PHYSICAL REVIEW E VOLUME 55, NUMBER 6 JUNE 1997

Self-organization of growing and decaying particles
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Because of thermocapillary flow or other mechanisms, particles move in temperature and concentration
gradients. In a system undergoing a first-order phase transition via nucleation and growth, such gradients are
caused by particles themselves. This leads to a long-range interaction in which particles will attract or repel,
depending on their growth rates. For the case of attraction, particles organize into clusters, while repelling
particles form more uniform particle distributions where fluctuations are leveled out. The implications of this
effect for materials processing are discus$&d.063-651X%97)06906-7

PACS numbes): 61.43.Fs, 61.43.Dq, 64.70.Kb

I. INTRODUCTION ticles will be proportional to 1?2, much as in electrostatics.
This brings in many features typical of electrostatics, includ-
When a phase transition occurs by nucleation and growthing the concepts of instabilities and many-particle effects. In
it is typically assumed that growing second-phase particleparticular, one can anticipate screening of particle fields,
are uncorrelated in their spatial positions. This picture differsanalogous to Debye screening, and its possible breakdown
from that of spinodal decompositidri], which leads to a When the fields are strong enough.
rapid formation of second-phase clusters. It is shown below The conclusion of particle clustering has much in com-
that, contrary to the standard assumption, correlations cafion with that of the theory of spinodal decompositids.
occur in a system of nucleated particles, leading either to &lote in this connection that in both cases there are attractive
formation of many-particle clusters or to a more uniform forces that provoke clustering. The difference is that for the
spatial distribution of particles. case of spinodal decomposition there is an attraction between
Two statements underlie our argumefi): each particle the molecules forming a new phase, while for the case under
causes a temperature and/or solute concentration field who§@nsideration here the attractive force acts not between indi-
absolute value decreases as With the distance from the  Vvidual molecules but between the nuclei of the new phase.
partide, and whose Sign depends on whether the partidénother important difference is that the attraction is assumed
grows or decays, ar‘@i) partide motion is affected by these to be of a short-rangéatomic) nature for the case of Spinodal
field gradients. decomposition, as opposed to the long-range, Coulomb-like
Before discussing the above statements let us point outtraction for the case under consideration.
how they lead to long-range correlations of particle posi- Our paper is organized as follows. In Sec. Il we consider
tions. Suppose, first, a partide moves up the field gradierﬂhe fields of individual particles and their screening. In Sec.
and the partic]e’s field is positiv@ay, a growing Crysta”ite 1" possible mechanisms of particle motion in temperature
in a liquid moves up in the temperature gradient and cause3nd concentration gradients are discussed. Section IV intro-
a positive temperature field about it3elAs a result, the duces a qualitative approach to understanding particle self-
particle increases the field in a region where it is alreadyorganization, while a more quantitative approach based on
relatively high. This positive feedback and corresponding inlinear stability analysis is developed in Sec. V. Discussion of
stability also takes place when the particle moves down &he results and some concluding remarks are given in Sec.
gradient, provided its field is negative. Such an instabilityV!.
will result in particle clustering. If, on the other hand, a par-
ticle moves up(down) the gradient and its field is negative
(positive), then the feedback will be negative and nonunifor- Il. PARTICLE FIELDS
mities will level out in a system undergoing a phase transi-
tion.
Another way to arrive at the same conclusions is to not

We turn now to a discussion of stateméintabove, that a
onequilibrium particle causes ar1¢hange in temperature

that since a particle moves in the gradient of the field cause (concentrationc). Its explicit form can be obtained by

by its neighbor, there is an effective interaction between the?’OIV".]gt tthe thermal condugtl\'gtydllzﬁustlr?n) equatlfo? in the
two, either attractive or repulsive, depending on the parti—quaSIS ationary approximatidiz]. For the case of tempera-

cle’s field sign and the direction it moves in the gradient. |nture one finds
the case of an attractive interaction the particles will form
clusters, while they will array uniformly in the case of repul- a
sion. _
Because of the long-range,rl/character of a particle T-T-=(Ta T(’C)r ’ @
field, many particles will be involved in such interactions.
Furthermore, supposing the interaction is linear in the gradi-
ent (at small gradients the effective force between two par- wherea is the particle radiusT., is the temperature far from
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the particle, andr, is the temperature at the particle inter- _ (Tao—T-)Q
face. For the case of concentratiait, can be obtained from Ta_Toc:Wy
Eq. (1) by replacing

