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Collisional-radiative average-atom model for hot plasmas

Balazs F. Rozsnyai
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551

~Received 17 December 1996!

A collisional-radiative ‘‘average-atom’’~AA ! model is presented for the calculation of opacities of hot
plasmas that are not in the condition of local thermodynamic equilibrium~LTE!. The electron impact and
radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element
of the model is the photon escape probability, which at present is calculated for a semi-infinite slab. The Fermi
statistics renders the rate equations for the AA level occupancies nonlinear, which requires iterations until the
steady-state AA level occupancies are found. Detailed electronic configurations are built into the model after
the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to
the LTE state depending on the optical thickness of the plasma.@S1063-651X~97!03406-5#

PACS number~s!: 52.25.2b
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I. INTRODUCTION

Models for calculating equation of state~EOS! data and
photoabsorption cross sections of hot plasmas in the sta
local thermodynamic equilibrium~LTE! have been around
for some time@1–9#. Under LTE conditions the Fermi an
Boltzmann statistics define the distribution of the quant
mechanical states of the radiating ions and of the free e
trons around them, thus greatly facilitating the theoreti
development of the model. The condition of LTE is assu
when the plasma is completely dominated by collisio
and/or when the radiation field surrounding the plasma
Planckian. In the absence of the above the statistical di
bution of the different ionic states can be obtained only
solving the relevant rate equations involving the ions a
photons. Previous papers addressing the subject of ioniza
balance in terms of the steady-state solutions of the
equations used either semiclassical and parametrized at
data @10#, or the hydrogenic approximation or isolate
atomic data for the rate constants@11–15#. The problem of
obtaining a set of rate equations for medium- or high-Z ele-
ments in dense plasmas is complicated by a number of
tors. First, the number of quantum states of the differ
many-electron configurations can be enormous. Sec
even when data of these quantum states are available
isolated atoms and ions, the plasma electrons may s
ciently perturb those states to the degree that they ma
useless. Third, the non-LTE photon distribution has to
coupled self-consistently to the statistical distribution of t
many-electron ionic states. To overcome the first and sec
difficulties we propose a set of rate equations using
average-atom~AA ! approach, which treats the plasma by o
representative ‘‘average atom,’’ which subsequently can
augmented with the details of the physically significa
many-electron configurations. We will address the th
problem with some limitations, as will be clearer below. T
AA model under LTE conditions is described in Refs.@4–6#
and in references given there. The AA approach to the
equations is complicated by the fact that the Fermi statis
renders the rate equations nonlinear in terms of the AA le
populations. For this reason at present we restrict our c
siderations to the steady-state solution of the rate equat
551063-651X/97/55~6!/7507~15!/$10.00
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and will not consider time-dependent problems. For
present we restrict ourselves to the case when the ph
distribution is derived from a Planckian field where th
energy-dependent photon density is reduced by the prob
ity of photon escape. This photon escape probability
coupled self-consistently to the quantum states of the
atom. In Sec. II we present the basics of the model and
Sec. III we present computational results.

II. DESCRIPTION OF THE MODEL

A. Rate constants

In this subsection we consider the rate constants that e
the rate equations. We consider excitations, deexcitatio
and ionizations by electron and photon impact. We assu
that the electron thermalization time is short enough to
sume a Maxwellian~or Fermi-Dirac! distribution for the free
electrons, thus an electron temperature for the free state
well defined. Also we restrict ourselves to dipole-allow
transitions. The cross sections that determine the rate
stants are approximations of precise quantum-mechan
calculations and were used before to calculate electron
pact widths@16#. We start with the excitation cross sectio
from a bound AA leveli to anotherj by electron impact:

s i j
c ~x!51.2pa0

2S e2a0D f i j
~DEi j !

2 @12exp~20.3x!#
ln x

x
,

~2.1!

whereDEi j is the excitation energy,f i j is the dipole oscilla-
tor strength normalized to one electron occupancy of the
tial state i and computed from the AA wave functions,x
5«/DEi j with « as the energy of the incident electron, a
the superscriptc indicates ‘‘collision.’’ Equation~2.1! was
obtained by a series of numerical fits toR-matrix calcula-
tions for dipole-allowed transitions in medium-Z atoms and
ions. The general expression for the excitation rate is gi
by

Ri j
c 5E

DEi j

`

s i j ~«!v~«!n~«!d« ~sec21!, ~2.2!
7507 © 1997 The American Physical Society
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7508 55BALAZS F. ROZSNYAI
wherev stands for the velocity. In the case of a Maxwellia
distribution, the number of free electrons between« and «
1d« is given by

n~«!d«5
2

Ap
r

1

~kT!3/2
«1/2 exp~2«/kT!d«

5
2

Ap
r

1

~kT!/3/2
~DEi j !

