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Linear stability analysis of bifurcations with a spatially periodic, fluctuating control parameter
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Multiplicative noise in spatially extended systems produces different effects depending upon whether the
noise is spatially homogeneous or spatially varying. Whereas in previous work a stochastic distribution was
treated, here we consider the spatially periodic case, which is more amenable to an experimental approach, in
particular in the electrically driven instabilities of nematic liquid crystals. We shall principally be interested in
the threshold for the onset of symmetry breaking instabilities controlled by bifurcations in several stochastic
partial differential equations. For the Ginzburg-Landau and Swift-Hohenberg equations we calculate the be-
havior of the threshold for all moments to second order in the noise strength, allowing one to reconstruct the
full probability distribution. For a system of two coupled equations which mimics electroconvection in nematic
liquid crystals~the ‘‘one-dimensional model’’!, we calculate the first two moments up to second order and
estimate the threshold for convection. The general conclusion of our work is that spatially periodic noise
induces a reduction in the threshold similar to the stochastically distributed case. We propose that this reduc-
tion be independent of the periodicity of the noise to first order in the noise strength, the dependence on period
appearing only at second order. This is in contrast to spatially homogeneous noise where threshold shifts may
be entirely absent.@S1063-651X~97!15305-3#

PACS number~s!: 61.30.2v, 02.50.Ey, 64.70.Md
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I. INTRODUCTION

The way in which fluctuations of the control parame
influence spatially extended systems exhibiting symme
breaking instabilities, such as the transition to electrohyd
dynamic convection~EHC! or the electrically driven Fre´ed-
ericksz transition in liquid crystals, has recently been
focus of some interest both experimentally@1–7# and theo-
retically @8–31#. The fluctuations of the control parameter,
the case of liquid crystals the applied voltage, introduc
noise term in the stochastic partial differential equations~SP-
DEs! which is~to lowest order! proportional to the stochasti
field~s! and is hence termed multiplicative~one might also
say parametric!. Such systems can be described by a sin
stochastic differential equation of first order in time or a
of coupled SPDEs. The case of several SPDEs is impor
since a set of SPDEs near the threshold of the instab
cannot be reduced directly to a single stochastic amplit
equation if multiplicative noise is present. This is in contra
to the case of~weak! additive noise where such a reduction
possible@32–43#. Measurements of the effects of noise
experimental systems without~intentionally! introducing ex-
ternal noise have been done in a number of cases@44–52#,
some of which revealed a noise strength compatible w
thermal noise@48–52#.

Since multiplicative noise does not destroy the basic~pri-
mary! solution @53# one still has a sharp bifurcation~for a
stationary noise process! and the threshold can be calculat
by linearizing the SPDEs around the basic solution.~This
can be shown under rather general conditions@30,31#.! Thus
one can uniquely define a thresholda(e) thresholdof the deter-
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ministic ~time-averaged! control parametera in the presence
of multiplicative noise of strengthe, below which small non-
trivial initial conditions decay to zero and above which th
diverge exponentially with probability 1~‘‘almost cer-
tainly’’ !. One may also define a thresholdan for the nth
moment, which may, in principle, be smaller thanathreshold.

The effect of spatially constant multiplicative nois
which occurs when the control parameter has only temp
fluctuations, has mainly been considered@1–7,15–20#. Then
the linearized equations are amenable to the usual Fou
decomposition in the extended spatial directions, where
assumes translational invariance. Then one is often left w
ordinary SDEs in time, just as for restricted~zero-
dimensional! systems. In the case of a single ordinary SD
which has been investigated intensely in the past@8–15#, one
finds that thean are lowered by an amount of orderne
whereas the thresholdathreshold is not at all affected by the
noise. This peculiar behavior results from the fact that
distribution function of the linearized problem has long tai
In the nonlinear problem all thresholds coincide wi
athreshold. Unfortunately it has not been possible to treat t
nonlinear problem for more complicated cases. The cas
two coupled SPDEs has been considered in the contex
EHC @16–20#. Here one expects~and finds! a threshold shift
of ordere.

The case of a spatially stochastically varying multiplic
tive noise term in a single SPDE~or a discrete version on a
lattice! has also been recently studied, and found to prod
interesting effects@21–31,54,55#.

An interesting aspect, first found in simulations@21#, was
a shift of ordere of the threshold towards smaller values
the control parameter without introducing significant fluctu
tions into the system. The authors of@21# also noted that,
within numerical accuracy, this shift was equal to that calc
s,
7068 © 1997 The American Physical Society
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55 7069LINEAR STABILITY ANALYSIS OF BIFURCATIONS . . .
lated for the second moment~or correlation function!. A
rather general approximate theoretical approach has bee
veloped to describe this threshold shift@29–31#. The method
employed makes an ansatz for the form of the probab
distribution of the stochastic field, which can be justified f
a number of cases, and allows one to calculate the sh
threshold toO(e), and often toO(e2), from the knowledge
of the long-term behavior of only the first two moments
the stochastic field. Here the threshold of the second mom
differs from that of the first moment~and of the actual
threshold! by corrections that are typically of ordere2 and
which could not have been detected in the simulations
Ref. @21#. By letting the correlation length of the noise b
come small—or equivalently the correlation length of t
deterministic part large—the prefactor in the correction te
can be made arbitarily small, and then the system pres
ably behaves fully deterministically~in the absence of addi
tive noise!. In this limit the results of the analysis coincid
with those obtained from a type of mean-field approximat
of the system including weak additive noise@22# ~in the scal-
ing used there the weak-noise limit corresponds to
strong-coupling limit!.