T—c, T,—C,, and T,—C4. 2 lejig’ B=— SSQ’ ®)

Two related questions will be discussed in connection with
Eg. (1). First, the problem under consideration implies anwhere we have introduced the dimensionless parameter
external (with respect to the particletemperature gradient
which will modify Eq. (1). Second, in dealing with many Q:K@ ©)
particles one should note that the growth rate of any one of T ok
them is affected by the fields of its neighbors. Because the
field generated by that particle is due to its growth, this fieldThe parameteQQ determines the efficiency of an external
will be affected by the neighbors as well. gradient. In particular, it follows from Eq8) that the tem-

To account for an external gradient we follow the stan-perature drop Z, across the particle poles decreases by the
dard approach3] based on the quasistationary thermal con-factor
ductivity (diffusion) equationV2T=0 for the case of axial
symmetry, with the gradierd fixed far from the particle. 3
We write the solution§ - andT-. inside (<<a) and outside el:m’ (10
(r>a) the particle subject to the boundary conditions

while the average temperature at the interface decreases by

JT< aT- the factor

T-=T-, K<7_K>7=hs at r=a, 3

Q

where k. and k- are the thermal conductivities of the two €= 1+Q (11
phases anti, is the heat liberatethbsorbediper second per

unit area of the interface due to the phase transformation. Fg{g compared to the case of a stable particle. The limiting case
simplicity we adopt in what followsc. =« =«. Also Wwe Q<1 corresponds to interface-limited kinetics where very
note thaths is related to the growth rate by slow exchange between the two phases makes it possible to
establish a considerable temperature gradient across the par-
he= qu_a (4) ticle (e;~1), while the average temperature drop at the in-
dt’ terface is relatively smallgy<1). The opposite cas®@>1
refers to bulk-diffusion-limited kinetics in which the ex-
where q is the latent heat, ang is the material density. change between the phases is very fast. In that case, the

Because of the axial symmetry we set temperature difference across the particle poles would affect
_ the local growth rates at the poles and thus level out the
T-=Ta+T,A-rl(Ad), difference. This negative feedback makes the temperature

. gradient in the particle lower by the factey<1 than that of

a — a a stable particle. On the other hand, the average temperature
To—To=A-r 1+Br_3 +(T3_T°°)F’ ) drop across the interface is close to its maximum value
eoml.
wherer is the radius vector and@,, T;, andB are three Following the recipe in Eq(2) one can modify the results

parameters to be determined from the boundary conditions it Egs.(8) to describe the case of a concentration gradient.
Eq. (3). Although the above equations are sufficient to deter-The paramete@ will then change to

mine the temperature field at all points, it is desirable to

obtain the results in a form that accounts for the difference 0= Ka (12)
between bulk-diffusion-limited and interface-limited growth D.’

kinetics. This is achieved by introducing the linear kinetic

coefficient[4—6] K, determining the particle growth rate,  with D, being the solute diffusion coefficient.

We now turn to the issue of screening in a system of
many growing or decaying particles. For the sake of definite-
ness we again concentrate on the case of a temperature field.
Screening can be then understood as resulting from the fact
Equation (6) expresses the fact that the particle radiusthat the temperature near a growing particle is increased by
changes because its interface temperafiyrdiffers from the  the temperature fields of remote growing particles, so its
equilibrium temperaturd ,o. In accordance with Eq5) the  growth will slow down and thus the temperature field caused

da

gt = K(TaoTa). ®)

interface temperature is by that particle will be decreased. The corresponding screen-
o ing length can be derived from the quasistationary thermal
T,=T,+T:A-r/(Aa) for |r|=a. (7)  conductivity equation

Substituting Eqs(7), (6), (5), and(4) into Eq. (3) gives xV3T—nl=0, (13
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wherey is the thermal diffusivity,n is the concentration of number of different mechanisms can be suggested. Some of
particles, and is the temperature flux per center. Based onthem are described below in this section.

