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Multiple scale derivation of the relativistic ponderomotive force
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Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
and Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623

~Received 13 November 1996!

In this paper we use simple physical reasoning to deduce a formula for the ponderomotive force exerted by
an intense laser pulse on an electron. We verify this formula numerically, for three cases of current interest, and
analytically, using the method of multiple scales.
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I. INTRODUCTION

The ponderomotive force associated with a light wave
variable amplitude@1–10# drives many phenomena that o
cur in inertial-confinement-fusion@11# and particle accelera
tion @12# experiments. The existing formula for the ponder
motive force was derived under the assumption that
quiver speed of electrons oscillating in the applied elec
field is much less than the speed of light. With the adven
intense laser pulses@13#, it is important to extend this for-
mula to electron quiver speeds that are comparable to
speed of light.

As an introduction to this subject, we review the deriv
tion of the ponderomotive term in the electron-fluid mome
tum equation. The standard form of this equation is

~] t1v•“ !~gv!52~E1v3B!, ~1.1!

where

g5~12v2!21/2 ~1.2!

is the Lorentz factor associated with the fluid velocity an

E52] tA, B5“3A ~1.3!

in the radiation gauge. These differ from the usual equati
in that vt→t, vx/cx→x, v/c→v, eE/mvc→E, eB/mvc
→B, andeA/mc2→A. By using the vector identity

~v•“ !~gv!5“g2v3@“3~gv!#, ~1.4!

one can rewrite the momentum equation as@14#

] t~gv2A!5v3@“3~gv2A!#2“g, ~1.5!

from which follows the relativistic vorticity equation

] t@“3~gv2A!#5“3$v3@“3~gv2A!#%. ~1.6!

For a plasma that is at rest before the laser pulse arri
“3(gv2A)50 initially. Equation ~1.6! ensures that
“3(gv2A)50 for all time. Thus the momentum equatio
can be rewritten as@14#

] t~u2A!52“g, ~1.7!
551063-651X/97/55~6!/7527~9!/$10.00
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where the fluid momentumu5gv. It follows from this defi-
nition thatg5(11u2)1/2.

The ponderomotive term on the right-hand side of E
~1.7! is valid for arbitrary laser intensity. Together with th
continuity and Maxwell equations, it allows one to analy
the interaction of a laser pulse with an electron fluid. Ho
ever, there is a tradition in plasma physics of looking at
same phenomenon from different viewpoints. By doing
one often gains physical insight into the phenomenon un
study. The ponderomotive term in Eq.~1.7! is not the force
on a Lagrangian fluid element or a single electron. Con
quently, it cannot be used as the foundation of a sing
particle or kinetic analysis of the interaction of a laser pu
with a plasma.

The outline of this paper is as follows. In Sec. II th
motion of an electron in a light wave of constant amplitude
studied analytically. In Sec. III the results of this study a
used to make a heuristic derivation of the formula for t
ponderomotive force associated with a light wave of varia
amplitude. This formula is verified numerically in Sec. I
and analytically in Sec. V. Finally, the results of this pap
are summarized in Sec. VI.

II. PARTICLE MOTION IN A PLANE WAVE

The motion of a charged particle, of chargeq and mass
m, in an electromagnetic field is governed by the equat
@15#

dt~um1am!5un]man , ~2.1!

wheret is the proper time of the particle multiplied byc,
um is the four-velocity of the particle divided byc, am is the
four-potential of the field multiplied byq/mc2, and ]m
5]/]xm. The metric four-tensorgmn5diag(1,21,21,
21) for an elliptically polarized field

am5~0,0,eycosf,ezsinf!, ~2.2!

whereey5ed, ez5e(12d2)1/2, andf5t2x.
The motion of a charged particle in a plane wave is w

known @16–19#. We present an analysis of this motion he
because it is the foundation of the analyses of Secs. III
V. Since the four-potential does not depend ony or z, it
follows from Eq.~2.1! that
7527 © 1997 The American Physical Society
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7528 55E. A. STARTSEV AND C. J. McKINSTRIE
dt~u'1a'!50. ~2.3!

Transverse canonical momentum is conserved. It follo
from Eq. ~2.3! that

u'~t!5u'~0!1a'~0!2a'~t!. ~2.4!

The t andx components of Eq.~2.1! are

dtg5 1
2 ] tu'

2 , dtux52 1
2 ]xu'

2 . ~2.5!

Since the four-potential is a function oft2x, it follows from
Eqs.~2.5! that

dt~g2ui!50. ~2.6!

Because the particle gains energy and momentum at the
pense of the field, the ratio of particle momentum to parti
kinetic energy is identical to the ratio of field momentum
field energy, which is 1 in the units of Eq.~2.1!. By combin-
ing Eq. ~2.6! with the definition ofg, one can show that

ui~t!5ui~0!1
u'
2 ~t!2u'

2 ~0!