In this paper we present the results of a study of the ef
on the theshold for multiplicative noise which is spatia
deterministically modulated and temporally fluctuating
three SPDEs in one spatial dimension. More specifically
chose the noise term in our SPDE to be the product of w
noisej(t) @i.e., ^j(t)j(t8)&5d(t2t8), where^•••& denotes
an ensemble average# and a periodic functionf (x). In elec-
trically driven instabilities in liquid crystals this can b
achieved by employing structured electrodes, as done pr
ously in other contexts@56,57#. We first consider the~real!
Ginzburg Landau equation~GLE!, which involves only one
stochastic field and should be applicable to simple spati
homogeneous transitions like the usual Fre´edericksz transi-
tion ~see, e.g.,@58#!. Then we treat the Swift-Hohenber
equation~SHE!, which also involves only a single stochast
fieldC(x,t), but has the instability at nonzero wave numb
and then later the case of two coupled stochastic fields
describe one-dimensional EHC; see@59,60,58,61,17–20#.
Since we consider only the threshold behavior, the equat
studied in this paper are all linear~see Appendix A in@30#!.
In the case of the GLE~in Sec. II! and the SHE~in Sec. III!
we shall illustrate that we can calculate perturbatively in
noise strength the long term behavior of all integer mome
of the stochastic fieldC(x,t) and hence reconstruct the fu
probability distribution. To second order in noise streng
this will be seen to be precisely of the form suggested in
ansatz due to Becker and Kramer@29–31#. In Sec. IV we
give results for the first two moments to second order
noise strength for the more complicated case of the
coupled SPDEs of the 1D EHC theory. These can be see
take a similar form to those of the simpler single SPDEs
Secs. II and III. In the conclusion~Sec. V! we make connec-
tion with further work and discuss the mechanism underly
the threshold shift.

II. THE GINZBURG-LANDAU EQUATION

In this section we shall consider the GLE in one dime
sion with multiplicative noise, which is the product of whi
de-
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noise in time and a deterministic periodic function in spa
i.e., the equation takes the form

]

]t
C~x,t !5S a1

]2

]x2DC~x,t !1Ae f ~x!C~x,t !j t

1cC3~x,t !, ~1!

where the above is to be understood in the physically
evant Stratonovitch interpretation~midpoint discretization,
see@62#!. The deterministic control parameter here isa, e
varies the strength of the noise,f (x) is a periodic function
with period 2p/Q, andc is a constant. Above we have give
the full nonlinear GLE. To determine the onset of the ins
bility we shall only need to concern ourselves with the li
earized equation, i.e.,c50.

Let us briefly consider the deterministic equatio
(e50). This has plane wave solutionseikx with correspond-
ing eigenvaluesa2k2. The critical mode, where the eigen
value is maximal, and which will become unstable first,
therefore that with zero wave vector,k50. When
a,athreshold50, all eigenvalues are negative and there ex
only one stable stationary solution,C(x,t)50. For
a.athresholdpositive eigenvalues arise and although this s
tionary solution still exists, it is unstable. The new stab
stationary solution cannot be determined from the lineari
equation. To do this one would need to include the domin
nonlinearities present in the full SPDE, which control t
bifurcations.

Having noted that in the absence of noise the threshol
at athreshold50, we shall now consider the caseeÞ0. To
obtain information about the probability distribution of th
field C(x,t) we shall calculate the moments of the field, i.
^C(x1 ,t)C(x2 ,t)•••C(xn ,t)&. To do this we shall first
transform from the Stratonovitch to the Ito interpretation
SPDEs to allow us to use the results of Ito calculus@62#.
Doing this one obtains the Ito SDE,

]

]t
C~x,t !5S a1

]2

]x2
1

e

2
f 2~x! DC~x,t !1Ae f ~x!C~x,t !j t .

~2!

Using the results of Ito calculus@62# one can now write
down equations for the integer moments of the field. For
nth moment one sees that

]

]t
^C~x1 ,t !C~x2 ,t !•••C~xn ,t !&

5F(
i51

n S a1
]2

]xi
2D 1

e

2S (i51

n

f ~xi !D 2G
3^C~x1 ,t !C~x2 ,t !•••C~xn ,t !&. ~3!

Readers unfamiliar with Ito calculus can obtain Eq.~3! di-
rectly from Eq.~1! by writing down the equation satisfied b
(]/]t)) i51

n C(xi ,t) in the Stratonovitch representation, fo
which regular calculus applies, and averaging this. One m
then note that eachC(xi ,t) depends onj t . Using Eq.~1!
again one can express eachC(xi ,t) in terms of its value at
an earlier timet2Dt, i.e., C(xi ,t2Dt), these being inde-
pendent ofj t . Now averaging is straightforward and pe
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forming the limitDt→0 one obtains Eq.~3!. To determine
the thresholdan above which thenth moment increases with
time, one needs to calculate the eigenvaluesln of Eq. ~3!.
Setting

^C~x1 ,t !C~x2 ,t !•••C~xn ,t !&5elntF~x1 ,x2 , . . . ,xn!
~4!

one sees that

Fna2ln1(
i51

n
]2

]xi
2 1

e

2S (i51

n

f~xi! D 2GF(x1 ,x2 , . . . ,xn)

50. ~5!

The problem has been reduced to calculating the eigenva
of an n-particle time-independent Schro¨dinger equation.
When e50 this equation has solutions of the for
F(x1 ,x2 , . . . ,xn)'exp((ikjxj) with ln5na2( iki

2 . Calling
upon the well-known results of perturbation theory, one c
write down the eigenvalues of Eq.~5! to second order ine
~see any standard quantum mechanics textbook, e.g.,@63#!. If
one definesFm1 ,m2 , . . . ,mn

(mi integers! to be the Fourier

components of the periodic function12 @( i
nf (xi)#

2, i.e.,

1

2S (i51

n

f (xi) D 25(
$mi %

eiQ~m1x11m2x21•••1mnxn!Fm1 ,m2 , . . . ,mn

~6!

one obtains that for the mode$ki%

ln5na2(
i
ki
21eF0,0, . . . ,0

1e2 (
$mi %

not allmi50

uFm1 ,m2 , . . . ,mn
u2

(
i
ki
22(

i
~ki1miQ!2

. ~7!

