerating gra
ent found in the plane-wave transformer~PWT! linac at
UCLA, which is g8530 m21 (E0530.6 MV/m), we have
g l51.6I @A#. This energy is quite a bit larger than that o
tained at the UCLA PWT~16 MeV!, which, like all existing
standing wave photoinjectors, has a peak energy less tha
MeV, but with peak beam currents in excess of 50 A co
sidered typical.

Another relevant assumption made above was that of
gitudinal laminarity, which means that different slices do n
mix with each other. This assumption is not violated in ge
eral since, as previously discussed, the longitudinal pla
period is much longer than the typical time scale of em
tance compensation~i.e., of one plasma oscillation in th
transverse plane!. Since the longitudinal plasma frequenc
which is suppressed in comparison to the transverse
quency by a geometrical factorvpi>vp'Ag(sz)

2121,
where for large beam rest frame aspect ratiosg'1, the num-
ber of plasma oscillations in the longitudinal plane is ty
cally much smaller than 1. The major result of this longit
dinal plasma motion, which, unlike the transverse moti
has little restoring force, is to lengthen the pulse in a lami
fashion; there is relative motion of the beam slices, but th
do not overtake each other.

When the beam leaves the accelerating structure one
add a positive~defocusing! kick Ds851g8s/2g, as previ-
ously mentioned, to obtain the correct connection betw
the secular envelope in the gun and the actual envelope
side. Since the corresponding kick in the Cauchy spac
Dṡ51s/2, and in Cauchy dimensionlessDṫ51t/2, it can
be clearly seen that a beam propagating through the struc

on the invariant envelope, for whichṫ̂52 t̂/2, will exit the
rf structure as a parallel beam, i.e., withṫ5ṡ5s850 and
s

p-

ed,
it-

o-

i-

25
-

n-
t
-
a
-

e-

-
,
r
y

ust

n
ut-
is

re

s f5~2/g8!AI /3I 0g f , ~4.7!

whereg f is the exit beam energy. This condition is a use
experimental diagnostic of emittance compensation in pr
tice.

The parallel exit condition on the beam envelope poi
out the analogy between the invariant envelope and the B
louin flow. In fact the two flows can be matched at the exit
a standing wave linac; equating Eq.~4.7! with Eq. ~2.3!, one
can find that a focusing gradientKr5(A3/8g8/g f)

2 pro-
duced by a solenoid of field amplitudeBz5A3/2mecg8/e
can achieve this match, preserving the beam’s mean ang
phase space to be vanishing after the linac.

The converse of the exit condition just discussed is
following entrance condition: a beam entering a stand
wave linac must have initial beam size given by

s i5~2/g8!AI /3I 0g i , ~4.8!

with vanishing divergence. In other words, the beam m
also enter on a parallel trajectory. The implications of th
condition for operation of a split photoinjector, consisting
a short rf gun followed by a drift space and a booster lin
are discussed in Sec. VI.

V. EMITTANCE COMPENSATION

External control of the beam spot size and emittance e
lution in a long rf photoinjector is accomplished through t
variation of the solenoid field strength, which allows one
launch, atz5zc , a beam envelope that may be optimized f
achieving low emittance performance. It is obvious from t
previous section’s discussion that this particular envelope
lution is of interest from the point of view of emittance co
trol, and so we now concern ourselves with the examinat
of two issues. The first is how to achieve this ‘‘matching’’ o
the beam to the invariant envelope at the end of the solen
while the second is the investigation of the subsequent ph
space dynamics of a real beam ensemble with a sprea
trajectories. Both of these issues are critical in understand
the phenomenon of emittance compensation. We have
gued that operation on the invariant envelope is the condi
for optimum emittance compensation, in the sense that
beam~the ensemble of all beam slices! fully matched to the
invariant envelope displays no further emittance oscillatio
It will be shown below that this is only part of the story
beam slices that are not directly on the invariant envelo
perform stable oscillations around the invariant envelo
leading to secular damping of the normalized emittance
the full beam ensemble.

At this point, we wish to find proper gun operating co
ditions, in terms of the six free parameters~spot size at the
cathodes r , pulse lengthsz , bunch chargeQb , rf field am-
plitude E0 , frequencyn rf , and magnetic field amplitude
B0!, able to achieve a beam matched atz5zc to the invariant
envelope. In order to reduce the number of free parame
we need to specify the matching conditions in the Cauc
dimensionless space, we turn to a set of four free parame
a, A, L, andb, defined by
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a[
eE0

2mc2k
, A[

s r

sz
, L[

I

~g8s r !
2 , b[

cB0
E0

.

~5.1!

These quantities are physically described as follows:a is the
dimensionless amplitude of the rf vector potential,A the
bunch aspect ratio,L the Cauchy current density, andb the
magnetic-to-rf focusing ratio. These tuning parameters
linked to the six previous free parameters byk52pn rf /c,
el

g

he
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um
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-
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g85eE0 /mc2, I5Qc/A2psz , while the Cauchy curren
densityL is given @14# in terms of the current densityJ by
L52pJ/g82 and is linked to the Cauchy perveanceS by
L52I 0g2S/s r

2. The merit of the set of four paramete
given in Eq.~5.1! consists in the possibility of expressing th
beam conditionst2 and ṫ2 at the exit of the second cell (z
5z2) entirely in terms of these four, as reported in Append
A, instead of the previously used six parameters.

The matching conditions atz5zc can be expressed as
A8/3e2yc/25t2cos~Vyc!1 ṫ2sin~Vyc!/V1
@e2yc2cos~Vyc!1sin~Vyc!/V#

t2~11V2!
~5.2a!

A2/3e2yc/25Vt2sin~Vyc!2 ṫ2cos~Vyc!1
@e2yc2V sin~Vyc!2cos~Vyc!#

t2~11V2!
, ~5.2b!

wheret25t2(a,A,L,b) and ṫ25 ṫ2(a,A,L,b) are given by Eq.~A7!, while yc5 ln$@11(5/211/4)pa#/(113pa/2)% and
V25(1/81b2). The first two parameters are restricted by practical considerations to a limited range, that is, 0.7<a<3 and
1/4<A<2. Therefore, we solve the two expressions in Eqs.~5.2a! and~5.2b! by expressing their roots asLs5Ls(a,A) and
bs5bs(a,A), which can be well approximated by the expressions

Ls@kA#5FA2352266a1283A2188aA180A225.3A3215.64213.2A

1.3310.94A G2 ~5.3!

and

bs51022F5.7a228.51
77.814.8A

a1/4 20.15Ls~a,A!1ALs~a,A!S 5.7a1/420.8410.28AD27.1AG . ~5.4!
ing
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These quantities are plotted in Figs. 6 and 7, respectiv
as functions ofa at different values forA, i.e.,A52, 1, 1/2,
and 1/4. In general, the Cauchy current densityLs increases
with a up to a maximumamax beyond whichLs is no longer
defined. The behavior of the values ofbs are plotted in Fig.
7, for the same values ofA, up to each correspondin
amax.

The upper part of the operating diagram in Fig. 6, t
region above the dotted line, is in fact forbidden, becaus
this region the bunch charge is in excess of the maxim
which can be extracted from the cathode surface. This f
damental limitation, as predicted theoretically@15# and ob-
served experimentally@16#, sets the maximum achievab
current densityJmax, according to the nonrelativistic Child
Langmuir law, in the formJmax@A/cm

2#5300g8/sb@ps#,
valid for short bunches (sb@ps#!1180/g8). The condition
can be cast in terms ofLmax as

Lmax@kA#5
324

asf@°rf#
. ~5.5!

The dotted line plotted in Fig. 6 represents the limitati
Lmax for a typical bunch length ofsf52°. Clearly, the op-
timum operating points should be relatively far from t
Lmax line, because of the severe energy spread induced
the longitudinal space-charge field at extraction from
cathode surface~if operating on the line, the photoelectron
y,

in
,

n-

by
e

in the bunch tail would actually see a vanishing accelerat
field at the cathode surface due to the canceling of rf field
the space-charge one!. Such a correlated energy spread, i.
the dependence of energy on the phase or slice positio
the bunch, produces chromatic aberrations in the trans
through the solenoid field and rf focusing channel, which c
prevent the emittance correction process from proceed
correctly. An obvious cure is the use of off-crest accelerat
to compensate the space-charge-induced energy spread
an opposite effect from the rf field. In practice, this m
imply operation far off crest if the Cauchy current dens
approaches the limit given by Eq.~5.5!.