3/2x1/2

3exp~2xDEi j /kT!dx, ~2.3!

wherekT stands for the temperature~in energy units! of the
free electron gas withk denoting Boltzmann’s constant andr
for the total free electron density. Usingv5c(2«/mc2)1/2

we obtain

Ri j
c 51.2S 8p

mc2D
1/2 f i j

~kT!3/2
e4crE

1

`

@12exp~20.3x!# ln x

3exp~2xDEi j /kT!dx

5 f i j I i j
ex ~sec21!, ~2.4!

where we factored out the dipole oscillator strength. T
integral in Eq.~2.4! is given by

kT

DEi j
E1S DEi j

kT D2
kT

DEi j10.3kT
E1S DEi j10.3kT

kT D ,
~2.5!

whereE1 stands for the exponential integral. For the deex
tation ~superelestic! rates we have

Rji
c 5

f j i
f i j

exp~DEi j /kT!Ri j
c→~detailed balance!. ~2.6!

The last relation is due to the fact that the deexcitation cr
section is the same as Eq.~2.1! except the ln(x) term has to
be replaced by ln(x11). We calculate the electron impa
ionization rates from the cross section

s ic
c ~x!5

K

« i
2 e

4@120.3 exp~x!#
ln x

x
, x5

«

u« i u
, ~2.7!

where« and« i stand for the energy of the incident electro
and for the eigenenergy of the bound leveli , respectively,
and the subscriptc indicates the transition to a continuu
state. Equation~2.7! is analogous to Eq.~2.1! and, apart from
the exponential term, to Lotz’s cross section for electron
pact ionization@17#. For the best fit to agree with more so
phisticated calculations we useK52.27. The ionization rate
constant is given by

Ric
c 5Ke4

23/2

~pmc2!1/2
cr

~kT!3/2
E
1

`

@12exp~20.3x!# lnx exp

3~2xu« i u/kT!dx ~sec21!. ~2.8!

The condition of detailed balance relates the three-body
combination to Eq.~2.8! by
e

i-

ss

-

e-

Rci
c 5exp@~m2« i !/kT#Ric

c , ~2.9!

wherem is the Fermi level of the free electron gas. Sin
exp(m/kT) is proportional tor and so isRic

c , Eq.~2.9! indeed
represents three-body recombination. The conditionNiRic

c

5(gi2Ni)Rci
c leads to the Fermi statistics whereNi stands

for the population of leveli andgi for its statistical weight.
We account for the dielectronic recombination and its
verse by the Auger matrix elementsAji

mc, which stands for an
Auger process where an electron from levelm goes to con-
tinuum while an other from levelj fills a lower hole state in
i . In the AA approximation this matrix element is given b
@18#

Aji
mc5

2p

\
NjNm(

l c
~2l i11!~2l c11!aiac~B11B21B12!,

~2.10a!

where

B15(
k

1

2k11 S l j0 k
0

l i
0D 2S l m0 k

0
l c
0 D 2

3@Rk~nj l jnmlm ;ni l iclc!#
2, ~2.10b!

B25(
p

1

2p11 S l m0 p
0

l i
0D 2S l j0 p

0
l c
0 D 2

3@Rp~nmlmnj l j ;ni l iclc!#
2, ~2.10c!

B125~21!l(
k

1

2k11 S l j0 k
0

l i
0D S l m0 k

0
l c
0 D

3(
p

1

2p11 S l m0 p
0

l i
0D S l j0 p

0
l c
0 D

3 H l ml j l c
l i

k
pJRk~nj l jnmlm ;ni l iclc!

