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Numerical study for the two-beam instability due to ions in electron-storage rings
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We discuss the two-beam instability which is caused by interactions between ions and the electron beam in
electron storage rings. Motion of beam and ions trapped in the beam potential was studied by using a simu-
lation method based on a rigid Gaussian beam model. We consider two types of the two beam instability
depending on the trapped time. One is the so-called ion trapping instability, in which ions are accumulated
every revolution. The growth of the coupled bunch mode, which was obtained by simulations, was consistent
with experiments in the KEK-photon factory. The other is the fast ion instability, in which ions are trapped
during only the passage of a single series of buné¢besch train. Simulations gave the growth of the couple
bunch mode for the KEK-B factoryS1063-651X97)00306-]

PACS numbgs): 29.20.Dh, 29.27.Bd, 41.75.Ht

[. INTRODUCTION where suffices ande denote the ion and electron, respec-
tively. M; andm, are masses, ard; andN,, are the number
The electron beam in a storage ring creates ions by ionef each.y andr, are the Lorentz factor of the beam and the
izing the residual gas in the beam chamber. In a storage ringassical electron radius, respectivefy(x) is the Coulomb
filled by electron bunches with a narrow spacing, ions with aforce in two dimensional space,
mass larger than a critical value are trapped by the attractive
force of the electron beam. The trapped ions, which oscillate F(x)=— L(S(s) ®)
in the beam potential, cause the two-beam instability due to a x|
coupling to the coherent motion of the beam. We have ob-

served a coupled bunch instability caused by the two-beanhN€se consist oNe+N; differential equations, where each
electron couples to the motion of all ions, and each ion

We discuss here the dynamics of two-beam instability usCOUPI€s to the motion of all electrons.

ing a computer simulation. The simulation method, which is W€ now consider the species of ions. The residual gas

based on the weak-strong model, was discussed in the ca§@mponentin the vacuum chamber are mostly CO apdA
of beam-beam interactions in RéL]. This method is very YPical spectrum in the photon factoff?F) [2] consisted of

useful for studying the two-beam instability due to beam-ion#8% for CQZ";‘”d 41% for I The ionization cross sections
interactions. In this method, a weak beam of ions is ex&r¢ 1.8¢10 ““and 0.3<10"““ m* for our beam energy of

pressed by macroparticles, while only the barycenter motiod-> G€V. The cross section of CO is about six times higher
of the strong beam is taken into consideration. than that of H. We assume that CO plays a dominant role in

In considering the simulation, the beam-beam and beanthe two-beam instability, and neglect other species of ions
ion interactions are very similar. The differences betweerfl€reafter. _ o _ _
them can be summarized as follows. In the general case of |N€ two-beam instability is a collective effect obtained by
beam-beam interactions, a bunch interacts with only anothéioving Egs.(1) and (2). This was originally discussed in
bunch, and both bunches move at the speed of light. HowP/asma physics. In accelerator physics, it was considered for
ever, the ions move nonrelativistically and interact with allthe first time in the case of the electron-trapping instability in
of the bunches. The number of ions increases in every pas8- Proton ring[3,4]. Concerning ion-beam interactions, the
ing bunch. Though a space-charge force between the iofjwo-beam instability has been studied in most electron stor-
exists because of a nonrelativistic effect, since the number 9€ rings operated in mulibunch mode. The instability has
ions, which causes the two-beam instability, is generallyPeen discussed based on linear thef@y Linear theory is
very small, as shown later, we can neglect it. reviewed and discussed with an example of the KEK-photon

We now consider the transverse motion of electrons andgctory (PF) and the KEK-B FactoryKEKB) in Sec. II. In
ions. We neglect the effect of the magnetic field. The equaS€C- !ll, our simulation method based on the weak-strong

tions of motion for electrons and ions are expressed as ~ Model is explained. This method permits the study of the
two-beam instability beyond linear theory and from a dy-

namic aspect. The results of a simulation for @fe ion-

2y or Mi trapping instability and KEKB (the fast-ion instability are
dsz,a . K(S)Xe,a:Tegl F(Xe,a—Xi |)» (1) discussed Secs. IV and V.
Il. LINEAR THEORY
42 or.c2 Ne The linear theory presented by Keil and Zotter is re-
Xij _ 2leC S F(X —Xes) 2) viewed here. The following approximations are assumed in
dtZ M, /mgsy i Tead the theory.
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The transverse motions of beam and ions are expressed TABLE |. Parameters of PF and KEKB.
only by their barycenters.