It is interesting, for the sake of illustration, to plot th
current densityJ and cathode spot sizes r corresponding to
the lineLs(a,A51), drawn in the Cauchy operating dia
gram of Fig. 6, once the rf frequencyn rf52pv has been
fixed to some representative values, namely, 650 MHz,
GHz, 2.856 GHz, and 6 GHz, as shown in Figs. 8 and 9.
anticipated from the Cauchy operating diagram, each
quency has a definite window in the rf field amplitude
which operation of the injector in the space-charg
compensation regime is possible: the dashed lines set
maximum current density limit corresponding to a bun
length of 5 ps for the upper line and 10 ps for the lower lin
The cathode spot sizes r , plotted in Fig. 9, corresponds to
bunch charge of 1 nC; it is given by the relations r

53A(c/A2p)QbA/Lg82, showing the expected scaling a
Qb
1/3 as anticipated in Ref.@17#.
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In order to better illustrate the predictions of the operat
diagram in Fig. 6, we choose a point on the diagram, spe
cally one on theA51 line ata51.3, which corresponds to
Ls5144 kA. Choosing the rf frequency to be 1300 MH
~L band! we obtainE0536 MV/m for the peak cathode field
ands r50.87 mm for the cathode spot size ands r51.36° rf
for the bunch length, once we choose the bunch chargeQb to
be 1 nC. The peak current comes out to beI5137 A while
bs50.85 implies a magnetic fieldB051.02 kG. The three
representative currents, corresponding to three slices, a
this case@cf. Appendix B, Eqs.~B9! and ~B10!# I5137, I1

5163, andI2597. The numerical integration of the env
lope equation is shown in Fig. 10~a! ~solid lines!, where the
case forB050 ~no solenoid focusing! is also plotted~dashed
lines!. The corresponding three slice emittance is shown
Fig. 10~b!: as predicted, the normalized emittance is actua
corrected only for the case of a beam following the invari
envelope.

We are now in a position to discuss in more detail h
the emittance correction process works when the injecto
operated under the invariant envelope mode; i.e., it is se

FIG. 6. Operating diagram in the (a,A) plane for an indefinitely
long multicell photoinjector.

FIG. 7. Parameterbs , plotted as a function ofa, at some values
of the bunch aspect ratioA, for an indefinitely long multicell pho-
toinjector.
g
fi-

in

n
y
t

is
at

the prescribedLs andbs for a chosenA. Let us rewrite Eq.
~3.4! in the third region (y.yc) by explicitly showing the
dependence of the Cauchy perveanceS and the ponderomo
tive focusing frequencyV0 on the slice positionz in the
bunch:

F d2dyz
2 1

1

8 sin2~^f&2kz!Gs~yz ,z!5
S~z!

s~yz ,z!
e2yz,

~5.6!

where the Cauchy perveance now becomesS(z)
5Ig(z)/2I 0gc(z)g8(z)2, the average accelerating gradie
g8(z)5ak sin(̂ f&2kz) ~with ^f& defined as the bunch av
erage phase!, and the initial normalized energygc(z)51
1(3pa/2)sin(̂f&2kz)1a cos(̂f&2kz). As indicated by the
subscriptz in the independent variableyz , Eq. ~5.6! repre-
sents actually a family of equations, one for each slice
cated at a distancez from the bunch central slice, in th
variable

yz[ lnF g~z!

g2~z!G
5 lnF11akz sin~^f&2kz!1a cos~^f&2kz!

g2~z! G .

FIG. 8. Current densityJ plotted ~solid lines! vs the cathode
peak fieldE0 @MV/m#, at different rf frequencies~indicated in
MHz!, for a multicell photoinjector operated in the emittance co
rection regime. The dashed lines show the limit of maximumJ for
two different bunch lengths.

FIG. 9. Cathode spot sizes r , plotted vs the cathode peak fiel
E0 @MV/m#, at different rf frequencies, for a multicell photoinjec
tor operated in the emittance correction regime.
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7576 55LUCA SERAFINI AND JAMES B. ROSENZWEIG
This family of equations can be transformed, in analogy
Eq. ~4.2!, to read

F d2dyz
2 1

1

8 sin2~^f&2kz!Gt~yz ,z!5
e2yz

t~yz ,z!
, ~5.7!

where t(yz ,z)[s(yz ,z)/AS(z). The invariant envelope
then reads

t̂5
2e2y/2

A111/2 sin2~^f&2kz!
, ~5.8!

which in configuration space is simply

s~z,z!5
2

g8~z! S Ig~z!

2g~z!I 0@111/2 sin2~^f&2kz!# D
1/2

.

~5.9!

As already discussed in Sec. IV, we know that the nec
sary condition for vanishing correlated emittance growth
that the phase space angles of different slices are equa
this respect, any effect that induces a correlation, i.e.,z
dependence, will produce an emittance increase through
spread of phase space angles of the different slices. Th
effects are basically chromatic, and their phase depende
is typically quite a bit weaker than the dependence of
effective perveance inIg(z) in Eq. ~5.6!, sincel@sz . We
thus neglect the chromatic contributions to the dynamics,
concentrate on the charge dependent effects in which
longitudinal correlation of the transverse space-charge fi

FIG. 10. ~a! Envelope and~b! emittance evolution as predicte
by the operating diagram in Fig. 6, obtained by numerical integ
tion of the envelope equation, with and without solenoid focus
applied~solid and dashed lines, respectively!.
o
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gives the Cauchy perveanceSa slice dependence through th
geometrical factorg(z). This condition makes the transfor
mation from Cauchy space (s,y) to the dimensionless
Cauchy space (t,y) dependent onz, an effect that is absen
in continuous beams, as previously discussed in Sec. II
analyzed further in Ref.@7#. In this spirit we also set the
average phase of the bunch top/2, which corresponds to
maximum acceleration. We therefore write Eq.~5.9!, under
these approximations, ass(z,z)>(2/g8)AIg(z)/3gI 0. It ob-
viously is straightforward to generalize the following anal
sis to include the arbitrary accelerating phase.

Under the assumption of a monoenergetic bunched be
the Cauchy transformation fromz to y is againz indepen-
dent, and we now writeS5S(z)5(I /2I 0g2g82)g(z). We
have already shown that the invariant envelope is charac
ized by a phase space angle independent of the Cauchy
veanceS, and hence on the current. We now demonstr
that this condition corresponds to a vanishing correla
emittance growth. Since we are dealing with transve
forces that are linear in the radial coordinate, the transve
trace space distribution of the quasilaminar beam (r ,r 8) is
represented by an ensemble of straight segments, one
each slice in the bunch, as depicted schematically in Fig.
In this figure only two of these line segments are drawn, o
for the central slice~located atz50, having spot sizes1 and
divergences18 !, which is subject to the peak space-char
field and another for a slice located atz5sz ~with trace
space variabless2 ands28 !, where the space-charge field
smaller for typically encountered current distributions, a
this reduction is represented by the geometrical fac
g(sz),1. The normalized rms transverse emittance, defi
by the relationen(z)[bge(z)>ge(z), with e(z) given in
Eq. ~2.7!, is explicitly evaluated as

en~z!5
g

2
A~s1

2 1s2
2 !~s18

21s28
2!2~s18 s11s28 s2!2

5
g

2
A~s1s28 2s2s18 !25

g

2
us1s28 2s2s18 u.

~5.10!

As can be seen from Eq.~5.10!, the rms emittance in this
two-slice case is identical to the common geometrical d

-
g

FIG. 11. Description of a bunched beam via two representa
slices in the trace space (r ,r 8).
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nition of emittance; it is simply the area of the triangle giv
by the origin and the two rms phase space points corresp
ing to the slices.

It should be emphasized at this point that each slice
represented for simplicity by a straight segment in ph
space, which is a zero emittance distribution, because we
neglecting the thermal emittanceen,th , according to our as-
sumption of quasilaminarity. In practice, this emittanc
which is added in squares with spatially correlated source
emittance, can be estimated to been,th's rAkT/mec

2, where
the effective~rest frame! temperatureT of the beam elec-
trons is determined by the photoemission process, which
metal photocathodes is less than 1 eV, and semicondu
cathodes are expected to be one order of magnitude sm
With these thermal effects, each beam slice’s phase s
would be a bi-Gaussian distribution whose rms ellipse has
area~the slice emittance! proportional to the thermal emit
tancepen,th . The emittanceen(z) defined by Eq.~5.10! rep-
resents a reversible emittance growth that can be corre
by proper beam manipulation, as we are discussing, w
the thermal emittanceen,th does not arise from reversibl
transformations and is, in this sense, a true Liouvillian
variant, as discussed in Ref.@15#. It should also be recalled
that we are neglecting the emittance due to nonlinear sp
charge fields in this discussion as well.

Assuming for the sake of discussion that t
two representative slices follow their own invar
ant envelopes, we have t̂15 t̂25 t̂5A8/3e2y/2,
which implies s15(2/g8)A(I /3I 0g)g(z50) and s2

5(2/g8)A(I /3I 0g)g(z5sz). For the invariant envelope, w

have ṫ̂/ t̂521/2, and thuss18 52(g8/2g)s1 and s28 5
2(g8/2g)s2 . It is readily verified that under these cond
tions where the normalized emittance defined by Eq.~5.10!
vanishes, the invariant envelope is the propagation m
where all the bunch slices are aligned in the transverse p
space.