3Rp~nmlmnj l j ;ni l iclc!, ~2.10d!

where l5 l j1 l i1 l m1 l c11 and R stands for the usua
Slater integrals. Also, in Eq.~2.10a! a stands for the avail-
ability of the statesi andc given by

ai512
Ni

gi
~2.10e!

for a bound state and

ac5
exp@~«c2m!/kT#

exp@~«c2m!/kT#11
~2.10f!

for a continuum state.
The symbolsn and l stand for the principal and angula

momentum quantum numbers, respectively. It should
noted that Eqs.~2.10a!–~2.10d! have nothing to do with the
thermal state of the plasma. They are strictly the results
taking the Auger matrix elements between averagedJ states.
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55 7509COLLISIONAL-RADIATIVE AVERAGE-ATOM MODEL . . .
In the case of photoabsorption we consider the photon es
probability due to the finite optical thickness. The concept
photon escape probability was used in previous works
connection with line transfers@19–21#. In this work we cal-
culate the photon escape probability form the total s
consistent photoabsorption cross section, which includes
line profiles together with photoinization and inverse brem
strahlung. We assume that the radiating ion is situated
semi-infinite slab at a distanced away from the edge of the
slab. For this case it is easy to show that the photon esc
probability is given by

P~\v!5exp~2x!2xE1~x!, ~2.11!

wherex5d/ l ; l51/s(\v)D, with s andD the photoab-
sorption cross section and ion density of the plasma. Ac
ally, we will use the photon confinement probabilityPc ,
which is 12P. Next, we consider the radiative transition
For a spontaneous downward transition we have Einste
transition probability

Aji5
2a

\

~DEi j !
2

mc2
f j i ~sec21!. ~2.12!

For an induced transition we use the general form

Bi j5cE s i j ~\v!N~\v!d~\v! ~sec21!, ~2.13!

whereN(\v)d(\v) is the number of photons/cm3 in the
energy interval\v and \v1d(\v). For the absorption
cross section we have

s i j ~\v!5
2p2e2

mc
\ f i j bi j ~\v! ~cm2!, ~2.14!

wherebi j (\v) is the line-shape function of the transitio
Assuming a Diracd function for the line shape we have

Bi j5
2p2e2

m
\ f i j N~\v i j !. ~2.15!

For a Planckian radiation field we have

NP~\v!5
v2

\p2c3
1

exp~\v/kT!21
. ~2.16!

We mimic the finite optical thickness with a photon distrib
tion N(\v)5NP(\v)Pc(\v) and obtain

Bi j5
2a

\

~\v i j !
2

mc2
f i j

1

exp~\v i j /kT!21
Pc~\v i j !.

~2.17!

For the downwardj - i transition the combined spontaneo
and induced rates give

Aji1Bji5
2a

\

~DEi j !
2

mc2
f j i F1

1
1

exp~\v i j /kT!21
Pc~\v i j !G . ~2.18!
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For the photoionization rate from a bound statem to the
continuumc we use a lower case notation whenPc is less
than 1,

rmc
r 5

8p

h3c2 Eu«mu

`

~\v!2sm,c~\v!Pc~\v!

3exp~2\v!d~\v! ~sec21!, ~2.19!

where Pc stands for the frequency-dependent photon c
finement factor andsm,c is the photoionization cross sectio
of the levelm normalized to one electron occupancy.
should be noted that Eq.~2.19! includes the induced down
wardc→m transition. The inverse radiative recombination
given by

Rcm
r 5exp@~m2«m!/kT#Rmc

r , ~2.20!

whereRmc
r refers to the photoionization rate in the optical

thick case and is given by the same integral as Eq.~2.19!
with Pc51. Equation~2.20! reflects the principle of detailed
balance when the free electrons follow the Fermi statistics
should be emphasized that the difference between the q
tities ofRmc

r , which refers to a Planckian radiation field, an
rmc
r , which is the photoionization rate constant for the op
cally thin case, is crucial for determining the difference b
tween the LTE and non-LTE level populations.

B. Rate equations

First, we summarize the rate constants that drive the
equations:Rmk

c is the excitation~deexcitation! rate constant
from level m to level k by electron impact. For radiative
transitions between bound states we use

Rmk
r 5Bmk

@in Eq. ~2.17!# for upward transitions and

Rmk
r 5Amk1Bmk

@in Eq. ~2.18!# for downward transitions.
Rmc
c is the rate constant for electron impact ionization fro

levelm to continuum. The reverse, three body recombinat
rate constant is

Rcm
c 5exp@~m2«m!/kT#Rmc

c . ~2.21!

rmc
r is the rate constant for photoionization for optically th
case. The reverse, radiative recombination rate constant

Rcm
r 5exp@~m2«m!/kT#Rmc

r . ~2.22!