2@g~0!2ui~0!#
. ~2.7!

The corresponding equation forg~t! follows from Eqs.~2.6!
and~2.7!. Because the transverse potentiala' is a function of
f rather thant, Eqs. ~2.4! and ~2.6! describe the particle
momentum implicitly. One can make this description expli
and determine of the particle trajectoryxm(t) by using the
result

dtf5g~0!2ui~0!. ~2.8!

The proper frequency of the wave is constant.
It is clear from Eqs.~2.4!, ~2.7!, and~2.8! that the particle

motion is a superposition of sinusoidal oscillations int and
steady drifts int. It follows from Eq.~2.4! that the transverse
drifts are given by

^uy&5uy~0!1eycos~2x0!,
~2.9!

^uz&5uz~0!1ezsin~2x0!,

where ^ & denotes thet average*0
2p dt/2p and (x0,0,0) is

the initial position of the particle. By decomposing the lo
gitudinal momentum into its oscillatory component

ui~t!2^ui&5
u'
2 ~t!2^u'

2 &
2@g~0!2ui~0!#

~2.10!

and its drift component

^ui&5ui~0!1
^u'

2 &2u'
2 ~0!

2@g~0!2ui~0!#
, ~2.11!

and combining Eqs.~2.4! and ~2.11!, one can show that the
longitudinal drift is given by

^ux&5ux~0!1@4^uy&eycos~2x0!14^uz&ezsin~2x0!

2ey
2cos~22x0!1ez

2cos~22x0!#/4@g~0!2ux~0!#.

~2.12!
s

x-
e

t

For linear polarization Eq.~2.12! reduces to

^ux&5ux~0!1@4^uy&e cos~2x0!

2e2cos~22x0!#/4@g~0!2ux~0!#, ~2.13!

whereas for circular polarization it reduces to

^ux&5ux~0!1e@^uy&cos~2x0!

1^uz&sin~2x0!#/&@g~0!2ux~0!#. ~2.14!

The corresponding equations for~g! follow from Eq. ~2.6!
and Eqs.~2.12!–~2.14!. For completeness, a covariant ana
sis of the particle motion is given in Appendix A.

III. HEURISTIC DERIVATION
OF THE PONDEROMOTIVE FORCE

The method used to solve Eq.~2.1! for a plane wave of
constant amplitude can also be used when the wave am
tude e is a function oft2x. In fact, Eqs.~2.4!, ~2.7!, and
~2.8! are still valid. When the wave amplitude varies slow
compared to the wave phase, the particle motion consist
an oscillation about a guiding center and a guiding-cen
drift that varies slowly. As the guiding center drifts, the o
cillation amplitude follows the wave amplitude at the gui
ing center adiabatically.

To describe this motion quantitatively, letjm be the posi-
tion four-vector of the guiding center andym5dtj

m be the
associated four-momentum. The ponderomotive four-forc
the proper rate of change of the guiding-center fo
momentum. One might expect this four-force to also be
average rate of change of the particle four-momentum. Ho
ever, by averaging the transverse particle motion, one fi
that

^dtuy&'@dt0
ey~t0!#cos~t0!,

~3.1!

^dtuz&'@dt0
ez~t0!#sin~t0!,

wheret0 is the initial phase with respect to which the ave
age is taken. Because the oscillation amplitude changes
ing each oscillation, the transverse components of the
mentum change by amounts that depend on the initial ph
However, it follows from Eq.~2.4! that the transverse com
ponents of the guiding-center momentum are constant. T
if one is to determine the ponderomotive four-force by av
aging, one must discount terms that depend on the in
phase. With this caveat added to the definition of^ &, one can
write

dtyy5^dtuy&'0, dtyz5^dtuz&'0 ~3.2!

and show that

dtyx5^dtux&'dt~ey
21ez

2!/4@g~0!2ux~0!#. ~3.3!

By using the relationship betweenx andf, and Eq.~2.8!,
one can show thatdt52@g(0)2ux(0)#]x . It follows from
this result and Eq.~3.3! that

dtyx'2]x~e
2/4!. ~3.4!
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55 7529MULTIPLE SCALE DERIVATION OF THE . . .
In a similar way, one can show that

dty t'] t~e
2/4!. ~3.5!

By using the facts thate2/25^a'
2 & anda'

252ana
n, one can

rewrite Eqs.~3.2!, ~3.4!, and~3.5! as

dtym'2]m^ana
n/2&. ~3.6!

The second term in this relation is the ponderomotive fo
force.