Clearly, to achieve this ideal beam propagation mode
ery slice in the bunch must be matched at the invariant
velope, that is, sc(z)/AS(z)5 t̂c5A8/3e2yc/2

5A8g2/3gc ;z. This is an impossible condition to fulfil
and, in practice, only a small section of beam can be exa
matched. In this regard, the matching discussed above, d
ing with the conditionsLs andbs necessary to operate th
photoinjector on the invariant envelope, is clearly a r
matching, because the beam conditionst2 and ṫ2 @Eqs.~A7!
and~A8!# are given in terms of the rf and space-charge kic
averaged~in the rms sense! over the Gaussian charge distr
bution. Because of this, only a beam slice equivalent to
beam is matched; the other beam slices can be consider
general to be mismatched from their invariant envelop
The dynamics of these mismatched envelopes can be
lyzed by perturbation of Eq.~5.6! or its equivalent about the
invariant envelope of the matched slice. We thus assum
the following a rms matching and take the equivalent r
beam slice to bes25ŝ5 t̂ASs, with Ss[Srms>S(z
5sz), matched to the invariant envelopet̂, while s15( t̂
1dt)AS0 @with S0[(z50)# is slightly mismatched by a
quantitydt from its invariant envelope.

Substitutings1 ands2 in Eq. ~5.10!, and recalling that
s85(g8/g) ṫAS, we obtain
d-
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en~z!5
g

2
u~s21ds!s28 2s2~s28 1ds8!u

5
g8Sst̂

2
udt12dṫu. ~5.11!

Expressingen(z) in terms of physical quantities assoc
ated with the invariant envelope, we find that

en~z!>
1

g8 S Ig~sz!

3I 0g
D 1/2udsg812gds8u

5
ŝ

2
udsg812gds8u, ~5.12!

where we setg(0)51. We can see that the normalized em
tance is proportional to the beam size, which is monoto
cally decreasing on the invariant envelope; we shall n
show that the term inside of the absolute value sign is in f
bounded, and so the emittance also displays a gene
monotonically decreasing behavior.

We first study the behavior of deviations from the inva
ant envelope in Cauchy space, by linearizing Eq.~5.6!
around the solution represented by Eq.~5.8! to obtain, for the
small-amplitude motion about the invariant envelope

dẗ1V2dt2
e2ydt

t̂2
5dẗ1S 2V21

1

4D dt50, ~5.13!

showing an oscillatory behavior

dt5dtccos@v~y2yc!#1
dṫc
v

sin@v~y2yc!#,
~5.14!

dṫ52
dtc
v

sin@v~y2yc!#1dṫccos@v~y2yc!#.

for dt around the invariant envelope with frequencyv
5A2V211/4, with the constants of integration derived fro
conditions aty5yc . SinceV25(1/8)sin2^f&51/8, the mo-
tion around the invariant envelope is stable, so that any be
injected slightly mismatched to the invariant envelope w
follow a trajectory oscillating about it.

This stable motion has, like the small amplitude oscil
tions discussed in Sec. II, frequency independent of
space-charge strength. This is in fact a general propert
the superposition of a linear focusing force with associa
frequencyV and a repulsive inverse power law force~power
2a!, which has a particular equilibriumlike solution, in th
case the invariant envelope. The small amplitude oscillati
about this particular solution then have frequen
A11aV, which depends on the power exponent of the
pulsive force, butnot its strength, and is always proportion
to the linear focusing force strength.

It can be seen in this case that the total potential m
exhibit a local parabolic well at the intersection point of t
attractive and repulsive force terms. The potential terms
give rise to these forces are shown by the Hamiltonian as
ciated with Eq.~5.7!,
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H~y,z!5
pt
2

2
1F t

4G22e2yz lnt, pt[ṫ, ~5.15!

in the conjugate variables (t,pt). The HamiltonianH is not
a constant of the motion, as indicated by the explicit dep
dence on the independent variabley. The perturbed Hamil-
tonian, however, is a constant for small amplitude mot
about the invariant envelope. The resultant simple-harmo
small amplitude motion can be seen to be manifestly Li
villian, and the (t,pt) phase space area~an emittance, which
we discuss further below! is a constant of the motion as wel
This fact guarantees that the normalized emittance m
damp asg21/2, as illustrated by the two-point emittanc
given by the second form of Eq.~5.11!.

To further illustrate these points, it is perhaps more
structive to view the oscillations around the invariant en
lope in physical variables at this point. The physical spa
analogue to Eq.~5.13!, which describes oscillations about th
invariant envelope can be written as

ds91S g8

g D ds81
1

2 S g8

g D 2ds50. ~5.16!

This equation has the general solution

ds5dsccos~c!1&S gc

g8D dsc8sin~c!, with
~5.17!

ds852
1

&
S g8

g D dscsin~c!1dsc8S gc

g D cos~c!,
o
inn

.
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where c[(1/&)ln(g/gc), dsc5sc2(2/g8)AI /3I 0gc , and
dsc85sc81AI /3I 0gc

3/2 for the mismatched~core! envelope. It
can be seen that the determinant of the matrix of
(ds,ds8) transformation is simplygc /g, which is expected
from adiabatic damping of the transverse oscillations. Th
we see that thenormalized offset emittanceassociated with
the phase space of the perturbed oscillations centered on
invariant envelope is conserved. This is to be expected fr
the Liouvillian nature of the perturbed envelope system.

Before discussing a general distribution, we first exam
the behavior of the two-slice case introduced in Eqs.~5.12!.
In this case the emittance is given by

en~z!>
1

g8 S Ig~sz!

3I 0g
D 1/2u~dscg812dsc8gc!cos~c!

1~dsc8gc2dscg8!& sin~c!u. ~5.18!

Equation ~5.18! shows the expectedg21/2 damping of the
normalized emittance, with anharmonic oscillations of pe
odicity 2 times shorter than the period of the perturbatio
about the invariant envelope.

For the case of a generaln-slice distribution, with a sym-
metric spread in mismatch amplitude about the invariant
velope, it can be shown by extending the above argume
that the normalized emittance that is projected by this dis
bution of phase space orbits offset from the origin in pha
space has the form
en~z!5gH ^ds2&^ds82&2^dsds8&21ŝ2F ^ds82&1
g8

g
^dsds8&1S g8

2g D 2^ds2&G J 1/2
5H eoff

2 1ŝ2F ^~gds8!2&1g8^ds~gds8!&1S g8

2 D 2^ds2&G J ,1/2 ~5.19!
jec-
ase
where we have defined the normalized offset emittance
the distribution,

eoff>gA^ds2&^ds82&2^dsds8&2, ~5.20!

and the indicated averages are over then-slice distri-
bution. The normalized offset emittance is a constant
the motion; it can be evaluated, for example, at the beg
ing of invariant envelope propagation aseoff
>gA^dsc

2&^dsc8
2&2^dscdsc8&

2. It is also clear from Eqs
~5.17! that the term inside the square brackets in Eq.~5.19! is
bounded and oscillatory. Therefore we can write the gen
form of emittance evolution as

en~z!5Aeoff
2 1ŝ2~a1b cos2@c1uc# !, ~5.21!

wherea, b, anduc are constants describing the orientati
of the offset distribution, andc is as defined below Eq
~5.17!.
of
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FIG. 12. Schematic drawing of the phase space of a photoin
tor beam rms matched to an invariant envelope. The offset ph
space area is a Liouvillian invariant.
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A schematic picture of the phase space of a beam th
matched in the rms sense to the invariant envelope is sh
in Fig. 12. For the sake of illustration, the familiar form of a
ellipse is used to indicate the offset phase space distribu
boundary. This ellipse has an invariant areapeoff , and ro-
tates with the same frequency as the envelope oscillati
v54vp /). Figure 12 illuminates, by a phase space d
gram, the physical mechanism of emittance compensat
reassuringly, there is a Liouvillian space of orbits about
invariant envelope with conserved phase space area—
phase-space-centered rms emittance of the beam dam
the offset from the origin (ŝ,ŝ8) of the distribution ap-
proaches the origin in phase space. The normalized o
emittance can be therefore thought of as a strict lower bo
on the phase-space-centered normalized emittance of the
tribution. One cannot actually extrapolate the damping of
emittance to this level, however, as this would violate
assumption of quasilaminarity, which requires that the off
be larger than the spread of beam sizes in the distribut
This argument implies the normalized emittance must
several times larger thaneoff , when the emittance compen
sation process is halted by nonlaminar~crossover! beam tra-
jectories.