The coasting-beam approximation is used; that is, the PF KEKB
beam has no longitudinal str_uctgre, and_ is specified by 't%ircumferencém) 186 3016
transverse barycenter at longitudinal positioffom a refer- .

i Revolution frequencyy/21r) 1.6x10° 10°
ence bunch and timg=ct+z.
. . Energy(GeV) 25 8

The beam size can be treated as a constant along the rmgurrem(A) 04 11
that is, theB function is assumed to be a constant. ical t 3 3'05 43' 08

The beam and ions are distributed according to a Gausgertica tune @é) ' '
ian with identical sizes in the transverse plane. Harmonic number 812 5120

The beam-ion force is assumed to depend linearly on thEMittancess,(nm).e,(nm) 130, }'55 18, 0?46
distance between the barycenters. Transverse radiation damping rate X80 1.2x10

With these assumptions, the equations of motion for the

beam and ion are expressed as follows: ) )
From wen, We obtainn; y, using Eq.(11).

D%, [wg\®_ 2nre . _ In linear accelerators and in the bunch train of circular
D+ (?) Xe=—, FL(Xe=Xi), (49 accelerators, a threshold does not exist in the ion-beam sys-
tem alone becausa is nearly continuous. The actual thresh-
d2X,  2NnreC o old is determined by a comparison with other damping ef-
W: M., /me FL(X; Xe)r ©) feCtS'_ .
It is well known that these equations show a very low
where threshold and a very high growth rate in recently developed
accelerators. We discuss them in the cases of KEK-PF and
i 1 y X KEKB. The parameters are given in Table I. Examples of the
FLy(X) +iF x(X)=— oxt oy U—y+' o (6)  results obtained by the linear theory are shown in Table Il. In

Table Il, threshold is given with the neutralization factor
Here,n, andn; are the number of electrons and ions in a unit(7=n;/ng). These high growth rates are surprising. How-
length, andw is the betatron frequency. The differentiation ever, since we did not consider the ion increase due to pro-
with respect tas is expressed by duction, we should not immediately believe the growth rate.
When the threshold is extremely low, as shown in the
KEKB case, we should consider the two-beam instability due
to transient ions, the so-called fast-ion instability. If we use a
production cross section afco=2.0x10 22 m? for our
beam energy of 8 GeV and a partial pressure of
Pco=10"° Torr, a bunch including Ng=1.4x10%°
(ne=2.1X10" m 1) electrons produces about 100 ions per
meter. If 1000 bunches pass, the neutralization factor be-
comes 7=5x10"%, which already exceeds the threshold.
"This suggests the possibility of a fast-ion instability in

D_4,9
Ds ds dz°

()

Here, we try to obtain a solution with the following form:

|

wherem is an integer. We obtain a fourth-degree equation i

2mmz Qs

L ¢

8

x(s,z)=§exp{i<

Qa

2 2
e@j -

©)
Here w; and w, are the frequency of the ion and betatron
frequency shift E2wgdwg) of the beam, respectively, and
are given by

(%= 0))[(Q=Mwg)? - wi~wi]=o

1

oy(oxtay)’
(10

2
, 2NireC
We= v

2
5 2NgreC 1
w2=

M /mg ooyt o)’

The two-beam instability occurs when the frequen@y has

KEKB.

Equation(9) has a singularity at;=*(Mwe—wp). In
practical cases, the ion frequency;{ has a spread due to
the nonlinearity of the beam-ion force and the beam size
from the variation of thg3(s) function. The linear theory has
been extended to include the frequency spread by Refs.
[5—7]. A linear theory including an ion increase for linear
accelerators is given in Ref6].