Egs.(5) and(8), we write For the case of a temperature gradient such a mechanism
may be thermocapillary migratidr], known since the pio-
neering work of Younget al.[8]. Its nature is as follows. A
local increase in temperature results in a local decrease in
surface free energy that is accompanied by a nonuniform

To derive the screening length we consider smooth longtangential stress at the surface. In response to this stress a
range fluctuations of temperature and partiCle Concentratiorﬂow occurs from the warmer to the cooler p0|e of the par-
In accordance with its physical meaninG.,, the tempera- ticle. Therefore the particle will move in the direction of its

ture far from a particle, will be different in different fluctua- warmer pole. For the case of small Reynolds number the
tions. Hence we identify the temperatufe, with a local  thermocapillary migration velocity is

temperaturel averaged over a regioffluctuatior) contain-

|=— K(«?T/ar)47rr2=477Xa%(Tao—Tw). (14)

ing many particles and varying smoothly between such re- 20+a
gions. To describe the fluctuations explicitly we set V= WVTE%&VT. (19
én=n—n and ST=T-T, whereor=daoldT, a is the ratio of viscosity of the particle

phase to that of the continuum phageis a similar ratio of

where T and n are, respectively, the average temperaturnermal conductivities, and is the dynamic viscosity. Tak-
and particle concentration in the system. In the linear aPing into account the Stokes-Einstein relationship

proximation we find D,=T/(6mva) and using the order-of-magnitude estimate

_Q o |ot|~alT, one finds
V26T—4mnya—=46T=énl, (15
X X¥1+Q £~ a2l T2>T L, (20)
where the average flux It is natural to consider a similar effect due to the concentra-
0 tion gradientV c rather tharVT above. Reasoning along the
_=47TXa—(Tao—T_) same lines, we consider a particle in a concentration gradient
1+Q and assume the surface tension to decrease as the solute con-

centration increases. Since a local increase in solute concen-
Yration is accompanied by a local decrease in surface energy,
a nonuniform tangential stress will appear that entails a flow
— , to the low-concentration pole of the particle. Hence the par-
! exp{—|r—r’|/rg} ticle will th trati dient. For th
ST=— sn(r’) : 3’ (16) icle will move up the concentration gradient. For the case
Ay r—r'| when viscosities of the two phases are comparablel, its
velocity has an order-of-magnitude estimate

is positive or negative for the cases of growing or decayin
particles, respectively. From its solution

we see that the temperature field screening length is

g.a Jdo
1+Q V=D,¢(Ve~—Ve, Te="c (21
=\ —_—_— 17 v c
471Qna
The above assumption that is positive does not hold true
Along the same lines one can consider screening of conceiin general. This derivative is related to the surface excess,
tration fields. The result is again given by HG7) with Q
from Eq.(12). Note also that the above screening has much [ do Jdc
in common with the standard Debye screening in electrostat- I Y B W
ics and the formulas for screening lengths look alike. This T T
reflects the analogy between the quasistationary diffusiofhat can be either positive or negative, depending on solute
a_md electrostatic problems, both reduced to the Laplace eqUnemistry[9], whereu is the chemical potential. An estimate
tion. to serve as a rough guide pf;| for this mechanism can be
obtained from the Gibbs equation
. PARTICLE MOBILITY

The second of the two basic statements in Sec. |, that a d_U: — FROT'
particle moves in a nonuniform environment, makes sense dc c

simply because the opposite seems to be unnatural. Phenom- . :
enologically, the particle velocity where Ry is the gas constant. We note that typically