As a final note on the dynamics of emittance compen
tion in a long accelerating structure, we point out that as
beam exits the focusing solenoid, it has just passed its m
mum in beam size and local minimum in emittance. T
emittance would, in the absence of acceleration, tend to
again, but this rise is held in check by theg21/2 damping
effects predicted by Eqs.~5.18!–~5.21!. The emittance tends
not to damp much for one-quarter of a perturbed be
~plasma! oscillation after this point, because the orientati
of the offset ellipse major axis moves towards normal to
nominal phase space angle of the invariant envelope. O
after the ellipse major axis begins rotating back towa
alignment with the average phase space angle does the
tance damping become more apparent, as has been ded
from multiparticle simulations. In fact, this rotation tends
occur after the beam exits the accelerating structure, bec
the phase advance of the plasma oscillation is slowed by
acceleration process. This can be quantified as follows:
phase advance between where the beam is focused ont
invariant envelope~the exit of the solenoid! and where the
emittance minimum occurs must be between one-qua
and one-half of a wavelength, orp/2,(1/&)ln(g/gc),p
@recalling that the phase advance is defined asc
[(1/&)ln(g/gc)#. This gives a multiplication of the energ
beyond the solenoid of between 9.2 and 85. Even the sm
of these numbers implies a structure over 25 cells lo
which is longer than any integrated photoinjector yet built
a factor of 2. Thus the final compensation must occur wit
the drift space after the exit of the accelerating structu
where the beam is small~and nearly parallel, as is discusse
in Sec. VII!, and its plasma frequency nearly constant,
stead of diminishing asvp}g21}z21 in the accelerating
case.

These effects are illustrated well by a PARMELA sim
lation of a new 1111/2 cell, 2856-MHz rf photoinjector cur
rently under design at UCLA. In this case, a solenoid fie
as calculated by the magnetostatic simulation codePOISSON,
is localized in the initial 2.5 cells of the structure to close
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approximate the analytical model we have used. The be
charge is 1 nC and the rms bunch length is 0.78 mm, with
associated current of 111 A, and the peak acceleration
dient on axis in this structure is 60 MeV/m (a50.98). The
evolution of the rms emittance, the rms beam envelope,
the invariant envelope obtained from this simulation a
shown in Fig. 13. It can be seen that the beam envelop
close to the invariant envelope in the photoinjector, b
slightly larger and more convergent. After the photoinjec
exit the beam envelope converges to below the invariant
velope, and compensation of the emittance takes an a
tional 2 m drift. The convergence of the beam to a den
focus in the drift also serves to increase the plasma freque
and decrease the length to compensation.

This example illustrates that one must be careful in int
preting the g21/2 dependence of the emittance evolutio
found in the above analysis. It may be more illustrative
cast the assertion in a different light, by stating that the em
tance scales ass, and that the invariant envelope propagati
is the generalized equilibrium mode that must be followed
achieve this scaling with bunch size.

VI. PHOTOINJECTORS WITH COMPACT GUNS
AND BOOSTER LINACS

While the long rf photoinjector analyzed thus far is e
countered in practice, with the noted examples of the LAN
~Los Alamos National Laboratory! photoinjectors APEX
~advanced photoinjector experiment! and AFEL, it is much
more common experimentally to employ a compact rf gu~
N11/2 cells,N<3! followed by a drift space and a booste
linac. In this configuration, the beam is focused near the
of the gun by a strong solenoidal field. The beam then dr
after focusing, undergoing a diminishing phase of an em
tance oscillation as the beam becomes smaller, eventu
minimizing as a space-charge-dominated beam wais
reached. The booster linac entrance is placed at this poin

FIG. 13. PARMELA simulation of 1111/2 cell, 2856-MHz rf
photoinjector currently under design at UCLA. The solenoid field
localized in the initial 2.5 cells of the structure,Q51 nC andsz

50.78 mm (I5111 A), andE0560 MeV/m. Resulting evolution
of rms emittance, and beam envelope, as well as the invariant
velope are plotted. Compensation occurs far after the photoinje
exit.
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7580 55LUCA SERAFINI AND JAMES B. ROSENZWEIG
begin acceleration, extending further the process of em
tance compensation. This waist should be chosen to b
give a small emittance at the waist point and to match on
the invariant envelope associated with the beam current a
energy, as well as the linac accelerating gradient. An illu
trative example of such a system is shown in Fig. 14~a!,
which displays the rms envelope and emittance evolution
the beam in the TTF-FEL~Tesla Test Facility–free electron
laser! photoinjector as obtained from a particle-in-cell simu
lation performed withITACA @13#. The analytical prediction
of the correct invariant envelope in this case is shown f
comparison in Fig. 14~b!. It is very close to this optimization
found by performing many such simulations, thus validatin
the approach to photoinjector design we have deduced fr
this analysis.

The numberN of full cells in the gun is a variable in this
analysis, but the validity of the approach followed here
confined to a few cells. The most commonly encounter

FIG. 14. ~a! Envelope and emittance evolution of the beam
the TTF-FEL photoinjector as obtained from particle-in-cell simu
lation. The analytical prediction of the correct invariant envelope
this case is shown for comparison in~b!.
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case in practice, of course, is one full cell. We will als
consider, as a particular case, the possibility to slightly v
the length of the first half cell, as it is known from exper
ence that a slightly longer~typically 0.625 instead of 0.5!
first cell gives better performances in terms of emittance c
rection. This generalization, while a departure from t
model employed in the previous sections, is necessary fo
accurate comparison of the theory to actual rf photoinjec
configurations.

The basic strategy of the analysis presented in this s
tion, in which we must specify the optimum envelope beha
ior in the drift space, is not a search for an invariant e
velopelike solution, but a matching of the beam envelo
from the drift space to the invariant envelope of the boos
linac. The model in this case is slightly changed with resp
to that shown in Fig. 3: first, the pointzc is now located at a
variable position given byzc5@(11d)/21N#(l/2), which
becomes the end of the rf gun cavity structure, and the
ginning of the drift section. Here the quantityd accounts for
a change in the first half cell length, i.e.,d50.25 indicates a
25% lengthening~0.625 cell!. We will also show that, as
expected, the optimum field profile for the solenoid mag
is different from the previous~long gun! case, where the
magnetic field begins atzB15l/8 and ends atzB25(5/4
11/8)l. For the compact injector the field start position
shifted downward atzB15l/2, while the end position is
shifted downward atzB25(7/4)l. As discussed in the fol-
lowing, the longer magnetic field profile is needed to provi
more focusing from the solenoid in a case where the p
deromotive rf focusing in the following cells is not onl
missing, but the exit defocusing transient kick at the end
the gun must be overcome.

The beam energygc ~at z5zc! now becomesgc5g2
1(N21)pa, with

g25F11
3

2
pa GF11

5

12
d2S 521

p2

3 D d2

24G
again the energy at the second iris position~as derived in
Appendix A!. Since the drift space downstream ofzc is free
from any accelerating and/or focusing force, the rms en
lope equation becomes, in this case,

s92
P

s
2

en,th
2

s3gc
2 50, ~6.1!

wheres95d2s/dz2 andP[I /2I 0gc
3 is now defined as the

beam perveance~the assumptiongc@1 is understood!. Ac-
cording to the assumption of quasilaminarity, we neglect
emittance term and cast Eq.~6.1! into the space (n,z) as

n921/n50, ~6.2!

wheren(z)[s(z)/AP. Typical values for the perveance ar
in case of a 100-A beam atgc5115p/2>9, P>431026,
so that for a 1-mm beam spot size the quantityn is of the
order of 1, as isn8 whens8 is a few mrad. Equation~6.2!
can be derived from a HamiltonianH5pn

2/22 ln n ~with pn

[n8!, whereH is now a constant of the motion, so that

n85Anc8
212 ln~n/nc!, ~6.3!

-
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which gives the trajectory solution for Eq.~6.2! in integral
form:

E
1

n/nc dx

Anc8
212 lnx

5
z2zc

nc
. ~6.4!

This equation actually represents a universally sca
beam spreading curve, representing a universally sc
space-charge beam blowup.

The integral in Eq.~6.4! is not analytically solvable unles
the approximationu12n/ncu!1 is assumed, which is in fac
typical of a rf gun operated in the emittance compensa
regime, as the beam size oscillations must be kept small
to prevent nonlaminar trajectories and to keep the oscilla
frequency nearly independent of the perveance. Indeed
practice, the beam exits the gun with a small negative div
gencesc8 , so that it is transported up to a space-char
dominated waist with a spot size usually slightly smaller th
sc . In this case the approximate solution is

n~z!5ncH 22Unc2nc8Dz

ncnc81DzU
3S 11nc8

2

11@~nc2nc8Dz!/~ncnc81Dz!#2
D 1/2J , ~6.5!

whereDz5z2zc . It is interesting noticing that Eq.~6.5!
actually represents a generalization of a previous result
rived by Reiser@18#. The initial conditions (nc ,nc8) are
given, in terms of the beam conditions at the gun e
(tc ,ṫc), by

nc5
tc
g8

S gc
3

g2
D 1/2, nc85S ṫc1

tc
2 D S gc

g2
D 1/2, ~6.6!

recalling that (nc ,nc8) correspond to actual envelope va
ables, which Eq.~6.6! connects to (tc ,ṫc), which are secular
envelope variables.