The guiding-center equation~3.6! was derived for the spe
cial case in whiche is a function of t2x. However, the
principle of Lorentz covariance suggests that it is valid
the general case in whiche is a function oft, x, y, andz.
Consequently, we postulate that@20#

dtt
2 jm52]m^ana

n/2&ujm
~3.7!

and the initial guiding-center momentum in a wave of va
able amplitude is identical to the particle drift momentum
a wave of constant amplitude, which is given by Eqs.~2.9!
and~2.12!. For future reference, Eq.~3.7! has associated with
it the conservation equation

dt~ymym/21^ana
n/2&!50. ~3.8!

IV. NUMERICAL STUDY OF THE PARTICLE MOTION

To test the guiding-center model described in Sec. III,
studied three representative examples numerically. The
example concerns a particle that moves in front of a la
pulse. We considered a wide, circularly polarized pulse, w

FIG. 1. Particle motion~solid line! and guiding-center motion
~broken line! caused by a circularly polarized pulse with amplitu
e53 sin2@0.05(t2x)#. Initially, ux51, uy51, anduz51. ~a! The
x component of the momentum.~b! The x component of the dis-
placement caused by the pulse. The initial drift upon which t
displacement is superimposed is not shown.
-
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e53 sin2@0.05(t2x)#, and choseux(0)51, uy(0)51, and
uz(0)51. Because the pulse propagates at the speed of l
it overtakes the particle. The resulting particle motion is
lustrated in Figs. 1 and 2, in which the solid lines denote
particle trajectory, determined numerically from Eq.~2.1!
and the initial conditions, and the broken lines denote
guiding-center trajectory, determined numerically from E
~3.7!, ~2.9!, and ~2.12!. As the pulse overtakes the particl
the amplitudes of the transverse components of the osc
tion increase and decrease in proportion to the pulse in
sity. However, there is no change in the transverse com
nents of the average momentum and the particle exits
pulse withuy51 anduz51. The amplitude of the longitudi-
nal component of the oscillation also increases and decre
in proportion to the pulse intensity. However, because
~2.7!, which describes the relation between the longitudi
and transverse components of the momentum, is nonlin
the longitudinal component of the average moment
changes. This change can be analyzed quantitatively. It
lows from the t and x components of Eq.~3.7!, and the
assumed dependence ofe on t2x, that

dt~y t2yx!50. ~4.1!

Sinceyy andyz are constant, Eq.~3.8! reduces to

dt@~y t
22yx

2!/22e2/4#50. ~4.2!

By combining Eqs.~4.1! and~4.2! with the initial conditions,
one can show thaty t521e2/4 andyx511e2/4. At the peak
of the pulseyx513/4, inagreement with Fig. 1~a!. Because
the x component of the ponderomotive force is positive
the front of the pulse and negative in the back of the pu

s

FIG. 2. Particle motion~solid line! and guiding-center motion
~broken line! caused by a circularly polarized pulse with amplitu
e53 sin2@0.05(t2x)#. Initially, ux51, uy51, anduz51. ~a! The
y component of the momentum.~b! The z component of the mo-
mentum.
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the guiding center is accelerated and decelerated by e
amounts. In this example the correspondence between
guiding-center motion and the particle motion is excelle
The predictions of the guiding-center model are also con
tent with particle-in-cell simulations of the interaction of
laser pulse with an underdense plasma@21#.

The second example concerns a particle that is born in
a laser pulse by high-field ionization@22#. We considered a
long pulse that is linearly polarized in they direction, with
e5cos2(0.05z), and choseux(0)50, uy(0)50, anduz(0)
50. The resulting particle motion is illustrated in Figs. 3 a
4. The particle is born near the propagation axis of the pu
and is pushed outward by thez component of the pondero
motive force. As the particle moves outward, the amplitud
of the longitudinal and transverse components of the osc
tion decrease in proportion to the pulse intensity. This tra
verse expulsion can be analyzed quantitatively. Sincey t ,
yx , andyy are all constant, Eq.~3.8! reduces to

dt~yz
2/21e2/4!50, ~4.3!

in which yz
2/2 plays the role of kinetic energy ande2/4 plays

the role of potential energy. It follows from Eq.~4.3! and the
initial conditions thatyz

2'(12e2)/2. As the guiding center
exits the pulseyz'1/&, in agreement with Fig. 3~a!. Al-
though the particle is born at rest, it exits the pulse w
ux'3/4 and uy'1. This behavior is consistent wit
Eqs. ~2.9! and ~2.12!. In this example the corresponden
between the guiding-center motion and the particle motio
excellent.