However, one can writeFm1 ,m2 , . . . ,mn
in terms of the Fourier

components off (x) and f 2(x). If one further defines

1

A2
f ~x!5(

m
eiQmxGm with

1

2
f 2~x!5(

m
eiQmxHm ~8!

it is apparent that for allmi50,

F0,0, . . . ,05nH01n~n21!G0
2 ;

for miÞ0 and all othermj50,

F0,0, . . . ,mi ,0, . . . ,0
5Hmi

1~n21!Gmi
G0 ;

for miÞ0, mjÞ0, and all othermk50,

F0,0, . . . ,mi , . . . ,mj , . . . ,0
5Gmi

Gmj
;

and for all other possibilities,

Fm1 , . . . ,mn
50.

Hence Eq.~7! can be rewritten as
es

n

ln5na2(
i
ki
21enH01en~n21!G0

2

1e2(
i51

n

(
m

mÞ0

uHm1~n21!GmG0u2

ki
22~ki1mQ!2

1e2(
i51

n

(
j51
iÞ j

n

(
m1 ,m2

m1 ,m2Þ0

3
uGm1

Gm2
u2

~ki
21kj

2!2~ki1miQ!22~kj1mjQ!2
. ~9!

For example, takingf (x)5cosQx ~for which G6151/A8,
H051/4, andH6251/8, with all otherG,H50) one finds
that

ln5na2(
i
ki
21

ne

4
1e2F(

i51

n
1

128~Q22ki
2!

1
1

16(
i. j

H 1

Q22~ki1kj !
2 1

1

Q22~ki2kj !
2J G .

~10!

To determine the moment thresholds,an , one needs the
maximal eigenvalues, which occur at zero wave vector, i
$ki50%. These are then given by

an52eH02e~n21!G0
21

e2

Q2 (
mÞ0

uHm1~n21!GmG0u2

m2

1
e2~n21!

Q2 (
m1 ,m2

m1 ,m2Þ0

uGm1
Gm2

u

m1
21m2

2 ~11!

for the general case, and

an52
e

4
2

e2

128Q2 ~8n27! ~12!

for the special casef (x)5cosQx. This may be compared
with the case of spatially constant noise with the same squ
average f (x)51/A2, where one obtains from Eq.~11!
an52en/2.

Notice that the dependence on the modulation wave v
tor Q appears only at second order in the noise strengthe,
and that, for the case of sinusoidal modulation, it is simply
the formQ22. The first term for the threshold is actuall
what one obtains when one replaces@( i

nf (xi)#
2 by its mean

value over space in Eq.~3!. Our results~11! and~12! are not
valid whenQ50, as then the nonzero Fourier compone
no longer form a discrete set and the nondegenerate pe
bation theory is no longer valid. WhenQ50 the first order
term in Eq.~11! is already incorrect as one should obtain th
an is proportional ton, as calculated above.

As we have been able to calculate all integer moment
second order ine, we can in principle reconstruct the prob
ability distribution for the field itself. One can check that
probability distribution of the form proposed in@29–31# re-
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produces exactly the moments as calculated here. There
ansatz is made that the logarithm of the norm of the field
a Gaussian distribution. This means that for the critical mo
ki50 the moments increase with time aselnt, where ln
contains terms proportional only ton or to n2 ~see Appendix
A!, which is precisely what one obtains from Eq.~10!. The
true threshold for the probability distribution of the field i
in this case, given by settingl15l2/4 or by settingn50 in
the formula foran . Hence one concludes that for the gene
case, the true threshold occurs at

athreshold52eH01eG0
21

e2

Q2 (
mÞ0

uHm2GmG0u2

m2

1
e2

Q2 (
m1 ,m2

m1 ,m2Þ0

uGm1
Gm2

u

m1
21m2

2 ~13!

and for the sinusoidal modulation at

athreshold52
e

4
1

7e2

128Q2 . ~14!

Notice that here and throughout the paper we use the
scriptn on a control parameter to denote its threshold va
for thenth moment and reserve the subscript ‘‘threshold’’
denote values pertaining to the threshold for the probab
distribution. Hence, one sees that whereas a spatially
stant, temporally fluctuating control parameter produces
shift in the threshold from the deterministic case (an}n,
a05athreshold50), a spatially deterministically modulate
and temporally fluctuating control parameter is sufficient
change the threshold. It is not necessary to have both
spatial and temporal fluctuations considered in@29,30# to
produce a threshold shift.

III. THE SWIFT-HOHENBERG EQUATION

We now turn our attention to the slightly more comp
cated case of the SHE in one dimension with a similar no
term. This equation has the feature that the threshold for
symmetry breaking instability occurs at nonzero wave v
tor, which is indeed the case for the experimentally realiza
EHC systems. The equation to be studied has the form

]

]t
C~x,t !5Fa2S b21 ]2

]x2D
2GC~x,t !1Aecos~Qx!C~x,t !j t

1~nonlinear terms! ~15!

in the Stratonovitch interpretation. For clarity of presentat
we shall, from now on, limit ourselves to the case of a sim
sinusoidal spatial modulation of the noise. The following
sults could be generalized to other periodic functions by
panding the periodic function as a Fourier series.

To determine the threshold we need again only cons
the linearized SPDE. Consider briefly the deterministic SH
Eq. ~15!, with e50. This possesses plane wave solutio
eikx just as the deterministic GLE did. They have eigenv
ues a2(b22k2)2. The critical mode which becomes un
stable first therefore hask25b2. As for the GLE the deter-
ministic threshold occurs ata50.
the
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As for the GLE we shall first transform to the Ito repr
sentation and then obtain equations for the moments of
stochastic fieldC(x,t) using Ito calculus. These can be wri
ten as

]

]t
^C~x1 ,t !C~x2 ,t !•••C~xn ,t !&

5Fna2(
i

n S b21 ]2

]xi
2D 21e

2S (i
n

cosQxi D 2G
3^C~x1 ,t !C~x2 ,t !•••C~xn ,t !&. ~16!