In order to match to the invariant envelope at the entra
of the booster linac, we need to find the conditions un
which the phase space angle corresponding to the solutio
Eq. ~6.2! is invariant with respect to the beam currentI , or,
equivalently, to the perveanceP. This is also equivalent to
requiring

d~s8/s!

dP
5
d~n8/n!

dP
5

1

n2 S n
dn8

dP
2n8

dn

dPD50. ~6.7!

Since dn8/dP5(1/n8n)dn/dP @see Eq. ~6.3!#, we have
d(n8/n)/dP5(1/n8n2)(12n82)dn/dP. Therefore, d(s8/
s)/dP50 if eithern8251 for all z @which is not possible to
fulfill, because it is not a solution of Eq.~6.2!# or dn/dP
d
ed

n
th
n
in
r-
-
n

e-

it

e
r
to

50. Sincen depends onP through the initial conditions
(nc ,nc8), the conditiondn/dP50 is equivalent to

dnc
dP

5
dnc8

dP
50, ~6.8a!

which in turn is equivalent to the condition

dtc
dL

50,

dṫc
dL

50, ~6.8b!

where the Cauchy current density is given byL
5I /(g8s r)

2.
It should be noted, however, that the invariance of

phase space angle at the end of the drift given by Eq.~6.7! is
achieved only through the invariance of the initial conditio
versus the current. The reason for this is that the phase s
anglen8/n associated with Eq.~6.5! is not intrinsically in-
variant, unlike the case of the invariant envelope, where

phase space angle is a constantṫ̂/ t̂521/2. In this respect,
Eq. ~6.2! does not display any invariant envelope solutio
i.e., any solution for whichn8/n5const equivalent to the
Brillouin flow condition given in Eq.~2.2!, where the phase
space angle is again a constantseq8 /seq50.

To better clarify this point let us examine the equation
small deviationsdn around an equilibrium solutionn0 of Eq.
~6.2!. Assumingdn/n0!1, we find

dn91
dn

n0
2 50, ~6.9!

giving stable oscillations with frequency 1/n0 around the
equilibrium solutionn0 . As far as the beam envelope can
represented by the approximate solution@Eq. ~6.5!# in the
drift space, implying that the beam size varies slightly b
tween the initial conditionnc and the beam spot at the wai
nw , we may identifyn0 roughly with the expression of Eq
~6.5!, so that the drift space up to the waist~and slightly
further away! is comparable to a quasi-Brillouin flow cond
tion with a local stability condition similar to the one de
scribed in Sec. II. Since the beam size, in the absence of
focusing, grows indefinitely after the waist, the frequency
oscillation 1/n0 around the equilibrium solution is decreasin
and the nonlinearities@see Eq.~2.9!# in the oscillations pre-
clude any further vanishing point in the correlated emittan
as clearly illustrated in examples shown below.

It is interesting to notice that Eqs.~6.8! are equivalent to a
vanishing correlated emittance at thewaist position; this re-
quires that the waist positionDzw[zw2zc and the waist
beam spot sizenw are independent of the perveance,
dDzw
dP

50,
dnw
dP

50,

with
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Dzw5ncf ~nc8!, f ~nc8![E
e2nc8

2/2

1 dx

Anc8
212 lnx

, nw5nce
2nc8

2/2. ~6.10!

FIG. 15. Plot of the function

f (nc8)5*
e2nc8

2/2

1
dx/Avc8212 ln x

~dots!: the solid line gives a fit of
the function, namely, g(nc8)
51.09nc8/1.691nc8

2

10.423nc8e
20.296nc8

2
.

o
-
e

s
m
th

m
t

te

n

e-
id

ed at
1

can

e

q.
Note the elegant expression fornw as a function ofnc and
nc8 , which physically indicates that a beam focused t
strongly ~i.e., nc8,22! will not come to a laminar space
charge-dominated waist but will likely come to an emittanc
dominated nonlaminar waist.

The functionf (nc8) is plotted versusnc8 in Fig. 15. For the
purpose of further analysis, we note thatf (nc8) can be ap-
proximated ~within a 5% error! by the function g(nc8)

51.09nc8/(1.691nc8
2)10.423nc8e

20.296nc8
2
, in the rangeunc8u

<6. This range easily covers all rf photoinjectors of intere
as a larger value ofunc8u implies a strongly convergent bea
that will be susceptible to nonlaminar behavior near
waist. The conditions in Eq.~6.10! are now written explicitly
in terms of the initial conditions at the start of the drift as

f ~nc8!
dnc
dP

1nc
d f~nc8!

dnc8

dnc8

dP
50,

dnc
dP

2ncnc8
dnc8

dP
50. ~6.11!

This system of equations allows solutions different fro
dnc /dP5dnc8/dP50 if the determinant of the coefficien
matrix, detM52nc@nc8f(nc8)1df(nc8)/dnc8#, is vanishing. By
applying the Leibniz formula for the derivation of defini
integrals, we findd f(nc8)/dnc8512nc8 f (nc8), so that detM
52nc , which can never be vanishing, implying that the co
ditions dnc /dP5dnc8/dP50 and @dDzw /dP50; dnw /dP
50# are in fact equivalent.

In order to derive the solution to Eq.~6.8! in terms of the
beam conditions (t2 ,ṫ2) at the second iris position (z
o

-

t,

e

-

5z2), as reported in Appendix A, we approximate the env
lope equation in the region of drift with applied soleno
field ~i.e., z2,z,zB2! as

n91Krn51/n2 , ~6.12!

wheren2[s2 /AI /(2I 0g2
3), andKr5(bg8/g2)

2, and so the
space-charge term is taken as a constant, its value assum
the gun exit. This is valid at the present point only for a
11/2 cell gun, for which the beam energy at the exit,g2 , is
constant all over the drift space: however, the treatment
be easily generalized to the case of aN11/2(11d) cell gun.
In theN51 the drift space is divided into two parts. In th
first one, fromz5z25(3/4)l up toz5zc5zB25(7/4)l, the
beam is subject to a focusing solenoid field, while forz
.zc the drift is in free space. Under this approximation E
~6.12! can be easily solved to find

nc5n2cosu1
~12cosu!

n2Kr
1n28

sinu

AKr

,

~6.13!

nc852n2AKrsinu1
sinu

n2AKr

1n28 cosu,

whereu5AKr(z2z2), and hence

dnc
dP

5
dn2
dP Fcosu2

~12cosu!

n2
2Kr

G1
dn28

dP

sinu

AKr

,

~6.14!

dnc8

dP
5
dn2
dP F2AKrsin u2

sinu

n2
2AKr

G1
dn28

dP
cosu.
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The determinant of the coefficient matrix is derived to
detM2511(12cosu)/n2

2Kr , which clearly implies detM2

.1, indicating that the only solution isdn2 /dP5dn28/dP
50, which we know to be equivalent to

dt2
dL

50,
dṫ2
dL

50, ~6.15!

wheret2 andṫ2 are specified in Eqs.~A7! and~A8! as func-
tions of (a,A,L,b). Following the same procedure as
Sec. V, we solve these two equations by expressing t
roots asL5L(a,A) andb5b(a,A). The system is highly
nonlinear, so that we start by expressing the first part of E
~6.15! as

dt2
dL

5
1

L H S L2g2

I 0
D 1/2 pz~A!

4 F12
ln g2

g221G2t2/2J 50,

~6.16!

which can be solved for the variable

b5&H 11S 12
pz~A!L

4I 0
D F12

ln g2

g221G J 1/2Y lnS g2

gb
D .

Substituting back into the second part of Eqs.~6.15!, we
obtain an equation inL, a, andA. By a fitting procedure we
obtain the following solutions:

Lopt@kA#557.3212.4a12.63a2126.2A21.78aA

11.86A2 ~6.17!

and

bopt51.491
1.67

Aa
2
2.07

a1/4 . ~6.18!

The Cauchy perveanceLopt is plotted in Fig. 16~solid
lines! as a function ofa for some usual values ofA. It is
interesting to note thatLopt is nearly independent ofa for
a>1.5, while it decreases almost linearly witha for a

FIG. 16. Operating diagram in the (a,A) plane for a short~1
11/2 cell! photoinjector.
ir

s.