Aji
mc is the rate constant for the Auger process in which

electron from levelm goes to continuum while an other from
level j fills a hole state ini , andAi j

cm is the inverse.Nc is the
the number of free electrons per AA.
The availability of the statek is

ak512Nk /gk .

All rate constants are normalized to one-electron occup
cies of the bound levels and they do not include the av
ability of the final state. Assuming that the number of bou
AA levels is finite the rate equations are given by
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~2.23!

~2.24!
t
-

l
,
bo
io

a
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ew

the

50. ~2.26!
All summations go over the bound level indices. It is easy
see that Eqs.~2.23! and ~2.24! satisfy the particle conserva
tion

(
m

dNm

dt
1
dNc

dt
50

because the sums with respect tom in terms 1 and 4 cance
out, the sum of term 2 with respect tom cancels out term 7
the same for terms 3 and 8, 5 and 9, and 6 and 10. The a
is simply the consequence of particle number conservat
In a steady-state solution we must havedNc /dt50 sepa-
rately, which means that the sums 7, 8, 9, and 10 have to
up to zero. This last condition defines the steady-state
ization balance, LTE or not. Next, we introduce some n
quantities from the triple sums 9 and 10.

Let
o

ve
n.

dd
n-

(
j

(
i
Nj~gi2Ni !Aji

mc5Kmc ~2.25a!

and

(
j

(
i
Ni~gj2Nj !Ai j

cm5exp@~m2«m!/kT#Kcm .

~2.25b!

Using the relationships~2.21! and~2.22! for the detailed bal-
ance and then Eq.~2.24! for the steady-state case one has
general form

dNc

dt
5(

m
$~Rmc

c Nc1rmc
r 1Kmc!Nm2exp@~m2«m!/kT#

3~gm2Nm!~Rm,c
c Nc1Rm,c

r 1Kcm!%
TABLE I. Equivalent LTE temperatures, ionization states, and Fermi levels.

xR kTeq ~keV! Nc 2m/kT 2meq/kTeq

Pr(Z559) atKT51 keV and 0.1g/cm3 LR51.3619 cm

0.0000 0.20313 28.81 9.6756 7.3283
0.0001 0.44531 40.93 9.3293 8.1022
0.01 0.84375 49.01 9.1515 8.9023
1.0 1.0 50.70 9.1178 9.1178
LTE 1.0 50.77 9.1178

Ge(Z532) atkT5500 eV 0.01 g/cm3 LR546.87 cm

0.0000 0.11523 19.357 10.669 8.4899
0.0001 0.15234 21.924 10.546 8.8217
0.01 0.42188 29.126 10.265 10.007
LTE 0.5 29.745 10.244
LASNEX 23.377 10.482
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FIG. 1. Photon confinement factors o
praseodymium vs photon energy atkT51 keV,
0.1 g/cm3 density with xR51024 ~I!, 1022 ~II !,
andxR51 ~III !.

FIG. 2. Fermi functions of praseodymium a
kT51 keV and at 0.1 g/cm3 density. The curves
marked~I!, ~II !, ~III !, and ~IV ! correspond toxR
50, 1024, 1022, and 1 together with the LTE
case, respectively.
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FIG. 3. Comparison of the OLC and full non
LTE Fermi functions with the LTE case o
praseodymium atkT51 keV and at 0.1 g/cm3

density withxR50.

FIG. 4. Same as Fig. 3 withxR51024.
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FIG. 5. Calculated opacities in cm21 of
praseodymium atkT51 keV and at 0.1 g/cm3

density withxR50. Full curve: LTE; long-dashed
curve: full non-LTE based on the rate equation
short-dashed curve: LTE with the equivalent LT
temperature of 0.20313 keV from Table I.

FIG. 6. Same as Fig. 5 withxR51024.



s;
E

7514 55BALAZS F. ROZSNYAI
FIG. 7. Same as Fig. 5 withxR51022.