The third example concerns a particle that is injected i
a laser pulse from the side. We considered a long pulse
is linearly polarized in they direction, withe5sin2(0.05y),
and choseux(0)50.0, uy(0)50.7, anduz(0)50.0. The re-

FIG. 3. Particle motion~solid line! and guiding-center motion
~broken line! caused by a linearly polarized pulse with amplitu
ey5cos2(0.05z). Initially, ux50, uy50, anduz50. ~a! Thez com-
ponent of the momentum.~b! Thez component of the displacemen
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sulting particle motion is illustrated in Figs. 5 and 6. As t
particle moves inward, the amplitudes of the longitudinal a
transverse components of the oscillation increase in pro
tion to the pulse intensity. However, they component of the
ponderomotive force opposes the inward motion and the
ticle is repelled just before it reaches the propagation axi
the pulse. As the particle moves outward, the amplitudes
the longitudinal and transverse components of the oscilla
decrease in proportion to the pulse intensity. This transve
repulsion can be analyzed quantitatively. Sincey t , yx , and
yz are all constant, Eq.~3.8! reduces to

dt~yy
2/21e2/4!50. ~4.4!

It follows from Eq. ~4.4! and the initial conditions thatyy
2

'(12e2)/2. The outward guiding-center trajectory is th
inverse of the inward trajectory. In this example the cor
spondence between the guiding-center motion and the
ticle motion is good. We found the correspondence to
even better for gentler gradients in pulse intensity.

In Figs. 1–6 the particle and guiding-center positio
were plotted as functions of the proper time. We verifi
numerically that plotting the spatial components of t
guiding-center position as functions of the temporal com
nent of the guiding-center position produces the corr
guiding-center motion in the laboratory frame.

V. MULTIPLE-SCALE ANALYSIS
OF THE PARTICLE MOTION

In this section we verify Eq.~3.7! analytically. Because
the fast variation of the four-potential depends on the ph
rather than the proper time, it is advantageous to change
independent variable in Eq.~2.1! from t to f. The result is

FIG. 4. Particle motion~solid line! and guiding-center motion
~broken line! caused by a linearly polarized pulse with amplitu
ey5cos2(0.05z). Initially, ux50, uy50, anduz50. ~a! Thex com-
ponent of the momentum.~b! The y component of the momentum
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df~dtfdfxm1am!5dfx
n]man , ~5.1!

where dtf5(dfx
ndfxv)

21/2. The resolution of Eq.~5.1!
into longitudinal and transverse components is facilitated
the introduction of the four-vectorkm, which is defined by
the equationf5knxn , and the four-vectorlm, which is de-
fined by the equationsl nl n50, knl n52, andanl n50, where
am is the transverse four-potential of a plane wave of ar
trary polarization. In the laboratory framekm5(1,1,0,0) and
lm5(1,21,0,0). By using these four-vectors one can writ

xm5ym1ukm/21f lm/2, ~5.2!

whereu5 l nxn . The transverse position four-vector satisfi
the equationsknyn50 andl nyn50. In a similar way, one can
write

am5bm1qkm/21plm/2, ~5.3!

where the transverse four-potential satisfies the equat
knbn50 and l nbn50. By substituting decompositions~5.2!
and ~5.3! into Eq. ~5.1! and collecting like terms, one ca
show that

d

df S 1s dym

df
1bmD5

]bn

]ym

dyn

df
1
1

2 S ]p

]ym

du

df
1

]q

]ymD ,
~5.4!

d

df S 1s 1pD52
]bn

]u

dyn

df
1

]p

]u

du

df
1

]q

]u
, ~5.5!

d

df S 1s du

df
1qD52

]bn

]f

dyn

df
1

]p

]f

du

df
1

]q

]f
, ~5.6!

FIG. 5. Particle motion~solid line! and guiding-center motion
~broken line! caused by a linearly polarized pulse with amplitu
ey5sin2(0.05y). Initially, ux50.0, uy50.7, anduz50.0. ~a! The
y component of the momentum.~b! The y component of the dis-
placement.
y

i-

ns

where

s5~dfy
ndfyn1dfu!1/2. ~5.7!

Equation~5.6! can be derived from Eqs.~5.4! and ~5.5!, as
shown in Appendix B, and need not be considered furthe

One can solve Eqs.~5.4! and~5.5! by using multiple scale
analysis. Lete be a measure of the rate at which the wa
amplitude varies relative to the rate at which the phase v
ies. We introduce the scales

f05f, f15ef ~5.8!

to resolve the fast oscillation and the slow change in
guiding-center drift, respectively. It follows that

d

df
5

d

df0
1e

d

df1
. ~5.9!