<1.5. Its dependence onA is fairly linear in most of the
diagram, so that the following scaling laws hold:

Lopt} HA if a>1.5,
A~32a! if a<1.5, ~6.19!

which can be cast in terms of the bunch chargeQb , cathode
spot sizes r , accelerating gradientg8, and rf wave number
k,

Qb}H s r
3g82 if a>1.5

s r
3g82~32g8/k! if a<1.5,

~6.20!

which resemble the scaling laws reported in Ref.@17#.
As in Fig. 6, the Cauchy perveanceLmax @see Eq.~5.5!#

compatible with the maximum charge limit is plotted in Fi
16 ~dotted lines! for a bunch lengthsf52° ~the higher line!
andsf54° ~the lower line!. The parameterbopt, which rep-
resents the ratio between magnetic and rf focusing, turns
to be nearly independent of the aspect ratioA, as shown in
Fig. 17, wherebopt is plotted as a function ofa for different
values ofA @it should be noted that Eq.~6.18! displays a
simplified form forbopt, which has already removed the ve
weak dependence onA#. It should be also noted thatbopt is
much higher than the analogous parameterbs ~see Fig. 7!
required in the case of the indefinitely long photoinject
This is due to the facts that, not only is the additional
focusing applied in the long photoinjector missing here, b
the transient defocusing at the end of the gun occurs
large beam spot size; these effects create the need for
hanced focusing from the external solenoid.

The current densityJ corresponding to theLs lines is
plotted~solid lines! in Fig. 18, for some selected rf frequen
cies ~0.65, 1.3, 3, and 6 GHz!, at aspect ratioA51. The
maximum limits for the current density are also reported,
the case of s l55 psec ~higher dashed line! and s t
510 psec~lower dashed line!. The required cathode spo
sizes r ~for the case of a 1-nC bunch charge! are plotted in
Fig. 19, for the same set of frequencies and at differ
bunch aspect ratios.

It should be noted that the operating point to achieve
emittance compensation shown in Figs. 14~a! and 14~b! has
been derived by the operating diagram in Fig. 16, selec
the pointa51.8, A51/2, L556 kA, giving at theL band
E0550 MV/m, s r50.76 mm, and I578 A, I1597 A,

FIG. 17. Parameterbopt, plotted as a function ofa, at some
values of the bunch aspect ratioA.



r

7584 55LUCA SERAFINI AND JAMES B. ROSENZWEIG
FIG. 18. Current densityJ plotted as a func-
tion of the cathode peak fieldE0 @MV/m#, at
different rf frequencies, for a short photoinjecto
operated in the emittance correction regime.
iz
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I2553 A ~for a 1-nC bunch charge!. The magnetic field pa-
rameter isbopt50.94, corresponding toB051.57 kG.

We have already solved exactly for the beam waist s

nw5nce
2nc8

2/2, but have not explicitly given an expressio
for the position of the space-charge-dominated waist w
the gun is operated under the conditions specified by E
~6.17! and ~6.18!, as required to achieve emittance corre
tion. We restrict the discussion here to the case ofN51, but
the results are easily extendible toN>2. At the gun exit (z
5z2) we have @cf. Eq. ~6.6!# n2

opt5(t2
opt/g8)g2 , n28

opt

5( ṫ2
opt1t2

opt/2), where the superscript opt indicates that
have substituted Eqs.~6.17! and ~6.18! into ~A7! and ~A8!,
so thatt2

opt, ṫ2
opt, n28

opt are now functions of onlya andA,
while n2

opt can be represented by a function ofa andA di-
vided by g8, e.g., n2

opt[ f n(a,A)/g8. Substituting n2
opt,

n28
opt for n2 , n28 in Eq. ~6.13!, we find

nc
opt5

1

g8 F f ncosu
opt1

~12cosuopt!

f n~bopt!2
g2
21n28

opt sinu
opt

bopt
g2G ,
(6.21)

nc8
opt52 f n sinu

opt/g21
sinuopt

f nb
opt g21n28

optcosuopt,

where, again,nc8
opt is a function of onlya andA, andnc

opt

can be represented by a function ofa and A divided by
e

n
s.
-

g8, since the term inside square brackets is a function
only a andA @uopt5bopt(gc2g2)/g2#.

Now employing Eq.~6.10! we finally find the waist posi-
tion zw

opt and spot sizesw
opt under optimum operating condi

tions,

zw
opt5 7

4l1
1

g8
@10.8a11.48a221.18A21.07aA23#,

~6.22!

sw
opt@mm#5

AI @A#

g8@m21#
@3.7611.56a21.58a210.26a3

10.56A10.914aA20.11a2A20.15aA2#.

~6.23!

As an example, for anL-band injector operated atn rf
51.3 GHz, with E0556 MV/m ~g8555 m21, and a52!
the optimumL at A51 will be Lopt568 kA, while bopt

50.92, so that the solenoid field will beB051.7 kG.
Assuming a bunch chargeQb51 nC, the laser spot size
at the cathode s r will be, recalling that s r

5A3 (c/A2p)QbA/Lg82, s r50.84 mm. The beam curren
will be given by I5Qbc/A2psz5QbcA/A2ps r5142 A,
so that the beam spot size at the waist will besw

opt

50.94 mm, while at the gun exits251.9 mm. The waist
in
FIG. 19. Cathode spot sizes r , plotted vs the
cathode peak fieldE0 @MV/m#, at different rf
frequencies, for a short photoinjector operated
the emittance correction regime.



rt and

g

55 7585ENVELOPE ANALYSIS OF INTENSE RELATIVISTIC . . .
TABLE I. Properties of invariant envelope flow, where possible, in various types of beam transpo
acceleration.

Beam transport Invariant envelope Space Emittance dampin

Standing wave linac Secular

2e2y/2

Ah/2 sin2^f&11

Cauchy
dimensionless

Yes

Standing wave linac
plus solenoid

Secular

e2y/2

A~h/81b2!/sin2^f&1 1
4

Cauchy
dimensionless

Yes

Traveling wave
linac

Actual
2e2y/2

Cauchy
dimensionless

Yes

Traveling wave
linac plus solenoid

Actual

e2y/2

Ab2/sin2^f&11
4

Cauchy
dimensionless

Yes

Drift No Real dimensionless No
Drift plus solenoid Brillouin Flow

seq5AP/Kr

Real dimensionless No
t
o
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will be located atzw
opt50.793 m. It is remarkable to note tha

the waist position scales with explicit dependence only
the rf field and wavelength, not the bunch charge and
current ~which are derived quantities!, in agreement with
what is observed in Ref.@17#.

For the case where the first half cell is lengthened
20%, as is done in many new rf gun designs, we have re
culatedLopt andbopt to obtain

Lopt@kA#558.33211.83a12.52a2127.34A21.816aA

11.88A2 ~6.24a!

and

bopt51.381
1.52

Aa
2
1.86

a1/4 , ~6.24b!

i.e., behavior very close to that of the standard half cell. T
predicted position and spot of the waist now become

zw
opt5 7

4l1
1

g8
@9.94a12.59a210.18A22.65aA22.96#,

~6.25!

sw
opt@mm#5

AI @A#

g8@m21#
@5.212.14a21.77a210.27a3

10.19A10.95aA20.058a2A20.19aA2#.

~6.26!

Taking the same example as before, i.e., for an injec
operated at the L band (n rf51.3 GHz) and E0
555.7 MV/m ~henceg8554.6 m21 anda52! the optimum
L, atA51, is nowLopt570.4 kA, whilebopt50.89, so that
the solenoid field will beB051.64 kG. The relaxation of the
magnetic field required reflects the additional rf focusing t
the elongated cell provides. With a bunch chargeQb
51 nC, the laser spot size at the cathodes r is now s r
n
r

y
l-

e

r

t

50.83 mm, and the beam current becomesI5144 A, so that
the main parameters are almost unchanged, as is the w
position, which iszw

opt50.804 m. On the other hand, sinc
the beam does not expand as much before solenoid focu
the beam spot size at the waist is now larger, beingsw

opt

51.3 mm.
The behavior of the emittance evolution after the injecti

of the beam into the booster linac is closely related to t
discussed at the end of Sec. V concerning the case of a
injector. In the present case, however, the beam has b
already compensated at the entrance of the linac, in the s
that the beam has undergone a full envelope oscillation,
has achieved a local minimum in both emittance and en
lope. Therefore the emittance will again tend to rise, but
damping effects of operation near the invariant envelo
hold this rise in check. A further diminishing of the emi
tance is expected after an additional perturbed beam e
lope ~plasma! period, as is illustrated in Fig. 14~a!. This
‘‘double’’ compensation shows the power of the split gun
booster linac configuration.

VII. CONCLUSIONS

We have discussed, in some detail, the properties of
invariant envelope, which is a particular beam propagat
mode characterized by a phase space angle that is a g
constant. Under the hypothesis of quasilaminarity, which
equivalent to the assumption that the beam is space-ch
dominated and the number of plasma oscillations conside
are small~in order to avoid transverse and longitudinal mi
ing!, we have shown that the invariant envelope is a pro
gation mode that damps the correlated emittance—prov
emittance compensation—so that the possible emittance
lution of a beam, due to longitudinal-transverse correlatio
caused by either space charge or any other source~rf, etc.!,
can be corrected by transporting the beam under an inva
envelope mode. While we have concentrated here on st
ing wave linacs, the invariant envelope exists in other typ
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of structures, with and without externally applied focusi
forces, as summarized in Table I.