Ill. BEYOND LINEAR THEORY

We now restart our discussion from Eq$) and(2). The

an imaginary part. We investigate the case where the freweak-strong model is being proposed to study the two-beam
quencies of the ions«j) and beam @z;—mwy) in the ex-  instability. In this model, the transverse distribution of the
perimental frame are close to each other, because the two-
beam instability is the result of a coupling resonance
between the two oscillators. We obtain the threshold and

TABLE Il. Results obtained by linear theory.

growth rate as I (A) w;lwg Bth IMm(Q/ wg)
s 2 12 PF 0.04 0.740 0.0015 0.022
Mon— ©:)2— _
weth:( Wo— Wi)"~ W |m(£): Ve (L) _ 0.4 2.339 0.003 0.169
T 2Voi(Meg— o)) wo)  2wo\ Mwo— o KEKB 1.1 139.535 8.x10°7 0.192

(11)
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beam is assumed to be a rigid Gaussian, where the deviatidrons and ions are tracked by using a lot of computer re-
is determined by the emittance agdfunction; that is, de- sources. Strong-strong simulations include the smear effect.
formations of the bunch due to ions are neglected. The ef- In the weak-strong simulation, the overestimation of the
fects of the bunch length and the synchrotron motion are najrowth results in a trade off between accuracy and a shorter
considered. The beam is not characterized by each electrogpu time. The simulations should be performed while pay-
but by a series of bunches with a rlgld Gaussian diStribUtioning attention to the Landau damp|ng rate. We discuss this
By averaging Eq(1), we take into account only the first- problem again concerning the applications.
order moment. lons are treated exactly, except for neglecting \ye now comment on the smear of the ion motion. The
their IongitL_JdinaI motion. The equation of motion for a gaar of ions, which is jusb;, is much faster than that of
bunch and ions are expressed as the beam in the usual case. In terms of a beam-beam inter-
action, one says that the tune shift of ions is larger than that
of the beam in the ion-beam interactions. The smear of the
beam may be reduced by the faster smear of ions. This weak-
strong model completely involves the smear of ions.

The ion-trapping and the fast-ion instability are discussed
by using this simulation in Sec. IV and in Sec. V, respec-
tively. Both instabilities are caused by the same mechanism.

N:
Xe '

d — 2rg _
a2 TKE%e= "2 Folkemxi50(9), (12

d2Xi'j 2NereC2

WZWFG(XM_X_(?;G(S)), (13)

whereFg is expressed by the Bassetti-Erskine formi@g

X+iy )

1/2]
. _ ™ - -
Fny(X)—i_IFG,X(X)_(2(0_5_0.3 ) |:W< /2((]_)2(_0_5)

The difference is how long the ions are trapped in the beam
potential. One instability is caused by ions which are accu-

mulated turn by turn, and the other by the passage of a bunch
train.

IV. APPLICATION TO THE ION TRAPPING

We discuss the two-beam instability due to ion-trapping
using the PF as an example. To survey features of the insta-
bility, some (fixed) amount of macroions were put along an

W 18(s). (14) unperturbed beam orbit, and the motion of the ions and
y bunches were investigated. The ring was represented by four
Here N, is the number of particles in a bunch. These equajonization points with different values of th@ function. It
tions of motion, Eqs(12) and (13), can be solved by an Wwas checked that the results did not depend on the number of
approximation in which ions are represented by macroparionization points. A thousand macroions were put at each
ticleS, and the barycenter motion of every bunch are oprint. All of the bunches were set with zero diSpIacement.
tained. If a coherentcorrelated bunches mode grows, a We calculated the kick felt by ions using Ed.3). The force
coupled-bunch instability is caused. In this case, we conjechich the beam feels was obtained by summing over the
ture that ions also move coherently. It can be ascertained b{pns. After being kicked, the beam is advanced to the next
calculating the moments of the macroions. ionization point. The resulting system is metastable. The ac-
The incoherent features of ions can be obtained by oufual instability is caused by the statistical fluctuation of the
simulation, while that of the electron beam, such as emitbarycenter position of the macroions. We discuss only the
tance growth, cannot be computed. If the tune spread due ertical motion of ions and beam, because simulations show
the ion distribution is large, the coherent motion may pethat the coherent mode of the horizontal motion is much less

smeared and the beam size enlarged, i.e., Landau dampiffggn the vertical one.

occurs. The smear is expressed as

w2 niroc? 1

(19

The time evolution of the amplitude of the bunches which
pass through an ionization point in a ring is shown in Fig. 1.