In the absence of noise this equation has solutions of
form ^C(x1 ,t)C(x2 ,t)•••C(xn ,t)&'exp(lnt1i(jkjxj) with
ln5na2( j (b

22kj
2)2, and so maximizes eigenvaluesln

when kj
25b2 for all j . Our aim is now to determine the

eigenvaluesln to second order in the noise strengthe. To do
this we assume that foreÞ0 the moments take the form

^C~x1 ,t !C~x2 ,t !•••C~xn ,t !&

5CnexpS lnt1 i(
j
kjxj DFn~x1 ,x2 , . . . ,xn!, ~17!

where Fn(x1 ,x2 , . . . ,xn) will be periodic with period
2p/Q by Floquet’s theorem, andCn are constants. As we
only wish to evaluate the thresholds for the moments,an , we
will only need the maximal eigenvalues and so shall imm
diately setkj

25b2 for all j . We now proceed by expandin
the functionFn and the eigenvalueln in powers ofe, i.e.,

Fn~x1 ,x2 , . . . ,xn!511efn
~1!~x1 ,x2 , . . . ,xn!

1e2fn
~2!~x1 ,x2 , . . . ,xn!1•••,

ln5na1eln
~1!1e2ln

~2!1•••.

Substituting the above expansions into the equation for
nth moment, Eq.~16!, one sees that at ordere,

(
j

S 2
]4

]xj
4 24bi

]3

]xj
3 14b2

]2

]xj
2Dfn

~1!

5ln
~1!2

1

2S (j cosQxj D 2
5ln

~1!2
n

4
2
1

4(j cos2Qxj2(
j.k

cosQxjcosQxk .

~18!

The functionfn
(1) must be periodic with period 2p/Q and

hence the constant term on the right-hand side of Eq.~18!
must vanish. This immediately gives us thatln

(1)5n/4. It is
again interesting to note that this is independent of the mo
lation wave vectorQ and is precisely the answer one obtai
by replacing the spatial sinusoidal modulations by their
erage values~i.e., cosQxi→0, cos2Qxi→1/2) in Eq. ~16!.
Solving Eq.~18! one finds that
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fn
~1!5(

j51

n

~c1cos2Qxj1c2sin2Qxj !

1(
j.k

@c3cosQxjcosQxk1c4sinQxjsinQxk

1c5~sinQxjcosQxk1cosQxjsinQxk!#,

Q2Þb2,4b2, ~19!

whereci ( i51, . . . ,5) depend onb andQ.
The separation of periodic behaviors inherent in our

satz~16! only works whenQ2Þp2b2, p integer, so one mus
exclude these resonances from the range of validity of
calculation.

To determine the second order term,ln
(2) , one needs to

expand Eq.~16! to second order ine. One then obtains the
partial differential equation

(
j

S 2
]4

]xj
4 24bi

]3

]xj
3 14b2

]2

]xj
2Dfn

~2!

5ln
~2!1ln

~1!fn
~1!2

1

2
fn

~1!S (
i
cosQxi D 2. ~20!

The constant term on the right-hand side of Eq.~20! must
again vanish asfn

(2) is also periodic and this condition give
one the value ofln

(2) . Substituting in the expression fo
fn
(1) from Eq. ~19! one concludes that

ln
~2!5

nc1
8

1
n~n21!

16
c3

5
n~b21Q2!

512Q2~b22Q2!2
1

n~n21!~16b41Q4!

32Q2~4b22Q2!2~4b21Q2!
,

Q2Þ0,b2,4b2. ~21!

Notice thatln
(2) diverges at the excluded pointsQ25b2 and

4b2. At higher order ine such resonances should occur wh
Q25p2b2 ~integer p). A similar structure of divergence
would appear for the GLE in Sec. II, when perturbing arou
a nonzero wave-vector mode, see Eqs.~9! and ~10!, if one
had a nonzero cutoff, for example. As before, our solution
not valid whenQ50, as we have assumed a modulation
finite period.

Summarizing our results, one sees that for a sinuso
noise modulation in the SHE one obtains an eigenvalue
thenth moment,

ln5na1
ne

4
1e2F n~b21Q2!

512Q2~b22Q2!2

1
n~n21!~16b41Q4!

32Q2~4b22Q2!2~4b21Q2!G , Q2Þp2b2.

~22!

Again it is apparent thatln contains only terms proportiona
to n andn2 and so the ansatz of@29–31# is again exact and
-

ur

d

s
f

al
r

one concludes that the true threshold for the probability d
tribution is given by the moment thresholdan with n50, so
that

athreshold52
e

4
1e2F ~16b41Q4!

32Q2~4b22Q2!2~4b21Q2!

2
~b21Q2!

512Q2~b22Q2!2G , Q2Þp2b2. ~23!

The threshold for sinusoidal modulated noise in the SHE
therefore reduced from the deterministic thresholda50. The
shift is identical to that in the GLE, to first order in the nois
strength. At second order in the noise strength the shift
the SHE has a more complicated dependence on wave ve
than that for the GLE, possessing resonances when
modulation wave vectorQ approaches a multiple of the criti
cal wave vector of the system,b. Clearly, for spatially con-
stant noise the situation is the same as in the GLE.

We note here that it is possible to obtain the results
Sec. II using an analogous expansion scheme to that
ployed here. This simple scheme of separation of the per
icities inherent in the system and then expanding eigenva
and eigenvectors in powers of the noise strength will be u
again in the following section to study the coupled equatio
obtained for liquid crystals subject to electric fields.