In general, rf linacs allow acceleration under the invaria
envelope both in standing and traveling wave operat
where the correlated emittance oscillations are damped
to acceleration, as on the invariant envelope the beam s
and eventual compensated emittance diminishes asg21/2.
For completeness, we have shown in the table the invar
envelope associated with the cases of both traveling
standing wave linacs with additional uniform solenoidal f
cusing. Traveling wave linacs operated with an extra m
netic focusing may be in principle equivalent to standi
wave linacs, where the focusing is provided by the rf po
deromotive effect, as long as the magnetic focusing ratib
[cB0 /E0 is chosen to have the valueb5Ah/2.

Drift spaces, on the other hand can be operated in
invariant envelope only with an external focusing to set u
true Brillouin flow condition: the motion in the drift spac
after a compact photoinjector is, in this respect, only an
proximation of the invariant envelope. In any event, spa
charge-driven emittance oscillations are not damped in dr
so that one must quickly accelerate the beam after the d
starting from the first emittance minimum, in order to avo
the onset of wave-breaking processes~i.e., nonlaminar ef-
fects due to nonlinearities!, which transform the reversible
emittance oscillation into an irreversible, thermal-like em
tance growth as discussed in Ref.@19#.

A transport line made by different sections that are
operated under their own invariant envelope mode is
course a globally invariant envelope beam propagation.
final design of a photoinjector that is be operated in the id
emittance correction regime will be therefore made up by
interlocked sequence of accelerating and drift sections p
erly matched and operated under invariant envelopes. C
must be taken that this array includes the final transport fr
the booster linac to the application, so as to avoid emitta
growth after initial compensation: this is of course true as
as the beam is still space-charge dominated in the sense
cussed above in this paper. In general this means, for tr
port that is longer than one-quarter of a plasma wavelen
that the beam be focused often enough~typically by quadru-
poles! to approximate Brillouin flow after the photoinjecto
linac, with the beam controlled so as to not make large
cursions in spot size. For discrete focusing elements suc
quadrupoles, this means that the elements must be pl
within one-quarter of a plasma wavelength of each other

In matching different sections one should, however,
careful about what kind of orbit the invariant envelope
expressed as:secularor actual. In standing wave linacs th
envelope is given in terms of a secular orbit, i.e., an o
averaged over the cell-to-cell oscillations, so that at the
trance of the structure one must subtract a focusing kick
strengthDs852g8s/2g to the beam envelope condition
of the previous section in order to match the secular en
lope. In the case the previous section is the drift space
tween the short rf gun and a booster linac, one should p
tion the space-charge-dominated waist directly at
entrance of the linac, as discussed in Sec. VI: the ini
divergence of the secular envelope in the booster will be
this ways852g8s/2g, which is exactly the first condition
on the invariant envelope. The second condition, i.e.,s
t
n
ue
ot,

nt
d

-

-

e
a

-
-
s,
ft,

-

ll
f
e
al
n
p-
re
m
e
r
is-
s-
h,

-
as
ed

e

it
n-
f

e-
e-
i-
e
l
n

5(2/g8)AI /3I 0g, can be easily achieved by simply tunin
the accelerating gradientg8 for a given energy, current, an
spot size of the beam at the booster entrance. It is remark
to note that this prescription on the matching condition h
been observed in several simulations of rf photoinject
@20#.

If the booster linac is as well approximated as the p
traveling wave structure the matching conditions may se
different because the invariant envelope is expressed in te
of the actual physical orbits5(2/g8)AI /2I 0g. It should be
noted, however, that this orbit still has the same associa
phase space angles852g8s/2g, and that physical transien
kick applied at the booster entrance is identical to that
plied in the standing wave case. Thus a parallel beam sh
still be injected into a traveling wave booster in order
match the invariant envelope conditions, as is again in ag
ment with the results of multiparticle simulations@21#. It can
therefore be seen that the natural matching of a parallel b
from a drift to the invariant envelope in an accelerating s
tion is in fact due to the fortuitous relationship between ad
batic damping in trace space and the transient kick the
ticles feel as they enter the accelerator. This relationship
be explained by a Hamiltonian approach to the dynamics;
radial entrance kick is set by the need to conserve canon
momentum. As the particle enters the accelerator, it m
pick up a radial mechanical momentum opposite to the ra
field momentum, which is proportional tog8, a condition
that guarantees that a generalized Brillouin equilibrium~in-
variant envelope! can be obtained.

As a final related example, in the case of a long multic
rf photoinjector structure we recall that the beam, if tran
ported under the invariant envelope, must also leave the p
toinjector cavity with zero divergence. Due to the typic
high energy of the beam, as in the case of the 1011/2 cell
AFEL photoinjector@22#, the beam envelope is assumed
stay parallel for a long drift after leaving the photoinject
@23#. Therefore, a parallel matched beam emerging from
long multicell photoinjector is therefore a sign of proper o
eration in the emittance compensation regime, as experim
tally observed@24#. To restate the conclusions of the prev
ous paragraphs, parallel beams, which are the analogu
the invariant envelope in a drift, match invariant envelop
upon both entrance and exit to accelerating sections.

We have pointed out that most emittance compensa
photoinjectors are operated near the optimum conditions
dicted by the theory presented in this paper. These co
tions, in which the beam is nearly matched to generaliz
equilibria, have been discussed in detail in this work, a
prescriptions for obtaining them have been given for ma
cases of interest. These prescriptions, and the general p
cal reasoning behind their generation, can therefore be c
sidered to be guides for optimized performance of spa
charge-dominated beams undergoing acceleration, focus
and drifts.

In the future, this work will be extended to allow an es
mate of the residual emittance of a beam after compensa
The most readily identifiable sources of residual emittan
are thermal cathode effects, radial nonlinearities, amplit
dependence of beam oscillation frequencies, and beam p
space bifurcations. The effects of radial nonlinearit
~within a slice! under laminar conditions are not problemat



m
t
t
ud
pe
m
-
ity
is
a
a
st
fo
n
ua
th
pa
na
to
ec
te
e
pl
-
im
th
is
he
on
nd

ric
h

f
ns

y
fu
pa
9
io
le

.
si

a
g

am
sing

o-

ue

o

55 7587ENVELOPE ANALYSIS OF INTENSE RELATIVISTIC . . .
since the radial electric field will depend only on the bea
size and the enclosed current. Under these conditions,
envelope approach can be easily extended to show that
source of emittance behaves exactly as the linear longit
nally correlated emittance discussed so far in this pa
Likewise, amplitude-dependent frequency effects, anhar
nicity of different slice motion, which do give rise to a re
sidual correlated emittance due to dynamical nonlinear
are treatable within the context of a laminar beam analys

On the other hand, thermal cathode effects and ph
space bifurcations are beyond the reach of laminar be
analysis, by definition. Because cathode effects are truly
chastic and not dependent on beam dynamics, they there
can be considered to be an uncorrelated source of emitta
which can neither grow nor diminish. This source of resid
emittance must be determined by experimental study of
photoelectric emission process. The subject of phase s
bifurcations is perhaps the most challenging from the a
lytical point of view. The bifurcation in this case is due
beam slices that have ‘‘crossover’’ waists, in which the el
trons cross the axis, and the minimum beam size is de
mined by the slice emittance. This type of event is term
wave breaking in phase space, and represents a com
local violation of the laminarity condition. When bifurca
tions are typically encountered, one enters a hybrid reg
where the beam tails are emittance dominated while
beam core is still in laminar space-charge flow. While it
not clear how to deal with this case within the context of t
present approach, it is clear that this effect is a major c
tributor to emittance growth in rf photoinjector beams, a
must therefore be seriously explored.

In addition to these extensions to cylindrically symmet
beam analysis, the generalization of this analysis to hig
asymmetric beam (sx@sy) and emittanceex@ey photoin-
jectors @20,25# is straightforward. This subject which is o
high interest for linear collider electron source applicatio
is planned to be explored in a forthcoming investigation.
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APPENDIX A

The expressions for the beam exit conditionss2 ands28 at
the second iris locationz5z2 are reported in this Appendix
The expressions given have been derived for a Gaus
charge distribution in the bunch, of dimensionss r andsz ,
with the range of validity specified bya.1/2 andQb@nC#
,E0@MV/m#/10, as extensively discussed elsewhere@7#.
The formulas reported here correspond to the particular c
f5p/2 examined in Ref.@7#, augmented with the focusin
effects of the solenoidal magnetic field.