FIG. 8. Calculated opacities in cm21 of ger-
manium atkT50.5 keV and at 0.01 g/cm3 den-
sity with xR50. Full curve: LTE; long-dashed
curve: full non-LTE based on the rate equation
short-dashed curve: LTE with the equivalent LT
temperature of 0.11523 keV from Table I.
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FIG. 9. Same as Fig. 8 withxR51024.

FIG. 10. Same as Fig. 8 withxR51022.
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FIG. 11. Comparison of calculated opacitie
of germanium at kT50.5 keV and at
0.01 g/cm3 density with differentxR with the pre-
diction by LASNEX. Full curve: LASNEX; long-
dashed curve:xR51024; short-dashed curve:xR
51022.

FIG. 12. Fermi functions of praseodymium a
kT51 keV and at 0.1 g/cm3 density with xR
51024 with and without the Auger matrix ele
ments in the rate equations.
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FIG. 13. Opacity of praseodymium atkT
51 keV and at 0.1 g/cm3 density with xR
51024, with and without the Auger matrix ele
ments in the rate equations are indicated by f
and dashed curves, respectively.

FIG. 14. Transmissivity of a
germanium plasma of
332023-cm thickness at kT
576 eV and 531022 g/cm3 den-
sity. Experiment and calculation
are given. The plasma is in LTE.
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FIG. 15. Transmissivity of an
aluminum plasma of 331023-cm
thickness at kT520 eV and
1022 g/cm3 density. Experiment
and calculation are given. The
plasma is in LTE.

FIG. 16. Transmissivity of an iron plasma o
531023-cm thickness at kT522 eV and
1022 g/cm3 density. Experiment and calculatio
are given. The plasma is in LTE.
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FIG. 17. Transmissivity of a
holmium plasma of 531024-cm
thickness at kT520 eV and
3.1022 g/cm3 density. Experiment
and calculation are given. The
plasma is in LTE.
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Equation~2.26! is generally valid for LTE or non-LTE ion-
ization balance. Next, we take the approximation that
individualm terms in Eq.~2.26! are zero, which we will call
the ‘‘one level in continuum’’~OLC! approximation. The
name is justified by observing that the OLC approximation
exact when there is only one bound level embedded in
continuum. The OLC approximation yields the following fo
the occupancy of the levelm:

Nm5
gmlm

exp@~m2«m!/kT#1lm
, ~2.27!

where

lm5
Rmc
c Nc1Rmc

r 1Kcm

Rmc
c Nc1rmc

r 1Kmc
. ~2.28!

Equations~2.27! and ~2.28! yield the Fermi statistics iflm
51. That occurs if the plasma is optically thick in whic
casePc51 and rmc

r 5Rmc
r and in addition we must hav

Kcm5Kmc . In fact, using the detailed balance for the Aug
transition rates, it is easy to show that as the level pop
tions approach the LTE populations the last condition is s
isfied. Also, in the limit when the background radiation fie
is negligible,rmc

r is zero andRmc
r is responsible for the ra

diative recombination and Eq.~2.28! leads to the corona
equilibrium. The number of free electrons per AA,Nc , is
obviously equal toZ minus the number of bound electron
The individual occupancies of the bound levels given
Eqs.~2.27! and~2.28! are not exact because they are not
solutions of Eq.~2.23!. However, their sum satisfies Eq
~2.26!, therefore we adopt it as a reasonable approxima
for the ionization state. This facilitates the iteration proc
dure of solving Eq.~2.23! by determiningNc from Eqs.
~2.27! and ~2.28! first and solving Eq.~2.23! for the bound
state populations subsequently. In fact, the self-consisten
lutions of Eqs.~2.23!, ~2.27!, and ~2.28! together with Eq.
e

s
e

r
a-
t-

y
e

n
-

o-

~2.11! for the photon escape probability involve a hierarc
of iterations that we outline in the next section.