IV. ONE-DIMENSIONAL EHC

We now turn our attention to the most complicated ca
we shall consider in this paper, the one-dimensional the
of electrohydrodynamic convection in a thin slab of nema
liquid crystal with the director aligned parallel to the sla
say in thex direction. This system has been under intens
experimental study for many years and its near-threshold
havior is understood quite well~for recent reviews on EHC
see@61#!. The 1D theory gives the simplest set of equatio
that one can derive directly from the basic equations of
drodynamics and Maxwell’s equations to describe EH
@59,60,58#. In the deterministic case, i.e., for an applied dc
low-frequency ac voltage, it is now mainly of historical in
terest, but for~spatially constant! stochastic excitation it has
been used until recently@16–20#.

In this model the spatial degrees of freedom perpendic
to the slab are rather brutally eliminated and, if one is int
ested only in the most important case where convection r
run perpendicular to the undistorted nematic director~‘‘nor-
mal roll’’ !, one is left with two coupled SPDEs in a sing
spatial coordinate for the two stochastic fieldsq(x,t), spatial
charge density, andc(x,t), the spatial derivative of the angl
made by the director with the equilibrium state. For details
the derivation of the equations we refer the reader, e.g.
@58,19#. We adopt here the notation of@19,20#. The price
paid for the drastic simplification is that the threshold for t
onset of the symmetry breaking instability in the determin
tic equations is shifted from the nonzero wave vector a
nonzero electric field of the full theory and experiment
zero wave vector and electric field. To attempt to allevia
this unwanted feature, one may artificially restore the n
zero threshold by introducing a cutoff wave vector of app
priate magnitude. This is analogous to working around
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nonzero wave vector mode in the GLE, although one kno
the critical mode to have zero wave vector. In addition,
have introduced an extra relaxation time 1/Tc in our coupled
equations as an alternative method of restoring a non
electric field threshold (1/Tc can of course be set equal
zero!. Making the one additional simplification that there
no anisotropy in the permittivity of the system, so that t
dielectric tensor is isotropic, one obtains the followin
coupled SPDEs:

]

]t
c~x,t !52

1

Tc
c~x,t !1K

]2

]x2
c~x,t !

2a@E1Aecos~Qx!j t#q~x,t !, ~24!

]

]t
q~x,t !52

1

Tq
q~x,t !2s@E1Aecos~Qx!j t#c~x,t !.

~25!

The electric field applied to the system is taken to be a c
stant, E, plus a spatially modulated temporal fluctuatio
controlled in magnitude by the parametere. Again we use a
he
in
s

th

t

om
th

tin
w

s
e

ro

-
,

simple sinusoidal modulation with wave vectorQ. The pa-
rametersK, Tq , a, ands depend upon material properties
the liquid crystal system and are defined in Appendix B. T
assumption of isotropy in the permittivity means that t
noise occurs only off-diagonally in the coupled equations
one allows anisotropy in the permittivity one also needs
consider the square of the control parameter,E. As the
square of white noise is ill-defined, it is necessary to int
duce a finite correlation time for the temporal noise to allo
a controlled calculation, but we do not consider this ca
here. The SPDEs~24! and ~25! are derived from Maxwell’s
equations and the basic equations of hydrodynamics and
hence to be interpreted in the Stratonovitch sense. Be
performing any manipulations with these it is therefo
easier to transform to the Ito representation. The equiva
Ito SPDEs can be written concisely using a matrix notati

]

]t
V̄5A% V̄1B% V̄j t , ~26!

where the vectorV̄5(c,q)†[(v1 ,v2)
† andA% andB% are the

matrices
A% 5S2
1

Tc
1K

]2

]x2
1
ase

2
cos2~Qx! 2aE

2sE 2
1

Tq
1
asEe

2
cos2~Qx!

D , ~27!

B% 5S 0 2aAecosQx

2sAecosQx 0
D . ~28!
I to
nt,

a-
As one now has two fieldsc(x,t) andq(x,t) it is no longer
possible to write down a simple explicit equation for t
nth moment, as we did for the GLE and SHE. To determ
the threshold electric field for thenth moment one now ha
to evaluate the eigenvalues of a 2n32n matrix. Here we shall
restrict ourselves to the calculation of the thresholds for
first two moments only.

To calculate the first moment threshold one simply has
average Eq.~26! to obtain]^V̄&/]t5A% ^V̄&. One now has to
determine the eigenvalues of this equation. It is clear fr
Eq. ~26! that, in the absence of noise, this has solutions of
form ^v j&}exp(l1t1ikx), and one finds that whene50

l152
1

2S 1Tc
1

1

Tq
1k2K D

6
1

2
AS 1Tq 2

1

Tc
2k2K D 214asE2. ~29!

Notice that one obtains the maximal eigenvalue by set
k50 and taking the positive sign, but as discussed above
choose to keep a nonzero cutoff wave vectorkmin . We shall
e

e

o

e

g
e

now employ the same scheme as that outlined in Sec. II
determine the threshold electric field for the first mome
E1, to second order in e. A Floquet-type ansatz
^v j&5Cjexp(l1t1ikx)f1(x) is introduced, wheref1 is again
periodic with period 2p/Q. f1 andl1 are then expanded to
second order ine,

f1511ef1
~1!1e2f1

~2!1•••,

l15l1
~0!1el1

~1!1e2l1
~2!1•••, ~30!

where

l1
~0!52

1

2S 1Tc
1

1

Tq
1kmin

2 K D
1
1

2
AS 1Tq 2

1

Tc
2kmin

2 K D 214asE2.

As for the SHE, one obtains ordinary differential equ
tions forf1

(1) andf1
(2) , which are
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FK ]2

]x2
12ikminK

]

]xGf1
~1!