We used the notationd/df0 andd/df1 in Eq. ~5.9! to dis-
tinguish these convective derivatives from the partial deri
tives of the four-potential. We assume that the depend
variables can be written as

ym'e21ym
~21!~f1!1ym

~0!~f0 ,f1!1eym
~1!~f0 ,f1!,

~5.10!
u'e21u~21!~f1!1u~0!~f0 ,f1!1eu~1!~f0 ,f1!.

The variablesym
(21) and u (21) describe the guiding-cente

drift, which changes on the slow scalef1 . The variables
ym
(0) andu (0) describe the fast oscillation of the particle abo
the guiding center, the amplitude of which changes on
slow scale.

The four-potential satisfies Maxwell’s wave equation@14#

FIG. 6. Particle motion~solid line! and guiding-center motion
~broken line! caused by a linearly polarized pulse with amplitu
ey5sin2(0.05y). Initially, ux50.0, uy50.7, anduz50.0. ~a! The
z component of the momentum.~b! The x component of the mo-
mentum.
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~]l]lgn
m2]m]n!an50, ~5.11!

wheregn
m5diag(1,1,1,1). For a wave of constant amplitud

am(x
n)5bm

(0)(f0). For a wave of variable amplitude we a
sume that

am~xn!'am
~0!~f0uexn!1eam

~1!~f0uexn!. ~5.12!

Each contribution to the four-potential and its partial deriv
tives can be written approximately as

a~f0ueyn ,eu,ef!'a~f0uyn
~21! ,u~21!,f1!

1ey~0!n]na~f0uyn
~21! ,u~21!,f1!

1eu~0!]ua~f0uyn
~21! ,u~21!,f1!.

~5.13!

The first term on the right-hand side of Eq.~5.13! is the
contribution evaluated at the guiding center and the sec
and third terms are the deviations from this average con
bution that are ‘‘felt’’ by the particle as it oscillates about th
guiding center. The corresponding approximation for
convective derivative of the four-potential is discussed
Appendix C. Henceforth, we will useā to denote the
guiding-center contributiona(f0uyn

(21) ,u (21),f1).
To proceed further one substitutes Eqs.~5.9!, ~5.10!, and

~5.13! in Eqs.~5.4! and~5.5! and collects terms of like order
The ordere21 equations are satisfied identically byAnsätze
~5.10!.

The order-1 equations are

d

df0
F 1

s~0!

dym
~0!

df0
1b̄m

~0!G50, ~5.14!

d

df0
F 1

s~0!G50, ~5.15!

where

s~0!5$@d0y
~0!n1d1y

~21!n#@d0yn
~0!1d1yn

~21!#

1d0u
~0!1d1u

~21!%1/2 ~5.16!

anddn5d/dfn .
Equation~5.14! is the analog of Eq.~2.3!. It follows from

the former equation that

d0ym
~0!52s~0!b̄m

~0! . ~5.17!

The arbitrary function off1 that results from thef0 integra-
tion can be neglected becauseym

(21) already accounts for the
slowly varying drift with which this function is associated
Equations~5.15! and~5.16! do not resemble any of the equ
tions of Sec. II. However, different forms of the latter equ
tions are discussed in Appendix A, from which it is clear th
Eqs. ~5.15! and ~5.16! comprise the analog of Eq.~A9!. It
follows from Eq.~5.15! thats (0) is a function off1 alone.
This result is the analog of Eq.~2.8! and facilitates the inte-
gration of Eq.~5.17!. By combining Eqs.~5.16! and ~5.17!
and equating the oscillatory and slowly varying terms t
result, one can show that
,

-

d
i-

e

-
t

t

d0u
~0!52s~0!d1y

~21!nb̄n
~0!1@s~0!#2@^b̄~0!nb̄n

~0!&2b̄~0!nb̄n
~0!#

~5.18!

and

d1u
~21!1d1y

~21!nd1yn
~21!5@s~0!#2@12^b̄~0!nb̄n

~0!&#.
~5.19!

Equation~5.18! is the analog of Eq.~2.10! and the oscillatory
part of Eq.~A7!, and is easy to integrate.

Now consider the initial condition on the order-1 fou
momentum. Consistent with Eq.~5.2!, one can write the ini-
tial four-momentum as

um~0!5vm~0!1 l nun~0!km/21knun~0!lm/2. ~5.20!

It follows immediately that

d1ym
~21!~0!5s~0!vm~0!2d0ym

~0!~0!, ~5.21!

d1u
~21!~0!5s~0!l nun~0!2d0u

~0!~0!. ~5.22!

Equation~5.21! is the analog of Eqs.~2.9! and Eq.~5.22! is
consistent with Eqs.~2.10! and ~2.11!.