The amplitude was obtained at a position wih=28.3 m:

o,=0.19 mm. We use the parametersief40 mA for PF.
The ion frequency ¢;) is 0.74X wg from Table 1. It is close
The problem is which is the larger, the growth rate of theto the coherent frequency of the beam with=4, i.e.,
two-beam instability or the damping rate due to the smear. Ifm—vy,~4—3.3=0.7. We found that the phase advance of
our examples, the linear theory shows that the growth rate ithe coupled-bunch motion was about .27 rad in each
larger. Using PF parametersz40 mA and»=0.01, as an revolution. The barycenter and size of the ion distribution of
example, the growth rate is 0.045, while the damping ratéhe ionization point are also plotted in Fig. 1. The barycenter
(tune spreadis 0.009. If the Landau damping rate becomesof the ions also oscillates with the same frequency as the
important, this simulation will overestimate the growth of the bunches. The coupled-bunch mode means that the two-beam
instability. instability is caused by a resonance between the frequencies
The original differential equations of Egdl) and(2) can  of the beam coherent motion af=4 and the ions. The ion
be solved with macroparticles for both electrons and ionsize is about /2 of the beam size between 2—8 revolutions.
(strong-strong simulations Strong-strong simulations have The size reduction comes from the smear of ions. It is inter-
been recently performed for the fast-ion instabili6/9]. In  esting that the ion size also becomes larger along with the
strong-strong simulations, the motion of many macroelecgrowth of the dipole amplitude. The coherent motion of the

owg= = .
B 2wg  ywg oy(oxtoy)
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FIG. 1. Coupled-bunch pattern due to ion-trapping in KEK-PF. 0.1 ¢
The neutralization factor is 1%. Vertical coherent amplitudes of i
bunches and ions, and size of ions are plotted. 3
0.01
ions is accompanied by their blowup coming from the rapid £
smear due to the beam force. g [ i
The same calculations were then performed for variou: 5 °°°" BoinTorr
values of the neutralization factor. Figure 2 shows the time & -
evolution of the maximum amplitudes of the bunches and ior © T e
distribution sizes for each revolution, respectively. The fig- ’
ures shows that the ion size and the beam amplitude grow
1e-05 :
0.0002 0 2000 4000 6000 8000 10000
Revolution
FIG. 3. Maximum amplitude of the bunches and size of ions.
The amplitude and size are plotted at every revolution for various
€ 0.0001 vacuum pressures as written on the figure.
= 7=0.005. We may be able to say that the threshold for the
neutralization factor is less than 0.005.
o E In an actual accelerator, since ions are continuously sup-
plied, the time evolution of the instability depends on the
, , , , creation rate of ions, which is related to the vacuum pressure.
0 200 400 600 800 1000 We took into consideration the ion increase in the simula-
Revolution tion: macroions are produced by bunches in proportion to the
vacuum pressure, and the bunches feel a force due to the
0.0004 oo ions, which increases at every bunch passage.
L 000 As previously done, the ring was represented by four ion-
:_,W’ ization points. In every passing of the bunches through an
__0.0003 ¥ ionization point, new macroions were generated at the trans-
£ A verse position of the bunch with a Gaussian distribution.
g 0.0002 ig,%g:'%’:»?«"““=""""" ' , o Though 1 or 10 macro-ions were generated for every revo-
5 : [ s AR lution time, results were not affected by the number. Figure 3
8 M: o <0.002 shows the growth of the dipole amplitude and the ion distri-
@ anmm»mmmmwmm bution size forPco= 107, 4x10 8 1078 4x10°° and
’ 10"° Torr. In these parameters, the neutralization factor in-
- creases by 10* for Pco=10"’ Torr every revolution time.
0 : L L L The maximum amplitude exceed§=0.19 mm at a neutral-
0 200 400 600 800 1000 ization factor of~0.01. Figure &) shows that the ion size
Revolution increases rapidly in spite of the small beam amplitude

(<ay). Though the figure shows a saturation at around a few

FIG. 2. Maximum vertical amplitude of the bunch coherent mo-CM, it results from the boundar$ cm) of the vacuum chal_”n-
tion and vertical size of the ions. The amplitude and size are plotte®€r. Figure 4 shows th? number of aCCumU|at.ed ions in the
at every revolution for various neutralization factors as written onvacuum chamber. The ions are thrown away in spite of the

the figure.

