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Linear stability analysis of bifurcations with a spatially periodic, fluctuating control parameter
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Multiplicative noise in spatially extended systems produces different effects depending upon whether the
noise is spatially homogeneous or spatially varying. Whereas in previous work a stochastic distribution was
treated, here we consider the spatially periodic case, which is more amenable to an experimental approach, in
particular in the electrically driven instabilities of nematic liquid crystals. We shall principally be interested in
the threshold for the onset of symmetry breaking instabilities controlled by bifurcations in several stochastic
partial differential equations. For the Ginzburg-Landau and Swift-Hohenberg equations we calculate the be-
havior of the threshold for all moments to second order in the noise strength, allowing one to reconstruct the
full probability distribution. For a system of two coupled equations which mimics electroconvection in nematic
liquid crystals(the “one-dimensional model; we calculate the first two moments up to second order and
estimate the threshold for convection. The general conclusion of our work is that spatially periodic noise
induces a reduction in the threshold similar to the stochastically distributed case. We propose that this reduc-
tion be independent of the periodicity of the noise to first order in the noise strength, the dependence on period
appearing only at second order. This is in contrast to spatially homogeneous noise where threshold shifts may
be entirely absenfS1063-651X%97)15305-3

PACS numbgs): 61.30-v, 02.50.Ey, 64.70.Md

I. INTRODUCTION ministic (time-averagedcontrol parametea in the presence
of multiplicative noise of strength, below which small non-
The way in which fluctuations of the control parametertrivial initial conditions decay to zero and above which they
influence spatially extended systems exhibiting symmetryiverge exponentially with probability 1(“almost cer-
breaking instabilities, such as the transition to electrohydrotainly”). One may also define a threshadg for the nth
dynamic convectiofEHC) or the electrically driven Fe- moment, which may, in principle, be smaller thageshois
ericksz transition in liquid crystals, has recently been the The effect of spatially constant multiplicative noise,
focus of some interest both experimentdlly-7] and theo-  \hich occurs when the control parameter has only temporal
retically [8—31]. The fluctuations of the control parameter, in f,ctyations, has mainly been considefée-7,15-20. Then
the case of liquid crystals the applied voltage, introduce gpe |inearized equations are amenable to the usual Fourier

noise term in the stochastic partial dn_‘ferentlal equatltﬁi?,-_ decomposition in the extended spatial directions, where one
DEs which is(to lowest orderproportional to the stochastic assumes translational invariance. Then one is often left with

field(s) and is hence termed multiplicativene might also ordinary SDEs in time, just as for restrictetzero-

say para@me@rbc Suqh systems can_be descrlbeq by a smgledimensionaﬁl systems. In the case of a single ordinary SDE,
stochastic differential equation of first order in time or a set

of coupled SPDEs. The case of several SPDEs is importar¥YhiCh has been investigated intensely in the p&stL5), one
since a set of SPDEs near the threshold of the instabilitj"dS that thea, are lowered by an amount of ordere
cannot be reduced directly to a single stochastic amplitud¥/hereas the thresholayesnoqais not at all affected by the
equation if multiplicative noise is present. This is in contrastN0ise. This peculiar behavior results from the fact that the
to the case ofweaK additive noise where such a reduction is distribution function of the linearized problem has long tails.
possible[32-43. Measurements of the effects of noise in In the nonlinear problem all thresholds coincide with
experimental systems withotintentionally) introducing ex-  areshoi¢ Unfortunately it has not been possible to treat the
ternal noise have been done in a number of cf44s57, nonlinear problem for more complicated cases. The case of
some of which revealed a noise strength compatible withiwo coupled SPDEs has been considered in the context of

thermal nois§48-57. EHC[16-20. Here one expect@nd find$ a threshold shift
Since multiplicative noise does not destroy the bégie¢  of ordere.
mary) solution[53] one still has a sharp bifurcatioffior a The case of a spatially stochastically varying multiplica-