The order-e equations are

d

df1
H 1

s~0! Fdym
~0!

df0
1
dym

~21!

df1
G1b̄m

~0!J
1

d

df0
H 1

s~0! Fdym
~1!

df0
1
dym

~0!

df1
G1b̄m

~1!J
2

d

df0
H s~1!

2@s~0!#3
Fdym

~0!

df0
1
dym

~21!

df1
G J

5Fdy~0!n

df0
1
dy~21!n

df1
G ]b̄n

~0!

]ym ~5.23!

and

d

df1
F 1

s~0!G2
d

df0
H s~1!

2@s~0!#3
1 p̄~1!J

52Fdy~0!n

df0
1
dy~21!n

df1
G ]b̄n

~0!

]u
, ~5.24!

where

s~1!5
du~1!

df0
1
du~0!

df1
12Fdy~0!n

df0
1
dy~21!n

df1
G

3Fdy~1!n

df0
1
dy~0!n

df1
G , ~5.25!

and b̄m
(1) and p̄(1) represent the sum of the order-e four-

potential and the order-e corrections to the order-1 four
potential caused by the oscillation of the particle about
guiding center.

Although Eqs.~5.23!–~5.25! are lengthy, they do not nee
to be solved in their entirety. By equating the slowly varyin
terms in Eqs.~5.23! and ~5.24!, one can show that
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1

s~0!

d

df1
F 1

s~0!

dym
~21!

df1
G52

1

2

]^b̄~0!nb̄n
~0!&

]ym ~5.26!

and

1

s~0!

d

df1
F 1

s~0!G52
]^b̄~0!nb̄n

~0!&
]u

. ~5.27!

It follows from Eq. ~5.19! that

1

s~0!

d

df1
F 1

s~0!

du~21!

df1
G

5
12^b̄~0!nb̄n

~0!&

s~0!

ds~0!

df1
2
d^b̄~0!nb̄n

~0!&
df1

2
1

s~0!

d

df1

3H s~0!F 1

s~0!

dy~21!n

df1
GF 1

s~0!

dyn
~21!

df1
G J . ~5.28!

When applied to any guiding-center quantity, the operato

d

df1
5
dy~21!n

df1

]

]yn 1
]

]f1
1
du~21!

df1

]

]u
. ~5.29!

By combining Eq.~5.28! with Eqs.~5.26!, ~5.27!, and~5.29!,
one can show that

1

s~0!

d

df1
F 1

s~0!

du~21!

df1
G52

]^b̄~0!nb̄n
~0!&

]f1
. ~5.30!

Recall that the preceding derivation of Eq.~5.30! is based on
Eq. ~5.5!. Had we analyzed Eq.~5.6! instead, we would have
needed to determinebn

(1) , p(1), q(1), andyn
(1) explicitly.

In the notation of this section, Eq.~3.7! can be rewritten
as

d2xm
~21!

dt1
2 52

1

2

]^b̄~0!nb̄n
~0!&

]x1
m , ~5.31!

where t15et and x1
m5exm. Since df1 /dt1'1/s (0), Eq.

~5.26! is the transverse part of Eq.~5.31!. By contracting Eq.
~5.31! with km andlm and using the identitieskm]m52]u and
lm]m52]f , and the fact thatf'kmxm

(21) , one can show
that Eqs.~5.27! and~5.30! are equivalent to the longitudina
part of Eq.~5.31!. Thus Eq.~3.7! is correct.

Finally, notice that Eq.~5.31! for the guiding-center drift
is written in terms of the proper time, which includes t
effects of the oscillation about the guiding center. Althou
this fact does not affect the utility of Eq.~5.31!, it calls into
question the aesthetic qualities of the equation. Just as
proper time is defined by the equationdt5(dxndxn)

1/2, one
can define the drift time by the equationds
5@dx(21)ndxn

(21)#1/2. It follows from this definition, Eq.
~5.19!, and the discussion of the preceding paragraph tha

ds1
dt1

5@12^b̄~0!nb̄n
~0!&#1/2. ~5.32!

Equation~5.32! can be used to write Eq.~3.7! in terms of the
drift time.
he

VI. SUMMARY

In this paper we solved the equation of motion for
electron in a plane wave. We used this solution and the p
ciple of Lorentz covariance to deduce a formula for the po
deromotive force exerted by an intense laser pulse on
electron. We verified this formula numerically, for thre
cases of current interest, and analytically, using the met
of multiple scales.

The aforementioned formula can be used to study the
fects of the radial ponderomotive force on laser-plasma
teractions. For particle accelerators, these effects include
divergence of an electron bunch that is accelerated by a l
pulse@23#, the relativistic focusing of the pulse, and electr
cavitation and magnetic-field generation in the wake of
pulse.
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APPENDIX A: COVARIANT ANALYSIS
OF THE PARTICLE MOTION IN A PLANE WAVE

The motion of a charged particle in an electromagne
field is governed by Eq.~2.1!. For a plane wave the four
potentialam is a function of the phasef5knxn . It follows
that]man5kman8 , where the prime denotesd/df, and hence
that

dt~um1am!5unkman8 . ~A1!