||~ (1-10)x 10~ 1° mol/cm?, so that the produdi’|R,T is
V=¢§D,Vf (18 of the order of a typical surface energywhich varies from
10 to 100 dyn/cm between different systems. Therefore one
is proportional to the field gradie f and the particle dif- can roughly estimatéo |~ o/c, in qualitative agreement
fusion coefficientD,, with the proportionality coefficient with the datg9—11]. Using the latter estimate together with
&; determined by the particular mechanism of interaction. Athe Stokes-Einstein relationship gives
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ga? in Ref.[14] for the case of growing and decaying particles in
Ec~ T >1. (22 a nonuniform solute. The result, that the force on a particle is
proportional to its growth rate and local solute concentration
Note that if barodiffusion is taken into account it can dra-gradient, agrees with the phenomenological description in
matically increase the concentration-capillary effect and thu&d. (18). Based on the estimate in R¢14] we get
the parameteé, [12]. 3
The above consideration of capillary migration implies 3 &
the particles to be stable. If on the other hand the particles ¢ 8
grow or shrink(as we plan in what followsthe efficiency of ) o ) )
capillary migration will decrease, because this affects thevherea, is the characteristic molecular dimension. How-
local growth rates at the poles and thus levels out the differVer, since the approach in Rgt4] is restricted to a purely
ence. As was discussed in Sec. II, the gradient of the ordefiffusive model and does not account for possible hydrody-
parameter(temperature or Concentratil)ldecreases by the namic effe.CtS, the abSOlUte.Value and even Sign of the ther-
factor e;=3/(3+ Q) as compared to the case of stable par-modynamic force may be different. _ _
ticles, Q=0 [see Eq(10)]. Since this factor also appears in e mention also one more specific mechanism of mobil-
the equations for the capillary migration velocity, we con-ity suggested for a living cell in a concentration gradieir]
clude that the case of bulk-diffusion-limited kinetics and _based on hydrodynamic effects caused by ionic currents
(Q>1) is unfavorable for capillary migration. On the other flowing through the cell. .
hand, capillary flow survives slow interface kinetics We end this section by presenting some general hydrody-
(Q<1). namic arguments shqwmg the existence ofa fqrce on a grow-
It is worth noting here that, while being favorable for INg Or decaying particle in a nonuniform environment. To
capillary flow, smallQ<1 leads to correspondingly weak €liminate all the effects that are not due to the gradient and
fields caused by individual particles, as is seen from(Eg). ~ 9rowth we assume that for a hypothetical case of a stable
In other words, aQ<1 particles act as ineffective sources particle all the forces are balanced and there are no currents
and effective receivers of the field. Interparticle interactions” the system. Because of particle growth currents will ap-
depend on both these competing factors, which balance ead§ar both normal and tangential to its surface. Correspond-

other. This can be qualitatively understood from the fact tha{n9!y. the force on the particle will consist of two contribu-
in the region of linear dimension, [with r from Eq. (17)] tions. The first one, normal to the interface, is due to direct

the characteristic field is proportional to the number of par/nomentum transfer associated with particle growth. The sec-
ticles nr¥, their effective charges,, and inversely propor- ond, tangential contribution results from the viscous friction
S ’

tional tor. Sinceeor§ does not depend 0@, the charac- on the particle surface exerted by the fluid flow. For definite-

teristic fluctuation field affecting an individual particle ness we consider the case of a temperaure gradient,

L . J = The first contributionf,,, can be understood by using a
remains finite aQ<1. This reasoning implies, however, that . ; )
. . . local reference frame pinned at some point of the growing
the fluctuation has time to evolve over the distangg the

latter time becomes infinitely long &@—0 (see Secs. IV particle surface. Since the surface is at rest at this frame, the

and V below. Meanwhile, our consideration is not restricted force per unit area on it is the momentum transferred per unit
' ' area per second. The latter is associated with the motion of
to the case of smalR<1.

In a recent papef13] another mechanism of thermomi- surrounding fluid feeding the particle. The corresponding ve-

L . : . locity near the interface ida/dt in the reference frame cho-
gration in a multiphase system subjected to an imposed tem)-

perature gradient was suggested. This is associated with, - The force on a hemisphere is tiigp-op(da/dt)“a’,

> . : . where 6p is the difference between the material densities of
asymmetric thermodynamic properties of the underlying co-

existing phases. Due to the phase asymmetry, thermod the two phases. Because of the gradient, the temperature dif-

namic forces occur at the surface of the droplet, since Onéerence across the p"?‘”'c'e changes&ﬂ}paVT. Hence the

: orces on the opposite hemispheres do not completely bal-
phase tends to be on the colder side and the other phase ance each other. With E¢p) taken into account the net force
the hotter side. Such forces will not be present in the sym- '
metric phase situation. Droplets of different phases migraté)
in opposite directions because this leads to a decrease in the a
free energy of the system. As opposed to thermocapillary Fo~6p——a’KVT.