5S 11
asE2

V2 D S l1
~1!2

as

2
cos2QxD , ~31!

FK ]2

]x2
12ikminK

]

]xGf1
~2!5S 11

asE2

V2 Dl1
~2!1S 11

asE2

V2 D
3S l1

~1!2
as

2
cos2QxDf1

~1!

2
asE2

V3 S l1
~1!2

as

2
cos2QxD 2,

~32!

whereV5@l1
(0)1(1/Tq)#.

l1
(1) andl1

(2) are again determined by demanding perio
solutions forf1

(1) andf1
(2) , respectively. From Eq.~31! one

sees thatl1
(1)5as/4, and then setting this value and th

solution of Eq.~31!, f1
(1) , in Eq. ~32! one concludes that

l1
~2!5

a3s3E2

32~V21asE2!V
2

a2s2

128K~kmin
2 2Q2!

3S 11
asE2

V2 D , kmin
2 ÞQ2. ~33!

Summarizing, one sees that

l15l1
~0!1e

as

4
1e2Fu11

u2
K~kmin

2 2Q2!G , kmin
2 ÞQ2,

~34!

whereu1,2 are independent of the modulation wave vec
Q. As in the previous two examples, the first correction
o
at
r

l1 takes a trivial form and is exactly that obtained by solvi
Eq. ~26! with cos2(Qx) replaced by its average value 1/2 an
cosQx replaced by 0. This correction is once again incorr
whenQ50, as our method breaks down~see below for the
spatially constant case!. At second order we now obtain
contribution independent of the imposed modulation wa
vectorQ and a term which diverges asQ approacheskmin .
At higher order ine, resonances atQ25p2kmin

2 (p integer!
will again emerge and as explained in the preceding set
we have to exclude these points from our range of valid
Inverting the formula in Eq.~34! whenl150 gives us the
threshold electric field for the first moment,E1:

asE1
25

kmin
2 K

Tq
1

1

TcTq
2
as

4 S kmin2 K1
1

Tq
1

1

Tc
D e

1
a2s2

32Tq
S 2Tq 2kmin

2 K2
1

Tc
D e21

a2s2Tq
128K~kmin

2 2Q2!

3S kmin2 K1
1

Tq
1

1

Tc
D 2e2. ~35!

Note that theO(e) correction of the shift does not depen
uponQ. It is interesting to note that in spite of the comple
ity introduced by having two coupled equations, much of t
structure of the results obtained in Secs. II and III~e.g.,
simple form for the first order shift in the threshold and re
tively simple dependence of the second order shift on
modulation wave vectorQ, with divergences occurring a
Q approaches a multiple of the critical wave vector! remains.

To calculate the threshold for the second moments,
obtain a 434 matrix equation for the second moments usi
Ito calculus. This has the form

]

]t
Ū~x1 ,x2 ,t !5M% Ū~x1 ,x2 ,t !, ~36!

where Ū†5@^c(x1 ,t)c(x2 ,t)&,^c(x1 ,t)q(x2 ,t)&,
^q(x1 ,t)c(x2 ,t)&,^q(x1 ,t)q(x2 ,t)&#5(u1 ,u2 ,u3 ,u4), and
M% 5S A11~x1!1A11~x2! A12 A12 B12~x1!B12~x2!

A21 A11~x1!1A22~x2! B12~x1!B21~x2! A12

A21 B12~x2!B21~x1! A11~x2!1A22~x1! A12

B21~x1!B21~x2! A21 A21 A22~x1!1A22~x2!

D , ~37!
ical
a-
e

ll
whereAi j andBi j are the elements of the matricesA% and
B% defined in Eqs.~27! and~28!. One now acts analogously t
the first moment calculations, introducing the ans
uj (x1 ,x2 ,t)5Djexp(l2t1ik1x11ik2x2)f2(x1,x2), where Dj

are constants andf2 is periodic with period 2p/Q, and then
expanding in powers ofe: l252l1

(0)1el2
(1)1e2l2

(2)1•••

andf2511ef2
(1)1e2f2

(2)1•••.
z

We carried out this procedure using the mathemat
packageMAPLE. One then obtains partial differential equ
tions to solve forf2

(1) and f2
(2) and demanding that thes

solutions be periodic leads one tol2
(1) andl2

(2) . l2
(1) again

has a simple forml2
(1)5as/252l1

(1) . This leads one to
speculate thatln

(1)5nas/4 analogous in form to the GLE
and SHE.l2

(2) has a very complicated form and we sha
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show here only the dependence on the modulation wave
tor Q,

l2
~2!5

1

~kmin
2 2Q2!2

Fd1Q41d2Q
21d31

d4
Q2G

1
1

~kmin
2 2Q2!

@d5Q
21d6#

1
1

~4kmin
2 2Q2!2

Fd7Q41d8Q
21d91

d10
Q2G

1
1

~4kmin
2 2Q2!

@d11Q
21d12#1

d13
Q4 1

d14
Q2 1d15,

~38!

wheredj are independent ofQ. Although the expression fo
l2
(2) is now very complicated, the characteristic resonance

Q250,kmin
2 and 4kmin

2 are still present. To find the electri
field threshold for the second moment,E2, one needs to in-
vert the formula 2l1

(0)1el2
(1)1e2l2

(2)50, but we shall not
do this here as the interesting features are already evide
the expressions forl2

(1),(2) . It would be interesting to at-
tempt to determinel3 to second order ine to try to verify if
the ansatz of Refs.@29–31# is still valid for this more com-
plicated case. Although we have not attempted this cum
some task as we obtain the same thresholds for the first
moments to first order ine, it seems reasonable to assum
that this is in fact the true threshold for the probability d
tribution to first order ine.