By substituting the decomposition

um~t!5vm~t!1knun~t!lm/21 l nun~t!km/2 ~A2!

into Eq. ~A1!, wherel n was defined after Eq.~5.1!, andvm
satisfies the equationsknvn50 and l nvn50, one can show
that

dt~vm1am!50,

dt~k
nun!50, ~A3!

dt~ l
nun!52vnan8 .

It follows from the first of Eqs.~A3! that

vm~t!5vm~0!1am~0!2am~t!. ~A4!

It follows from the second of Eqs.~A3! that

knun~t!5knun~0! ~A5!

and hence that

f5knun~0!t. ~A6!
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Equations~A4! and ~A6! determinevm(t) explicitly. There
are at least three ways to obtain an expression forl nun . In
the first approach, one uses Eq.~A4! to rewrite the right-
hand side of the third of Eqs.~A3! in terms ofam. It follows
from this equation and Eq.~A6! that

l nun~t!5 l nun~0!12@vn~0!1an~0!#

3@an~t!2an~0!#/knun~0!

1@an~0!an~0!2an~t!an~t!#/knun~0!.

~A7!

In the second approach, one uses Eq.~A4! to rewrite the
right-hand side of the third of Eqs.~A3! in terms ofvm. It
follows from this equation and Eq.~A6! that

l nun~t!5 l nun~0!1@vn~0!vn~0!2vn~t!vn~t!#/knun~0!.
~A8!

In the third approach one uses decomposition~A2! to rewrite
the identityunun51 as

~knun!~ l nun!1vnvn51. ~A9!

Sinceknun andv
nvn are known quantities, Eq.~A9! provides

a third expression forl nun . By rewriting the 1 on the right-
hand side of Eq.~A9! in terms of the initial values of the
quantities on the left-hand side, one can rewrite Eq.~A9! in
the form of Eq.~A8!. All three approaches have their use
Equation~A4! is the covariant version of Eq.~2.4!, and Eqs.
~A5! and ~A8! are the covariant versions of Eq.~2.7! for ui

and its analog forg.

APPENDIX B: COVARIANT LAGRANGIAN
FOR THE PARTICLE MOTION

For a particle in an electromagnetic field the normaliz
action @19#

S52E @~dxndxn!1/21andxn#. ~B1!

Traditionally, one parametrizes the particle motion in ter
of the proper timet, which is a Lorentz invariant. In this cas

S52E @~dtx
ndtxn!1/21andtxn#dt. ~B2!

By applying the Euler-Lagrange equations to the integra
of Eq. ~B2!, one finds that

dt~dtxm1am!5dtx
n]man , ~B3!

in agreement with Eq.~2.1!. Alternately, one can parametriz
the particle motion by the phasef5knxn , which is also a
Lorentz invariant. In this case

S52E @~dfx
ndfxn!1/21andfxn#df. ~B4!

By using decompositions~5.2! and~5.3! one can rewrite Eq.
~B4! as
.

d

s

d

S52E @~dfy
ndfyn1dfu!1/21bndfyn1pdfu/2

1q/2#df. ~B5!

By applying the Euler-Lagrange equations to the integra
of Eq. ~B5!, one can show that

d

df F 1

~dfy
ndfyn1dfu!1/2

dym

df
1bmG

5
]bn

]ym

dyn

df
1
1

2 S ]p

]ym

du

df
1

]q

]ymD , ~B6!

d

df F 1

~dfy
ndfyn1dfu!1/2

1qG52
]bn

]u

dyn

df
1

]p

]u

du

df
1

]q

]u
,

~B7!

in agreement with Eqs.~5.4! and ~5.5!. One can reproduce
Eq. ~5.6! by multiplying Eq.~B6! by 22dfy

m and Eq.~B7!
by 2dfu, and adding the resulting equations.

APPENDIX C: EVALUATION OF THE FOUR-POTENTIAL

The left-hand side of Eq.~5.1! contains the term
dam /df, which must be evaluated at the position of t
particle. In Sec. V we used Eqs.~5.9!, ~5.10!, and ~5.13! to
make a guiding-center expansion ofam beforewe took the
convective derivative. Specifically, we wrote

dfam'@d01ed1#@am
~0!1ea~1!#, ~C1!

where

am
~0!5ām ~C2!

is the four-potential evaluated at the guiding center and

ām
~1!5y~0!n]nām1u~0!]uām ~C3!

is the correction to the four-potential caused by the osci
tion of the particle about the guiding center. Since t
guiding-center coordinatesy(21) andu (21) are functions of
f1 by construction,

dām

df0
5

]ām

]f0
~C4!

and

dām

df1
5
dy~21!n

df1

]ām

]yn 1
]ām

]f1
1
du~21!

df1

]ām

]u
. ~C5!