migration, the latter is due to the bufkot interface charac- dt
teristics of the phases. Although no analytical results on the 1he second contributiorE .. can be estimated by noting

migration velocity have been presented, the computer mog ;¢ the surrounding fluid velocitgia/dt changes across the

eling in Ref. [;3] shows that 'the velocity is linear in tem- o e bysv~KaVT and thata is the only space scale in
perature gradient and may win out over that of the standarg, problem. From that we find

thermocapillary model and have a different sign. Based on

that, we conclude that the phenomenological equdti@nis F,~7Ka?VT.

applicable to the situation where the latter mechanism domi-

nates and that the parametgrabove may have the opposite  If we express the linear kinetic coefficieKtthrough the

sign and larger absolute value than in the case of thermocaparameteQ [see Eqs(9) and(12) abovd and note that both

illarity. the cases of interface-limited®<1) and bulk-diffusion-
Similar concepts of thermodynamic force related to a dedimited (Q>1) growth are realistic, we see that, depending

crease in free energy due to particle motion were put forwaradn the parameters of the systémay, the sign of5p), both

c—Cy
c

>1,

n the particle will be
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the cases of particle migration up and down the gradient arlarger thanr. in order that clustering not be suppressed.
possible. The corresponding dimensionless paranigtein Equatingr from Eg. (17) andr. from Eq. (25) introduces
Eq. (18) can be either larger or smaller than unity in absolutethe critical undercooling

value.

It follows from the above analysis that many different
mechanisms can contribute to an unstable particle migration
in a nonuniform medium. Which of them dominates depends
on the parameters of the system. Both cases of downhill and
uphill migration are possible, and the dimensionless param-
eterf &, determining the absolute value of the particle veloc-such that afl,o—T>£7* the clustering wins out over the

T T= = (26)
0

ity can be much larger than unity. screening, while in the opposite case the clustering is sup-
pressed. As long as the dimensionless prodydt=>1 (in
IV. PARTICLE SELF-ORGANIZATION accordance with estimates in Sec) Ie critical undercool-

ing is relatively small,T,o—T<T. That screening cannot

In this section we discuss particle self-organization on grevent clustering at large undercooling can be interpreted as
qualitative level. We begin here with pairwise interparticle a breakdown of the electrostatic analogy mentioned above.
interactions that are assumed to cut off at the screening/e shall see in Sec. V below that the crossover between the
length. For the case of two identical particles, characterizedwo regimes at the critical undercooling occurs as a critical
by the parametera, T,, andéy, based on Eqgl) and(19) phenomenon.
and taking into account the particle mobiliBy, /T, one can One other point to note is that the critical undercooling
write a quasi-Coulomb interparticle force does not depend on the kinetic parame@efor the case of
smallQ< 1. Physically this means that a small thermocapil-
lary effect corresponding tQ<1 is compensated by a large
number of particles involved in the region of linear dimen-
sionrg that increases a® decreases, as discussed after Eq.
For the case of the standard thermocapillary mechanismp?2) above. The paramet& will, however, determine the
¢r>0, two growing particles attract, while two decaying characteristic time scale?/D,, over which particle self-
particles repel. However, if other mechanisms dominat&yrganization evolves. In the limiting case @0 this char-
there may ber<0, so that the situation reverses. acteristic time becomes infinitely long, making fluctuations

As described in Sec. |, for the case of attracting particlegnobservable. In the alternative limiting case of la@®e 1
we expect clustering to develop, such that each cluster cofne interaction parametef; becomes small since it is pro-
tains many particles. We estimate the characteristic mi”iportional to the factoe, [Eq. (10)] as discussed in Sec. IIl.
mum cluster dimension, by equating the diffusion current Tpis may cause the critical undercooling in Eg6) to in-
crease beyond the region where the phase transformation oc-

F()=— 5agrT(Ta—T.). 23

JDNDn@ curs by nucleation and growth. The alternative region of
le spinodal decomposition is not described by the present
theory.
out of the region and the inward drift current It f)(/)IIows from the above derivation that the drift current
Je will increase as the radius of the fluctuation increases.
Je~ &F(r yonrdn Therefore qucFugtio_ns of >r . will increase_ spontaneously
T ¢ ¢ with characteristic times that are decreasing functions. of