stationary noise procesand the threshold can be calculated tive noise term in a single SPD@r a discrete version on a
by linearizing the SPDEs around the basic solutifFhis lattice) has also been recently studied, and found to produce
can be shown under rather general conditi®®31].) Thus interesting effect$21-31,54,5%
one can uniquely define a threshal@e) ieshoig0f the deter- An interesting aspect, first found in simulatiogi&l], was
a shift of ordere of the threshold towards smaller values of
the control parameter without introducing significant fluctua-
*Present address: Los Alamos National Laboratory, Los Alamostions into the system. The authors [&1] also noted that,
NM 87545 within numerical accuracy, this shift was equal to that calcu-
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lated for the second momeror correlation function A noise in time and a deterministic periodic function in space,
rather general approximate theoretical approach has been dee., the equation takes the form

veloped to describe this threshold sh®—31. The method
employed makes an ansatz for the form of the probability
distribution of the stochastic field, which can be justified for
a number of cases, and allows one to calculate the shifted 3
threshold toO(e€), and often toO(€?), from the knowledge +ewE(x.0), @)
of the long-term behavior of only the first two moments of h the ab is to b derstood in the physicall I
the stochastic field. Here the threshold of the second momef} c'c € above 1S 1o be understood In the physically re
differs from that of the first momentand of the actual evant Stratonovitch mt_erpretatlo(m|dp0|nt dlscretlzaftlon,
threshold by corrections that are typically of ordef and see[62]). The deterministic control parameter hereaise

which could not have been detected in the simulations Oygries the strength of the nois&(x) is a periodic functign
Ref. [21]. By letting the correlation length of the noise be- with period .ZW/Q' andcisa constant. Above we have given
come small—or equivalently the correlation length of thethe full nonlinear GLE. To determine the onset of the insta-

deterministic part large—the prefactor in the correction termbIIIty we shall only need to concern ourselves with the lin-

can be made arbitarily small, and then the system presunﬁarlizid equ%tl_o?l, .ec= O'Id the deterministi i
ably behaves fully deterministicalljm the absence of addi- _% _llj_f] hrle yl consider Iet' gxerrT:Lnls Ic equa(11|on
tive noisg. In this limit the results of the analysis coincide .(6_ .)' ISI asBl?zneT\;]vave.s.Olf 'OBd wi h corrﬁspo_n §
with those obtained from a type of mean-field approximation'ng eigenvalues - The critical mode, where the eigen-
of the system including weak additive nof&@?] (in the scal- value is maximal, _and which will become unstable first, is
ing used there the weak-noise limit corresponds to théherefore that W't.h zeéro wave vect.ork=0. When .
strong-coupling limit. a<ayreshoie 0, all eigenvalues are negative and there exists

In this paper we present the results of a study of the effec®ly One stable stationary solutioni¥'(x,t)=0. For
on the theshold for multiplicative noise which is spatially & @iesnoiaPOSItive eigenvalues arise and although this sta-
deterministically modulated and temporally fluctuating ontionary solution still exists, it is unstable. The new stable
three SPDESs in one spatial dimension. More specifically Westatlonary solutlon_cannot be determlne_d from the Imea_nzed
chose the noise term in our SPDE to be the product of whitgduation. To do this one would need to include the dominant
noise&(t) [i.e., (£(1)&(t'))=8(t—t'), where(- - -) denotes nonlinearities present in the full SPDE, which control the

an ensemble averaband a periodic functiori(x). In elec-  Pifurcations. hat in th ¢ noise the threshold i
trically driven instabilities in liquid crystals this can be  Having noted that in the absence of noise the threshold is

achieved by employing structured electrodes, as done prev“li-t at_hfes.ho'dzo’ we shall now considg_r th? cg&efo. To
ously in other context§56,57. We first consider théreal) obtain information about the probability distribution of the
Ginzburg Landau equatiofGLE), which involves only one field ¥ (x,t) we shall calculate the mome_nts of the fielq, ie.,
stochastic field and should be applicable to simple spatiallﬁw(xl’t)lp(xbt)' ) 'q’(xn’t)>'. To do this we shall f|rst
homogeneous transitions like the usual éeericksz transi- transform from the Stratonovitch to the Ito interpretation of
tion (see, e.g.[58]). Then we treat the Swift-Hohenberg SPDES to allow us to use the results of Ito calcyeg].
equation(SHE), which also involves only a single stochastic P0Ing this one obtains the Ito SDE,

field ¥ (x,t), but has the instability at nonzero wave number, 2 e

and then later the case of two coupled stochastic fields thaf_\p(x,t): at—+ —f2(x) | P (x,t)+ \/Ef(x)\p(x,t)gt_
describe one-dimensional EHC; s¢89,60,58,61,17-20 t oxe 2