relatively small amplitude of the beam-(o).
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FIG. 4. Number of ions in a vacuum chamber. The vertical axis

FIG. 6. Spread of the vertical tune due to the trapped-ion distri-

is normalized by the number of ions which are created in one revoPution.
lution.
chamber as shown in Figs. 3 and 4. This explains the pulsa-

Figure 5 shows the growth time for various stored cur-tion phenomena observed at PH. In the experiment, the
rents and vacuum pressures. The same calculations were pgtmber of trapped ions, which is measured with the brems-
formed for a stored currerfl) of 400 mA: the results are strahl_ung of the bea_lm, correlates to the pulsation of thg in-
plotted in the figure. PF has been operated Wthy=10"° stability. The experiment shqwed that the number of ions
Torr or less. The figure shows that the growth time isdecreased_rapldly'when a.mplltude groth was caused by'the
~1200 and~ 200 turns for stored currents of 40 mA and two-beam instability, and increased again after the reduction
400 mA, respectively, at the pressure. The two-beam insta2f the growth.
bility due to ion trapping has been observed in 2 its
threshold was about 30—50 njAQ]. The instability has been
controlled by exciting octupole magnets, which caused a
Landau damping of several hundreds+d 000 turn near to ~In low-emittance high-intensity storage rings, the growth
the threshold. These results seem to be consistent with tHate of the two-beam instability is very high. It is possible to
experiments. cause an instability by ions which are produced and trapped

We now Consider the smear Of the beam due to the d|str||.n Only one reVOIUtion, as mentioned in Sec. Il. It is called
bution of ions. This simulation did not include the smearthe fast-ion instability{6]. We can simulate it in the same
directly because we used the rigid bunch model. Howevervay.
we obtain the smear from the ion distribution by E#5), We consider bunch trains in a ring. By putting a sufficient
whereo, , was calculated by averaging the macroions. Fig-9ap between the trains, the ions which are trapped during a
ure 6 shows the tune spread. Since the smear is proportiongSsing bunch train are cleared after its passage. Thus the
to the square of the beam amplitude, the coherent motion ifirst bunch of a train does not face ions, while following
not smeared at small amplitude. On the other hand, for amunches feel ions produced by the previous bunches in the
plitudes larger thanr,, since the ion distribution becomes train. The ions and bunches of the tail cause the two-beam
broad, the smear becomes weak. In this regime, ions ar@stability.
diffused by the beam, and are eventually thrown out of the The simulation results of KEKB are presented here. The
train length is assumed to be 500. Four ionization points
were chosen in the ring, as was done in the case of trapping.
Macroions were created with a Gaussian distribution at the
transverse position of the passing bunch at the ionization
points. The number of macroions was ten for passing a
bunch at a point. Results were the same when five macroions
were used. Figure 7 shows the bunch pattern which is ob-
served at the position of the ring. The ion’s frequency is
140X wo~ 37X wge as shown in Table Il. The figure shows
the induced coherent-mode oscillation whose frequency is
equal to the ion’s frequency.

Figure 8 shows the time evolution of the growth of the
dipole amplitude of the bunches, where the amplitude is half
of the Courant-Snyder invariant[JyE(yyszr 2ayyy’
+/3yy’2)/2]. The growth times were 10 and 100 turns for
vacuum pressures of 18 and 10°° Torr, respectively, at a
vertical amplitude of 0.8, . The growth becomes slow at an
FIG. 5. Relation between growth time and vacuum pressure. amplitude of aboutr, . The growth reduction seems to result

V. APPLICATION TO THE FAST-ION INSTABILITY

10000 §

1000 ¢ ©
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0.1 1 10 100
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FIG. 7. Coupled-bunch pattern due to the fast-ion instability. 0.01 ¢

The vacuum pressure is assumed to be 1 nTorr. Bunch patterns (b) P=1nTorr
the 200th, 400th, 600th, 800th, and 1000th revolution are drawn. I 500

"‘»,‘l,‘ ""““-*M,‘,,A{m\
al TW\,\J{:

i
s

from the ion distribution size which is about\i2 of beam’s
one. These were consistent with those obtained by th
strong-strong simulatiof®]. We have considered a feedback
system to cure the instability in KEKB. The damping rate of
the feedback has been designed to be 100 t(irmas. The
length of the bunch train for which the feedback can cure
was 500 forPco=10"° Torr and was 100 foPco=10"8
Torr. 00001 0 1 1 1 1 1 1 1 1 1