It follows from Eqs.~C1!, ~C4!, and~C5! that

Fdam

df G ~0!

5
]ām

]f0
~C6!

and
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Fdam

df G ~1!

5
dy~21!n

df1

]ām

]yn 1
]ām

]f1
1
du~21!

df1

]ām

]u
1
dy~0!n

df0

]ām

]yn

1y~0!n
]2ām

]f0]y
n 1

du~0!

df0

]ām

]u
1u~0!

]2ām

]f0]u
.

~C7!

Alternately, one can write

dam

df
5
dyn

df

]am

]yn 1
]am

]f
1
du

df

]am

]u
, ~C8!

in which the guiding-center expansion is madeafter the par-
tial derivatives are taken. Since the variation ofam with the
position variablesyn andu is slow,
n.

s

dam

df
'eFdy~0!n

df0
1
dy~21!n

df1
G ]am

]yn 1
]am

]f0
1e

]am

]f1

1eFdu~0!

df0
1
du~21!

df1
G ]am

]u
. ~C9!

The derivatives of the four-potentials appearing in t
order-e terms can be approximated by their guiding-cen
values. The remaining term

]am

]f0
'

]ām

]f0
1ey~0!n

]2ām

]yn]f0
1eu~0!

]2ām

]u]f0
. ~C10!

Equations~C9! and ~C10! are equivalent to Eqs.~C4! and
~C5!. This result shows that the guiding-center expansion
Sec. V was made consistently. The expansion based on
~C1! is better because it facilitates the identification of co
binations of terms that are oscillatory and hence do not af
the guiding-center motion.
n,

ev.
@1# H. A. H. Boot and R. B. R. S. Harvie, Nature180, 1187
~1957!.

@2# H. A. H. Boot, S. A. Self, and R. B. R. S. Harvie, J. Electro
Control4, 434 ~1958!.

@3# A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz.34, 242
~1958! @Sov. Phys. JETP7, 168 ~1958!#.

@4# A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz.34, 751
~1958! @Sov. Phys. JETP7, 515 ~1958!#.

@5# G. A. Askaryan, Zh. Eksp. Teor. Fiz.42, 1567 ~1962! @Sov.
Phys. JETP15, 1088~1962!#.

@6# N. J. Phillips and J. J. Sanderson, Phys. Lett.21, 533 ~1966!.
@7# T. W. B. Kibble, Phys. Rev. Lett.16, 1054~1966!.
@8# T. W. B. Kibble, Phys. Rev.150, 1060~1966!.
@9# F. F. Chen,Introduction to Plasma Physics, 2nd ed.~Plenum,

New York, 1984!, p. 305.
@10# W. L. Kruer, The Physics of Laser Plasma Interaction

~Addison-Wesley, Redwood City, CA, 1988!, p. 60.
@11# R. S. Craxton, R. L. McCrory, and J. M. Soures, Sci. Am.255

~2!, 68 ~1986!.
@12# J. M. Dawson, Sci. Am.260 ~3!, 54 ~1989!.
@13# M. D. Perry and G. Morou, Science264, 917 ~1994!.
@14# C. J. McKinstrie and D. F. DuBois, Phys. Fluids31, 278
~1988!.

@15# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,
New York, 1980!, p. 303.

@16# D. M. Volkov, Z. Phys.94, 250 ~1934!.
@17# T. J. M. Boyd and J. J. Sanderson,Plasma Dynamics~Barnes

and Noble, New York, 1969!, p. 26.
@18# P. C. Clemmow and J. P. Dougherty,Electrodynamics of Par-

ticles and Plasmas~Addison-Wesley, Reading, MA, 1969!, p.
122.

@19# L. D. Landau and E. M. Lifshitz,Classical Theory of Fields,
4th ed.~Pergamon, New York, 1975!, pp. 45, 112, and 118.

@20# E. A. Startsev and C. J. McKinstrie, Bull. Am. Phys. Soc.40,
1723 ~1995!.

@21# M. Ashour-Abdalla, J. N. Leboeuf, T. Tajima, J. M. Dawso
and C. F. Kennel, Phys. Rev. A23, 1906~1981!.

@22# C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, Phys. R
Lett. 74, 2439~1995!.

@23# C. J. McKinstrie and E. A. Startsev, Phys. Rev. E54, R1070
~1996!.