For explicit comparison we have also calculated the c
of spatially constant noise. Replacing in Eqs.~24!, ~25! the
function cosQx by 1/A2 we find l1

(1)5as/4 ~unchanged!,
but nowl1

(2)50, and

l2
~1!5

as

2
1

2a2s2E2

G214asE2 , ~39!

l2
~2!5

1

8

a2s2G4

@G214asE2#5/2
1

2a3s3E2G2

@G214asE2#5/2
, ~40!

with G51/Tq21/Tc2kmin
2 K.

Instead of havingl2
(1)52l1

(1) as in the previous cases, w
now see that 2l1

(1)<l2
(1)<4l1

(1) , the limiting case
l2
(1)52l1

(1) holding whenE50, i.e., the driving of the sys
tem is purely stochastic. For this case of spatially cons
noise we have also calculated the third moment exponen
second order in epsilon~the answersl3

(1),(2) are available on
request from the authors!. This allows us to verify if the
ansatz of@29# still holds. We find that the ansatz alway
holds to first order ine, but is only true to second order i
e for the case of purely stochastic driving. To first order
e we find that the threshold electric field takes the value

asEthreshold
2 5

1

TqTc
1
kmin
2 K

Tq
2
as

4
Le

1
as

TqL
S 1Tc

1kmin
2 K D e, ~41!
c-

at

in

r-
o

e

nt
to

whereL5(1/Tc1kmin
2 K11/Tq). It is interesting to compare

this threshold with that for the case of spatially modulat
noise which we have conjectured to be the expression~35! to
first order in e. One sees that unless one of the effect
correlation times 1/Tq or kmin

2 K11/Tc vanishes, the thresh
old for spatially constant noise is always greater than that
spatially modulated noise. The first order shift of the thre
old takes a maximal value of zero when the two effect
correlation times are equal, i.e., 1/Tq5kmin

2 K11/Tc . In prin-
ciple the results for spatially constant noise~at least as far as
the moments are concerned! are included in the theory o
Refs. @16–20#. We have not been able to make direct co
nection, since in that work the case of isotropic permittiv
appears as a complicated~singular! limit, and moreover, the
dichotomous nonwhite noise used there becomes Gaus
and white only in another singular limit.

V. CONCLUSION

We have considered SPDEs in one dimension with m
tiplicative noise in which the noise is a product of whi
noise in time and a deterministic periodic function in spa
The results are contrasted with those for spatially cons
noise. For the GLE and SHE we have determined the thre
olds for the integer moments of the field to second orde
the noise strength away from resonances which occur w
the periodic function modulating the noise has a wave vec
given by a multiple of the critical threshold wave vecto
These thresholds,an , were seen to take the form required b
a recent ansatz introduced by Becker and Kramer. Hav
obtained all the integer moments one is able to determine
true threshold for the probability distribution itself, which i
these cases is then given by settingn50 in the general for-
mula foran . One sees that, in contrast to the case in wh
one has spatially constant noise, where there is no shift in
threshold with increasing noise strength, one obtains for s
tially modulated noise a threshold which decreases with
noise strength and is dependent upon the modulating fu
tion and its wave vector. The case of spatially modula
white noise therefore contains the essential ingredients f
threshold shift which had already been observed and ca
lated for the GLE and SHE with noise which is the produ
of white noise in time and white noise in space@21,29–
31,22,23#.

Further, we have considered the case of two coup
SPDEs obtained in the one-dimensional theory of electro
drodynamics in liquid crystals. Here we were only able
calculate the first two moments of the coupled fields. T
eigenvalues giving the leading long time behavior of the fi
two moments took similar overall forms to those obtained
the GLE and SHE. For the case of spatially constant no
we could calculate the first three moments and hence c
clude that here the ansatz of@29–31# holds only to first order
in the noise strength. As we obtained identical thresholds
the first two moments for spatially modulated noise to fi
order ine, we assume that this is also the threshold for
probability distribution itself and that the ansatz holds here
first order. It would be interesting to determine the thresh
for the third moment to check that this is correct and see
the ansatz also fails at second order for the spatially mo
lated case. This would be a possible, if extremely cumb
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some, calculation using the scheme outlined in this pa
Comparison of the thresholds for spatially modulated a
spatially constant noise to first order in the noise stren
showed that the threshold for spatially constant noise alw
exceeds that for spatially modulated noise, except in the l
where one of the inverse relaxation times vanishes. To
order ine one can in fact interpolate for the case of spatia
constant noise between the threshold shift for spati
modulated noise and zero threshold shift by varying the
laxation times. It would be interesting to try to detect the
threshold shifts in experimentally realizable systems. For
purpose spatially structured electrodes could be used in E
experiments. Although a direct quantitative comparison
questionable using this one-dimensional theory with a de
ministic dc electric field~usually an ac field is applied!, per-
haps the more qualitative features~e.g., existence of a thresh
old shift and possibly its dependence on the external w
vectorQ) could be detected. To enable better comparis
with experiment it would obviously be desirable to exte
these calculations to systems of equations giving a be
description of the experimental system, for example allow
a dielectric anisotropy, and possibly using the tw
dimensional theory for liquid crystals in an electric fie
@19,20,61#. This, however, seems a rather hard task due
the increased complexity of the coupled equations for
two-dimensional theory, with the large number of spatial d
rivatives contained therein. We would like to mention th
there are nematic liquid crystal materials with vanishing,
nearly vanishing, dielelectric anisotropy. In fact one su
material has recently been introduced in EHC experime
@64#.

From the present work, as well as the previous one@29–
31#, it follows that a typical feature displayed by system
subjected to spatially distributed multiplicative noise is th
the behavior of the system is to leading nontrivial order
the noise strength determined already by the first momen
the distribution function. This feature has been stressed
cently in other works where a type of mean-field approxim
tion was used as an analytical starting point@22,54,55,24#.
Additive noise of ~in principle! arbitrary strength was in
cluded. In the presence of not too weak~external! additive
noise a reentrant behavior with increasing multiplicat
noise strength was found in the GLE, which presumably
curs also in the SHE@22,24#, i.e., strong multiplicative noise
could destroy again the order that it supported initially.
far as we see these interesting effects are out of reach o
approach. However, finding a suitable experimental sys
may also be very difficult. One can have a noise-induc
phase transition also in models that have no transition a
in the absence of noise@54,55#.