. . . . ) 100 200 300 400 500 600 700 800 900 1000
We investigated the effect of residual ions which are not Revolution

0.001 |

Tune spread
W
& 3
(=)

0.001 FIG. 9. Spread of the vertical tune due to the ion distribution.
. Tune spreads of the 300th, 400th, and 500th bunches are plotted for
) P=10"2 Torr (@) andP=10"° Torr (b).
P
l@ 10° cleared by the gap between bunch trains. If the gap is made
— of 100 buckets(200 ng, then the effect from the residual
‘% 107 ions can be neglected. The luminosity reductions with a
. clearing gap are 20% and 100% fBgo=10° and 108
10 Torr, respectively. Good vacuum is important to keeping the
10° (a) P=10nTorr design luminosity.
Figure 9 shows the tune spread due to the ion distribution.
107 I — The smear does not work for a small amplitude of less than
0 100 200 300 400 500 600 700 800 900 1000 ! -
Revolution ay. When the amplitude reacheso, the coherent motion

may be smeared, since the growth is reduced, as shown in
Fig. 8. This leads to a pulsation of the amplitude growth.

In a worse vacuum, for exampl®co=10"' Torr, the
coherent amplitude of the beam was not saturated @} .
Since the ion distribution blewup at the tail of the train, the
beam amplitude grew over, in the same way as in the
trapping case.

We discuss the case of the mixture of more species of
ions briefly. Each species of ions has a proper frequency
(wj) given by Eq.(10) in the beam potential. In the scope of
107 (b) P=1nTorr linear theory, the superposition rule applies. Simulations in-
cluding multispecies of ions showed coupled-bunch patterns
consistent with the superposition rule.

1M L I 1 1 1 1 : 1 L
0 100 200 300 400 500 600 700 800 900 1000

Revolution

VI. CONCLUSIONS
FIG. 8. Time evolution of the amplitude of selected bunches.

Amplitudes of the 100th, 200th, 300th, 400th, and 500th bunches Simulations based on a weak-strong model were per-
are plotted folP=10"2 Torr (a) andP=10"° Torr (b). formed for studying two types of two-beam instabilities due



7556 KAZUHITO OHMI 55

to ions. Concerning the ion-trapping instability, growth timesbecause rapid Landau damping cannot be expected with a
for various vacuum pressures and stored currents were olsmall beam size. Since the dynamics of the ion-beam system
tained by using parameters of PF. The growth time wags affected by the feedback, it may be not clear whether the
about 1200 turn aPco=10° Torr andI =40 mA. It was  comparison between the growth and damping rates has any
consistent with experiments at the PF. In these conditionggelevance. It may be necessary to perform simulations which
the two-beam instability has been observed and has beénclude the feedback system.
cured by exciting octupole magnets with a Landau damping This method is also available for beam-photoelectron in-
of ~1000 turn. Blowup and diffusion of ions were obtained teractions[10,11. Regarding the beam-photoelectron issue,
at the vertical beam amplitude ef o, by the simulations. It ~ the linearity of the wake is usually satisfied. However, the
can explain the pulsation of the instability. linearity is broken in some casg$2]. The present method,
Concerning the fast-ion instability, growth times of eachwhich does not require linearity of the wake, can be used to
bunch in the train were obtained in the example of KEKB.solve such nonlinear wake effects.
The growth time was 100 turns Bio=10"° Torr for a 500
bunch train. Since the rate is near the limit for curing, a
vacuum pressure d?co=10"° Torr is required for KEKB.
It was consistent with results from the strong-strong model The author has discussed the ion-trapping phenomena
[9], and was performed using much smaller computer rewith S. Sakanaka. Discussions with K. Hirata, S. Kamada, K.
sources. Oide, and K. Yokoya were very helpful. This work is based
The instability has usually been cured by a feedback sysen many studies for ion trapping performed in the KEK Pho-
tem or by Landau damping. In recent low-emittance rings, don Factory. The author acknowledges their contributions.
bunch by bunch feedback system was used for such purpos&fe author also thanks E. Forest for reading the manuscript.
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