III. COMPUTATIONAL RESULTS

The rate equations~2.23! and~2.24! in terms of the bound
level occupancies andNc are cubic, which necessitates th
application of iteration schemes for the solution. In additio
all solutions must be also self-consistent with the frequen
dependent photon escape probability. In order to make
whole problem computationally tractable we adopted the
lowing iteration scheme:~1! We start from the self-
consistent LTE problem as described in Refs.@6# and@8# and
compute all the rate constants from the LTE wave functio
and from the LTE photon escape probability.~2! Next we
obtain the first iteration value forNc in the OLC approxima-
tion using Eqs.~2.27! and ~2.28!. ~3! Next we solve Eq.
~2.23! for the bound level populations by successive ite
tions where the availability factorsam and (gm2Nm) for the
n-th iteration are taken from the (n21)th iteration we iterate
until the values ofNm converge. At this point the AA prob-
lem is solved in the first iteration.~4! In order to obtain
realistic photoabsorption cross sections and photon es
probabilities one must go beyond the AA model and bu
into the model the effect of ‘‘detailed configuration accoun
ing’’ ~DCA! due to the many-electron configurations. Th
necessitates calculating the statistical distribution of the
merous DCA states, which in a system not in LTE is a se
ous problem in itself. We solve this problem by calculati
an ‘‘equivalent LTE temperature’’kTeq, which after
Busquet@22# is defined as the temperature that, under L
condition, yields the same value forNc as the non-LTE prob-
lem. We also calculate an equivalent Fermi levelmeq, which
together withkTeq is used to calculate an equivalent Bolt
mann distribution of the many-electron DCA states. We p
ceed to compute the photoabsorption from these DCA st
as described in Ref.@8#. ~5! Having obtained the non-LTE



r
or

e
e
a

o
f.

tie

he
re
t
pa

m
th

er
iv
-
i
tr
.
–7
el
f

to
rre
la
co
e
an
i
a
–
a
io
re
o
u
ar

it
E
F
es
re
ut
ex
A
n
he

city
ion-

rate
y-

ur
s.
the
gies
ich
or
rse
TE
ities
0,
igs.
er-
al-
re
e

ns

tion
hin
er
ic
sing.

e
se

or
the
for
er
ted,
en-

re
b-

ns-
e
ex-
and
he
ri-
is-
ct
is

an
ize

7520 55BALAZS F. ROZSNYAI
photoabsorption cross section and non-LTE populations
this manner in the first iteration we go back to point~1! and
iterate until convergency is reached. In the calculations p
sented here convergency was reached usually after 4
iterations.

All the above iterations make the calculations rath
lengthy compared to the LTE problems. We present two s
of calculations in which we investigate the effect of optic
thickness, one for praseodymium (Z559) atkT51 keV and
at 0.1 g/cm3 density and one for germanium (Z532) atkT
50.5 keV and at 0.01 g/cm3 density. Calculations for the
first case for an optically thin plasma and using the meth
of ‘‘equivalent LTE temperature’’ were published in Re
@22#, the second was a study case at a conference@9# where
the author presented non-LTE corona equilibrium opaci
obtained from level populations predicted by theLASNEX
code of the Lawrence Livermore National Laboratory. T
calculations for various optical thickness show that the
sults converge, as expected, to the LTE case when
plasma gradually becomes optically thick. We label the
rameter for characterizing the optical thickness byxR , which
is the distance of the central ion from the edge of the se
infinite slab divided by the LTE Rosseland mean leng
LR .