Let us define the beam energyg1 andg2 at the first and
second iris locations, namely,g1511pa/2 and g251
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13pa/2. The solenoid field starts atzb5l/8 and extends to
zc5(1/815/4)l, and the transverse forces imparted to be
electrons during acceleration are represented by a defocu
rf term Dprf, a defocusing space-charge termDSC, and a
focusing termDB produced by the magnetic field of the s
lenoid. Expressed in terms of two auxiliary quantities,m
5(1

`an ~m51 for an ideal first harmonic field for which
a151, a35a55•••50! and mSC5pI z(A)/4I 0g82s r

2, they
take the form

Dprf5mF11m2
m ln~g1!

g121 G2
h„12~a/4! !2…ln~g2!

8

3F11m2
m ln~g1A3 g2!

2~g121!
G , ~A1!

DSC5~m1mSC!F12
ln~g2!

g221G , ~A2!

DB5b2ln2~g2 /gb!/2. ~A3!

In practice the rf term, which is a function only ofa, is
nearly constant with a slight oscillation around the val
1.06 all over the range 1/2,a,3, as shown in Ref.@7#, for
the case ofm5h51. In the following we will therefore take
Dprf51.06.

Finally, the beam exit conditionss2 ands28 are

s25s r~11DSC2DB!, ~A4!

s285sorb8 2
g8

2g2
s2 , ~A5!

wheres28 is the secular envelope divergence, whilesorb8 is
the actual orbit divergence:

sorb8 5
g8

g2
s r@1.061mSC22DB~11DSC2DB!/ ln~g2 /gb!#.

~A6!

The space-charge impulse factormSCcontains a geometric
form factor j(A) ~see Appendix B!, which depends on the
bunch aspect ratioA approximately asj(A)51/(2.45
11.82A5/420.55A3/2).

According to the normalization applied in Sec. IV t
transform the transverse beam sizes into the dimensionless
quantity t, defined ast5s/AS with S5I /2I 0g82g2 , we

give here the corresponding quantitiest25s2 /AS and ṫ2
5g2s28/g8AS. Using the quantityL defined in Sec. V,L
5I /g82s r

2, the dimensionless beam conditionst2 , ṫ2 , and
t2
orb become:
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t25S 2I 0g2

L D 1/2H 11S m1
pz~A!L

4I 0
D F12

ln~g2!

g221G2b2ln2~g2 /gb!/2J , ~A7!

ṫ25S 2I 0g2

L D 1/2H 0.562 1

2 F12
ln~g2!

g221G1
pz~A!L

8I 0
S 11

ln~g2!

g221 D1b2 ln2S g2

gb
D Y 42b2 lnS g2

gb
D F11S m1

pz~A!L

4I 0
D

3S 12
ln~g2!

g221 D2b2lnS g2

gb
D Y 2G J , ~A8a!

ṫ2
orb5S 2I 0g2

L D 1/2H 1.061 pz~A!L

4I 0
2b2lnS g2

gb
D F11S m1

pz~A!L

4I 0
D S 12

ln~g2!

g221 D2b2ln2S g2

gb
D Y 2G J , ~A8b!

which are functions of only four parameters:a, A, L, andb ~recalling thatg1 , g2 , andgb are functions only ofa!.
Let us assume now that the first half cell may be different, in length, from an exact quarter of rf wavelength, so that

iris is located atz15(11d)l/4 and the second one atz25z11l/2. Following the calculations by Serafini@26# we can express
the beam energiesg1 andg2 in the form

g1511
pa

2 F11
5

4
d2S 5161

p2

24Dd2G , g2511
3pa

2 F11
5

12
d2S 521

p2

3 D d2

24G , ~A9!

while the termDprf andDSC become

Dprf5H mF11m2
m ln~g1!

g121 G2
h„12~a/4! !2…ln~g2!

8 F11m2
m ln~g1A3 g2!

2~g121!
G J S 11

2

3
d2

d2

2 D , ~A10!

DSC5@m~110.2475d!1mSC#F12
ln~g2!

g221G . ~A11!

The actual orbit divergence at the second iris,sorb8 , is found to be

sorb8 5
g8

g2
s rF1.06S 11

2

3
d2

d2

2 D1mSC22DB~11DSC2DB!/ ln~g2 /gb!G . ~A12!

Finally, the dimensionless beam exit conditionst2 and ṫ2
orb at the second iris are

t25S 2I 0g2

L D 1/2H 11S m~110.2475d!1
pz~A!L

4I 0
D F12

ln~g2!

g221G2b2ln2~g2 /gb!/2J , ~A13!

and

ṫ2
orb5S 2I 0g2

L D 1/2H 1.06S 11
2

3
d2

d2

2 D1
pz~A!L

4I 0
2b2lnS g2

gb
D F11S m~110.2475d!1

pz~A!L

4I 0
D S 12

ln~g2!

g221 D
2b2ln2S g2

gb
D Y 2G J . ~A14!

APPENDIX B

The transverse rms kick due to the space-charge field is represented by the factormSC in Eq. ~A2! for a Gaussian
distribution of transverse sizes r and longitudinalsz , with total chargeQb . As extensively reported elsewhere@7#, mSC is
calculated by averaging~in the rms sense! the transverse electric field component of the bunchEr

SC ~at rest in the laboratory
frame!,

Er
sc~r ,z!5

Q

2e0~2p!3/2s r
2sz

r E
0

`

dx
exp$2~1/2!@r 2/s r

2~11x!1z2/sz
2~11A2x!#%

~11x!2A~11A2x!
~B1!

over the charge density distribution

r~r ,z!5
Qb

~2p!3/2s r
2sz

expF2
r 2

2s r
22

z2

2sz
2G
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to get

mSC5
pg2

2E0g8s r
F 1

2Q E E
V`

E r~r ,z!Er
2~r ,z!r dr df dzG1/2, ~B2!

which can be cast in the formmSC5pI j(A)/4I 0g82s r
2, with

j~A!5H E
0

`

dx1E
0

`

dx2
@~11A2x1!~11A2x2!121A2~x11x2!#

21/2

@~11x1!~11x2!121x11x2#
2 J 1/2. ~B3!

j(A) can be represented within 1% error in the range 0<A<6 by the function

j~A!5
1

2.4511.82A5/420.55A3/2. ~B4!

SincemSC is actually the global rms space-charge kick on the bunch, we are interested in evaluating the kickmSC
1 applied

on the central bunch slice, located atz50, and the onemSC
2 applied to the slice located atz5sz . These are given by

mSC
1 5

pg2

2E0g8s r
FAp

2

sz

Q E
0

2p

dwE
0

`

r~r ,0!Er
2~r ,0!r dr G1/2 ~B5!

and

mSC
2 5

pg2

2E0g8s r
F S p

2 D 1/2 sz

Q E
0

2p

dwE
0

`

r~r ,sz!Er
2~r ,sz!r dr G1/2, ~B6!

which can be cast in the formmSC
1 5pI j1(A)/4I 0g82s r

2 andmSC
2 5pI j2(A)/4I 0g82s r

2, with

j1~A!5H E
0

`

dx1E
0

`

dx2
@~11A2x1!~11A2x2!#

21/2

@~11x1!~11x2!121x11x2#
2J 1/2 ~B7!

and

j2~A!5H E
0

`

dx1E
0

`

dx2
exp$2@2121/~11A2x1!21/~11A2x2!#/2%

@~11x1!~11x2!121x11x2#
2@~11A2x1!~11A2x2!#

1/2J 1/2. ~B8!

It is convenient to redefine the kicksmSC
1 and mSC

2 in terms of rescaled currentsI1 and I2: mSC
1

5pI1(A)j(A)/4I 0g82s r
2 andmSC

2 5pI2(A)j(A)/4I 0g82s r
2, where

I1~A!5I
2.4511.82A5/420.55A3/2

1.8411.95A5/420.65A3/2 ~B9!

and

I2~A!5I
2.4511.82A5/420.55A3/2

3.8411.74A5/420.34A3/2 ~B10!

are valid approximations forI1 and I2 in the range 0<A<6. At A51 we haveI151.19I and I250.71I .
In order to calculate the geometrical form factorg(z) we consider here only the linear componentElin(z) of the space

charge field in Eq.~B1!, i.e.,

g~z!5Elin~z!5E
0

`

dx
e2~1/2!z2/sz

2
~11 Ā2x!

~11x!2A~11Ā2x!
,

which is the source of the perveance termks(z) in the envelope equation; we want to study its dependence on the
position z for low aspect ratiosĀ5A/g in the rest reference frame. For highly relativistic beams, i.e.,g@1 the transverse
space-charge-field dependence versus the longitudinal positionz resembles the behavior of the charge density distribution
fact, we have

g~z! ——→
Ā→0

exp@2z2/2sz
2#,
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as expected. For smallĀ we approximateg(z) with its Taylor expansion up to second order inĀ aroundĀ50, to obtain

g~z!5e2z2/2sz
2H 11Ā2F S 12

z2

sz
2D S 121 ln ĀD21G J 1O~Ā4!. ~B11!
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