Since we consider only the threshold behavior, the equations @)
studied in this paper are all linegsee Appendix A if30).  gjng the results of Ito calculufs2] one can now write

In the case of the GLEin Sec. 1) and the SHHin S_ec. ”.I) down equations for the integer moments of the field. For the
we shall illustrate that we can calculate perturbatively in the .. moment one sees that

noise strength the long term behavior of all integer moments

of the stochastic fieldV(x,t) and hence reconstruct the full P

probability distribution. To second order in noise strength E<\I’(X1,t)‘I’(X2,t)- W (Xp 1))
this will be seen to be precisely of the form suggested in the

2

J
at 7| Vi t+ Vef ()W (x,1) &

J v _
E (X,t)—

ansatz due to Becker and Kram{@9-31. In Sec. IV we n 2\ el 2
give results for the first two moments to second order in = 2 a+ g +§ E f(x;)
noise strength for the more complicated case of the two =1 X =1

coupled SPDEs of the 1D EHC theory. These can be seen to X(W (X1, )W (X, 1) - - T (X, 1)) 3)
take a similar form to those of the simpler single SPDEs in
Secs. Il and IlI. In the conclusiofBec. V) we make connec- Readers unfamiliar with Ito calculus can obtain E8). di-
tion with further work and discuss the mechanism underlyingrectly from Eq.(1) by writing down the equation satisfied by
the threshold shift. (alat)II_ ;W (x; ,t) in the Stratonovitch representation, for
which regular calculus applies, and averaging this. One must
then note that eac (x;,t) depends or¢;. Using Eq.(1)
again one can express eadl{x; ,t) in terms of its value at

In this section we shall consider the GLE in one dimen-an earlier timet— At, i.e., ¥(x;,t—At), these being inde-
sion with multiplicative noise, which is the product of white pendent of&,. Now averaging is straightforward and per-

Il. THE GINZBURG-LANDAU EQUATION
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forming the limit At—0 one obtains Eq(3). To determine
the thresholdy, above which theaith moment increases with
time, one needs to calculate the eigenvalngof Eq. (3).
Setting

<\P(Xlat)q,(xzyt) : qf(xn !t)>:e}\ntq)(X11X21 R 1Xn)
4
one sees that
n (92 € n 2
na—)\n+2 —+= E f(xi) D(Xq,X9, ... Xp)
i=1 J i 2 i=1
=0. )
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An=na— >, k?+enHy+en(n—1)G3
i
n 2
Hot(n—1)G,G
+622 z | m2( ) m20|
i=1 m k,—(k,+mQ)
m#0
n n
+e2 2 2
1=1j=1 mgy,m
17] my,my#0
|G, Gimy|?
1My ©)

0~ mQ7 = (K +m Q)7

The problem has been reduced to calculating the eigenvalu&®r example, takingf(x) =coQx (for which G.,=1/\/8,

of an n-particle time-independent Sclinger equation.

Ho=1/4, andH . ,=1/8, with all otherG,H=0) one finds

When =0 this equation has solutions of the form that

D(Xq,Xa, - - . Xp)~EXPEiKiX) with \;=na—=;k?. Calling

upon the well-known results of perturbation theory, one can

write down the eigenvalues of E(b) to second order ire
(see any standard quantum mechanics textbook,[63]), If
one deﬁnes:le,m ,,,,,, (m; integers to be the Fourier

components of the periodic functigi =;"f(x;)1?, i.e.,

1 & 2 .
E( izl f(Xi)) :% e'Q(m1X1+m2X2+'"+m”X“)le — m,
(6)
one obtains that for the modé;}
)\n=na—2 ki2+€FO,O ..... 0
1
| m;,my, ..., m |2
+ €2 S (7)
rotaim =0 2 K= (k+mQ)?