5 _ _ This reasoning is, however, restricted to the assumption of
caused bysnr excess particles, each of them producing theestablished temperature fieldsT(= 1/r) underlying the force
force F(r;) given in Eq.(23). Here D, /T is the nucleus in Eq. (23). This implies that the heat must diffuse fast

mobility. From that we find enough. If we equate the characteristic tid&y to establish
thermal equilibrium in a region of linear dimensiorand the
\/ 1 characteristic timer/v, of particle drift with velocity

N Arnéa(T,—T) @49 vo,~Jg/n, then we get a new characteristic dimension

where we have replaced the temperaflite smoothly vary-

ing in space, by the average temperaftir&Ve recall that, in F e e /i
accordance with the considerations in Sec. Il, the interface D
temperature is determined by the type of growth kinetics via
the paramete®. With Eq. (8) taken into account we express

(27)

n

Fluctuations ofr >r .« Will not grow. From that we con-

clude that there exist fastest-growing modes of some linear
. \/ _1+Q _ (25) dimensionR such thatr ;<R<r . In the approximation
4mQnéqa(To— T)' neglecting the growth of all modes except those of the fastest

ones, the fluctuations will exhibit a set of clusters of charac-
Note that above we have neglected the effects of screeningristic dimensiorR. We again observe the similarity of the
that oppose clustering. The screening lengthmust be phenomena under consideration to spinodal decomposition.
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V. LINEAR STABILITY ANALYSIS or (what is the sameespace scales larger thag=k_ . In the
linear approximation their amplitudes increase exponentially

To make the analysis of Sec. IV more quantitative we .~ .
with time,

write the kinetic equations and employ linear stability analy-
sis. We consider a system of a fixed number of particles, thus
neglecting the possibility of their creation or annihilation,
and suppose for simplicity that they all have the same radius
a. For instance, such a system may serve as a model for tHe follows from Eq. (30) that the amplification factory(k)
growth stage of second-phase nucleation, at which new nu€aches its maximum

clei are unlikely to appear while coarsening has not yet be-

gun. With Eq.(18) taken into account the kinetic equation Ym=k2D, at k=kp~ko[Vér(Tao—T)—1]. (32
for the particle concentration becomes

ST(t), on(t)xexp(yt).

Becausey(k) has a maximum and it occurs in an exponen-
@: Dnng_V25T+ D, V25n, (29) tial, it is convenient in the first approximation to ign_ore the
ot growth of all modes but those near the fastest-growing ones.
In this approximation we return to the predictipafter Eq.
Eq.(28) is linearized indn and 5T. The temperature kinetics (27) abovd of a set of clusters characterized by linear dimen-
beyond the quasistationary approximation can be describesion R,,=k,* that falls in the interval (¢, ma)-

by adding the corresponding time derivative to Etp): One other point is that, in accordance with Egf), clus-
tering will develop only if the critical undercooling given in
aoT Q Eq. (26) is exceeded, again in agreement with the qualitative

analysis in Sec. IV above. Equati@81) predicts crossover
between the regimes of screening and clustering to have the

Letting T(k, w) andn (k,w) be the Fourier transforms of the character of a critical phenomenon.
temperaturesT(r,t) and nucleus concentratiofn(r,t), re- Generalization of the above results to the case of other
spectively, corresponding to wave vectorand frequency mechanisms of particle mobility is straightforward. For the

_ 2 — - __
m xVeoT—onl 47TnX1+Qa5T. (29

, Egs.(28) and (29) give case of the concentration-capillary effect it is achieved by
replacingér—¢&., T—c, T,—c,, x—D..
(—iw+D KN+ &nD KT=0 Note that the kinetic equations above neglect the time

dependencea(t). This implies the functiora(t) to be slow

in the sense|da/dt|<ay,. For the case of the
T=0. concentration-capillary effect this reduces to the inequality

na’|&;cD,/D.>1 which seems to be realistic with the es-
» , _ timate | £.c|~c0a?/T>1 taken into account. For the ther-
The condition that these equations be compatible has the,ocapillary effect in dense gases the corresponding inequal-
form of a dispersion equation ity na|&r|TD,/x>1 may hold true as well, while it is
unlikely for the case of condensed matter because of the

1n+| —iw+ar nya+ xk?