Recent work by Grinsteinet al. @65# has considered
simple SPDEs with spatially and temporally stochastic m
tiplicative noise from the point of view of theory of phas
transitions~renormalization group!. In particular, it was sug-
gested that for the GLE there exists a critical dimens
dc52 above which there is no threshold shift for noi
strength below some nonzero value. It would be interes
to see if such features~if they really occur! also persist when
the spatial stochasticity is replaced by spatial periodicity,
are absent for spatial homogeneity, as is the case for
threshold shift in the single SDE.
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Finally we mention that a large system is not needed
obtain the effects discussed in this paper. In fact the follo
ing system of two coupled ordinary linear SDEs shows
essential features@29,30#

d

dt
c1~ t !5@a1Aej1~ t !#c1~ t !2c1~ t !1c2~ t !, ~42!

d

dt
c2~ t !5@a1Aej2~ t !#c2~ t !2c2~ t !1c1~ t !. ~43!

The coupling of the equations is of the~discrete! diffusion
type. If the noise processesj1(t) and j2(t) are taken to be
equal, we are back to the one-component model w
athreshold50. If j1(t) and j2(t) are uncorrelated Gaussia
white noise processes one finds~see@29,30#!

athreshold52
e

4
1

e2

32
1O~e4!, ~44!

which is analogous to the spatially distributed case.
Actually stochastic driving is not needed. One can repla

the functionsj i(t) by periodic functions and find simila
effects. The stability exponentl ~which is now a Floquet
exponent! is equal toa if the functions are equal. If one
chooses the amplitudes to be different, one easily obtain
result analogous to Eq.~44!. Generally the shift results from
an interaction between the spatially inhomogeneous driv
and the spatial coupling, which tends to flatten out inhom
geneities. Such systematic forces resulting from oscillat
and spatially varying excitation~not necessarily parametric!
are known in plasma physics under the name of ‘‘ponde
motive forces’’~see, e.g.,@66#!. Similar effects occur in nem-
atic liquid crystals subjected to an oscillatory flow with
nonlinear flow field~e.g., Poiseuille flow! @67#.
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APPENDIX A

In this appendix we demonstrate that if one employs
ansatz for the probability distribution of the stochastic fie
above threshold introduced in Refs.@29–31#, the moments of
the field have eigenvalues with terms proportional only
n andn2.

The ansatz assumes that in the long-time limit the lo
rithm of the norm of the stochastic field lnuC(x,t)u[r(x,t) has
a Gaussian distribution with meanmt and widthst, where
we have adopted the notation of@30#, i.e.,
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P$r~x,t !%5
1

A2pst
expF2

~r2mt!2

2st G . ~A1!

The moments of the field can then be seen to be given
integern by

^C2n~x,t !&5^e2nr&,

^C2n11~x,t !&5sgn„C~x,t !…^e~2n11!r&, ~A2!

so that

^Cn~x,t !&;
1

A2pst
E Dr~x,t !expFnr2

~r2mt!2

2st G
5expFn2st2

1nmtG . ~A3!

The moments hence have eigenvaluesln such that

ln5
n2s

2
1nm, ~A4!

i.e., the eigenvalues can only have a term proportional tn
and a term proportional ton2.

In this framework the true threshold occurs wh
^r(t)&→const ast→`, i.e., whenm→0 for large time or
equivalently

l15
l2

4
or

ln

n U
n50

50. ~A5!

APPENDIX B

The SPDEs~24! and ~25! are derived from a consider
ation of the following experimental situation. One has
nematic liquid crystal layer confined by two flat plate ele
trodes, lying in thexy plane with the director of the nemati
liquid crystal along a unit vectornW , see Fig. 1~note that for
a directornW 52nW ).

We adopt the notation used in@19#. For this system we

FIG. 1. Geometry of the experimental situation used to der
the 1D equations of EHC.
o

or

-

can write down the viscous angular momentum per unit v
ume as

GW vis52nW 3@~a32a2!NW 1~a31a2!Â•nW #, ~B1!

where thea ’s are the Leslie viscosity coefficients.NW , defined
as

NW 5
]nW

]t
1vW •gradnW 2

1

2
rotvW 3nW , ~B2!

describes the motion of the director relative to the hydro
namic velocity of the flowing liquidvW andÂ is the symmet-
ric part of the velocity tensor

Â5
1

2
~] jv i1] iv j !. ~B3!

The stress tensor has both elastic and viscous parts. The
cous partt i j8 can be written in terms of six constantsa1,
a2, a3, a4, a5, anda6 as

t i j8 5a1ninj(
k,l

nlAlknk1a2niNj1a3Ninj1a4Ai j

1
1

2
~a51a62a22a3!ni(

k
nkAk j

1
1

2
~a51a61a21a3!nj(

k
Aiknk . ~B4!

Further, our nematic has the conductivi
s i j5s'd i j1saninj , an isotropic permittivitye i j5e'd i j ,
and an elastic bending constantK33.

It is helpful to define effective shear viscosities:

h1[
1

2Fa42a22a31
1

2
~a51a61a32a2!G , ~B5!

h[a32a22
a2
2

h1
. ~B6!

One can now express the coefficients of Eqs.~24! and~25! in
terms of the material parameters of the nematic as follow

K5K33/h, ~B7!

a52a2 /hh1 , ~B8!

1/Tq54p~s'1sa!/e' , ~B9!

s5sa . ~B10!
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