The conditions for praseodymium at 1 keV and for g
manium at 0.5 keV are summarized in Table I where we g
the parametersxR in column 1, the equivalent LTE tempera
tures in column 2, the numbers of free electrons per AA
column 3, and the degeneracy parameters of the free elec
gasm/kT and meq/kTeq in columns 4 and 5, respectively
The calculations for praseodymium are shown in Figs. 1
and also in Figs. 12 and 13. Figure 1 shows the s
consistent photon confinement factorsPc for three cases o
xR . Figure 2 shows the Fermi functions, defined asNm /gm
versus the binding energies~in atomic units! of the self-
consistent AA levels for four cases of optical thickness
gether with the LTE case. We can see that curve IV, co
sponding to the case when the radiating ion is one Rosse
mean length away from the edge of the slab, practically
incides with the LTE curve, even when the photon confin
ment factors are not 1 for all photon energies. Figures 3
4 compare the LTE Fermi functions with those calculated
the OLC approximation and with the full non-LTE rate equ
tions. It should be noted that strictly speaking Figs. 2
should be discrete, but for low binding energies the levels
closely spaced and they form a quasi-continuous distribut
In Figs. 2–4 the spikes in the non-LTE Fermi functions
flect the fact that adjacent levels with different angular m
mentum quantum numbers sometimes are populated very
evenly. The calculated opacities for praseodymium
shown on Figs. 5, 6, and 7 forxR50, 1024, and 1022, re-
spectively. In each figure we compare the LTE opacities w
that of the full non-LTE calculations and also with the LT
calculations using the equivalent temperatures of Table I.
the non-LTE calculations the distribution of the DCA stat
is computed with the aid of the equivalent LTE temperatu
and Fermi level. The number of DCA states that contrib
significantly to the opacities can be quite numerous, for
ample, the opacity in Fig. 6 was obtained using 144 DC
configurations distributed over 12 different degrees of io
ization. It is out of the scope of this paper to discuss furt
in
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details of the DCA states and such details of the opa
calculations as line profiles, bremsstrahlung, and photo
ization. For those the reader is referred to Refs.@4#, @6#, @8#,
and @15# and references quoted there. Here we concent
only on the non-LTE AA level populations. For praseod
mium in all cases theK shell is completely full and the
L-shell populations do not differ much. Big differences occ
for theM shell and higher shells. This is reflected in Fig
5–7 where the opacities for photon energies above
L-shell lines and edges are close. For low photon ener
the opacity is dominated by inverse bremsstrahlung, wh
differs due to the different degrees of ionization. Also, f
the equivalent temperature LTE calculations the inve
bremsstrahlung is calculated by using the equivalent L
temperature for the free electrons. The calculated opac
for the germanium at 0.5 keV are shown in Figs. 8, 9, 1
and 11. Figures 8, 9, and 10 are analogous to those of F
5, 6, and 7. However, in the case of germanium the diff
ences between the LTE and non-LTE populations occur
ready in theL shell, so the LTE and non-LTE opacities a
close only beyond theK-shell edge. In Fig. 11 we compar
the non-LTE opacities withxR51024 and 1022 with that of
an earlier calculation where the non-LTE AA populatio
were obtained by the radiation transport codeLASNEX.
Therefore, the solid curve in Fig. 11 represents a calcula
where the non-LTE populations are not self-consistent wit
the model but were so to speak ‘‘borrowed’’ from anoth
code. Since theLASNEX code uses a somewhat simple atom
physics package, the apparent differences are not surpri
It is interesting to note though that theLASNEX curve is close
to the self-consistent non-LTE curve withxR51024 for pho-
ton energies beyond theL-shell threshold to that withxR
51022 below theL-shell threshold. We also note that th
LASNEX populations were obtained for the optically thin ca
(xR50).

In Figs. 12 and 13 we show the effect of the presence
absence of the Auger matrix elements for one case of
praseodymium set. Figure 12 shows the Fermi functions
the AA levels. It is evident that in the absence of the Aug
transitions the occupancies of the upper levels are deple
thus considerably reducing the photoabsorption at photon
ergies below theM shell, as shown in Fig. 13.

Direct experimental verifications of non-LTE effects a
not known to the author. Opacity experiments were pu
lished recently for germanium atkT576 eV @23# and for
aluminum, iron, and holmium in thekT520 eV region@24#.
The experimental data were published in terms of the tra
missivity of a slab of certain thickness of the hot plasma. W
investigated the possible non-LTE features of the above
periments by solving the steady-state rate equations
found that in each case the plasma was actually in LTE. T
comparison of the calculated transmissivities with expe
ments are shown in Figs. 14–17. The calculated transm
sivities were derived from the opacities. In view of the fa
that the ratio of radiative to collisional transition rates
proportional to (kT)1/2/r, it is not surprising that experi-
ments below 100–200 eV show LTE conditions. We c
expect non-LTE conditions at high-temperature, small-s
plasmas, such as occur in laser compressed pellets.
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IV. DISCUSSION

The purpose of this paper was to present a somew
rudimentary model for estimating the non-LTE effects
photoabsorption in laboratory plasmas. For the radiation fi
around the plasma we used the Planckian field thinned ou
the photon escape probability. Generalization of the mo
allowing any radiation field as an input is simple. Althoug
experiments have been perfected to measure quantitat
LTE opacities of hot plasmas, up to about 100-eV plas
R
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temperature, the author is not aware of experiments that h
concentrated on quantitative measurements of non-LTE
fects. Since non-LTE effects are easier to detect at hig
temperatures, as more powerful lasers become availa
those experiments will be possible.
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