1+Q

2
il _ é+ A_ — inequality D, < y. We emphasize in this connection that the
w(k)=i + +B|=ivy, (30 o : .
2 4 restrictiona(t) =const and others imposed in the course of
the above linear stability analysis have been chosen for the
where sake of simplicity only. From our qualitative reasoning, self-
organization of particles will take place in any system under-
) ) Q — going a first-order phase transition.
A=kix+k(Dpt+x), ko= 4771+Qna,

VI. DISCUSSION OF THE RESULTS

_ 21,2 LT e 1712
B=Dnxk{ko[(Tao— T)ér— 1]k} We now estimate the characteristic cluster dimension

using typical material parameters corresponding to alloying
materials [16]. We take n~10® cm™3 a~10 A,
£.(c—c4)~1 [close to the critical supersaturation deter-
mining the crossover between the clustering and screening,
’ K — ] cf. Eq.(26)]. Also, rather arbitrarily, we s~ 10 * (values
case of attracting particle§,,>T, provided thatB>0. On 4 () Jess than 0.01 are realis{i¢,17]). Then, from Eq(25)

the other hand, for the case of repelling_particles, the flucy,e obtainr .~3 wm with ~10° particles per cluster. Since
tuations decay since the inequaliff,—T<0 leads to small Q corresponds to an interface barrier, it depends on
B<0 and the real part of is negative. These conclusions temperature exponentially as dags

Note that the characteristic wave vectqy is exactly the
reciprocal of the screening radiusin Eq. (17). The fluctua-
tion is unstable provided that the frequensyhas a positive
imaginary part, that isy>0. The latter is achieved for the

agree with those derived above on qualitative grounds. It follows from the above estimate that second-phase con-
For the case of attracting particles the fluctuations that argentration can fluctuate considerably on a long-raimyeso-
unstable possess wave numbers scopig space scale. Although we do not see from the theo-

retical point of view how one can eliminate the fluctuations
k< kCEkO\/(TaO_T_)gT_ 1 (31) predicted, we have to admit that we are not aware of experi-
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mental evidence in favor of such fluctuations. The only con- Associated with the fluctuations in second-phase concen-
clusion we can draw to reconcile this fact with our predic-tration will be fluctuations in material parameters, such as
tions is that the issue of mesoscopic correlations has not beeigidity, elasticity, reflectivity, and so forth. Since such fluc-
adequately addressed in the experimental study of phadaeations are importanfand normally undesirablerom the
transformation kinetics. Average numbers of second-phasechnological standpoiri20], we also hope that the above
particles per volume depending on time, composition, andindings may have implications for technology. As an ex-
annealing schedules are typically measured; much less atteample we note that adding a very slight amount of some
tion is paid to the question of their possible space correlationmpurity is known to suppress capillary flow by contaminat-
We hope that the present work will stimulate new experi-ing the particle interface and thus supporting tangential stress
mental activity in studying first-order phase transformationswithout steady-state flow. With that in mind, we suggest the
on mesoscopic scale. possibility of improving multiphase material uniformity by
Although there is no direct experimental evidence for themeans of properly chosen doping. Another possibility is to
clustering predicted, two supporting pieces of evidence camse a thermal treatmefgay, a short-time anneahat, while
be pointed out. First, a vigorous thermocapillary flow in ahaving no time to destroy second-phase particles, changes
droplet undergoing evaporation was observed recddy.  their interactions from attractive to repulsive and thus levels
This shows that the phenomena of phase transformations amdt the fluctuations.
capillary flow are compatible, in agreement with the results In conclusion, we have shown that in a system undergoing
of our analysis in Sec. Il above. Second, Tanfké] ob- a first-order phase transition, self-organization of nucleated
served an attraction between growing droplets in a binanparticles can take place, leading either to formation of clus-
fluid which he qualitatively attributed to a direct coupling of ters or to a space-uniform distribution, depending on the

diffusion fields around droplets. thermal treatment schedule and material chemistry.
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