However, one can WritEml,m _____ m, in terms of the Fourier
components of (x) andf2(x). If one further defines

1 _ 1 |
== €96, with 5F2(x) =2 9™ H,, (8)

2 o
it is apparent that for alin;=0,
Foo,... 0=NHo+n(n—1)G§;
for m;#0 and all othem;=0,
& Hm +(n—1)Gp, Go;

I:0,0,...,mi,0,

for m;#0, m;#0, and all othem, =0,

Hence Eq(7) can be rewritten as

Ay=na— 2 k2+—+

28(Q2 128Q%-k?)

1 Z 1 1
164 (QZ—(kﬁkj)Z - QZ—(ki—ksz '
(10

To determine the moment thresholds,, one needs the
maximal eigenvalues, which occur at zero wave vector, i.e.,
{ki=0}. These are then given by

IHm+ (n—1)G1Gol2
2

n=—eHo—e(n—1)G2+ —22

m
N e?(n—1) |Gmle2| 11
Q2 my .My mi"'mg
ml,m2¢0
for the general case, and
R 12
="z TQZ( n—7) (12

for the special casd(x)=coQx. This may be compared
with the case of spatially constant noise with the same square
average f(x)=1/y/2, where one obtains from Eql11)
a,=—en/2.

Notice that the dependence on the modulation wave vec-
tor Q appears only at second order in the noise strergth
and that, for the case of sinusoidal modulation, it is simply of
the form Q2. The first term for the threshold is actually
what one obtains when one repla¢&d'f (x;)]? by its mean
value over space in E¢3). Our resultg11) and(12) are not
valid whenQ=0, as then the nonzero Fourier components
no longer form a discrete set and the nondegenerate pertur-
bation theory is no longer valid. Whe@=0 the first order
term in Eq.(11) is already incorrect as one should obtain that
a, is proportional ton, as calculated above.

As we have been able to calculate all integer moments to
second order ire, we can in principle reconstruct the prob-
ability distribution for the field itself. One can check that a
probability distribution of the form proposed [29-31] re-
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produces exactly the moments as calculated here. There the As for the GLE we shall first transform to the Ito repre-
ansatz is made that the logarithm of the norm of the field hasentation and then obtain equations for the moments of the
a Gaussian distribution. This means that for the critical modetochastic fieldV' (x,t) using Ito calculus. These can be writ-
k=0 the moments increase with time a&', where\, ten as

contains terms proportional only toor to n? (see Appendix

A), which is precisely what one obtains from E0). The d

true threshold for the probability distribution of the field is, E(‘P(let)‘l'(xzxt)' W (Xq, 1)

in this case, given by setting; = \,/4 or by settingn=0 in

the formula fora,. Hence one concludes that for the general
case, the true threshold occurs at

n

na— >,

n

> costi)z

2\ 2
b?+ iz +5
X 2

» € < |Hn=GnGol? X (W (X D)W (X0, 1) - - -V (Xg,1)). (16)
Athreshoid™ — €Ho+ €Go+ 62;0 - ’ ’ "

In the absence of noise this equation has solutions of the

€ my o m, orm X1, )P (Xp,t) - - - U (Xp, 1)) ~expqt+iZikix;) wit

L&y 1OmCml dg T CEOLOT 0G0 W (xq,0)=explt+2kx) with

Q? mh, mi+mj An=na—=;(b?~k?)?, and so maximizes eigenvalues,
my,my#0 when kj2=b2 for all j. Our aim is now to determine the

eigenvalues , to second order in the noise strengthlo do

and for the sinusoidal modulation at this we assume that far#0 the moments take the form

€ 7€
Areshold™ ~ 7+ Tog2- (14 (W(x1,1) W (X2,t) - - W (X, 1))
Notice that here and throughout the paper we use the sub- =Cnexp{)\m+i2 ij,-><1>n(X1,Xz, coeXn), (17)
]

scriptn on a control parameter to denote its threshold value

for the nth moment and reserve the subscript “threshold” to . . . .
denote values pertaining to the threshold for the probabilit)VN€re Pn(X1, Xz, s Xn) will be periodic with period
distribution. Hence, one sees that whereas a spatially core™Q Py Floguet's theorem, an@, are constants. As we
stant, temporally fluctuating control parameter produces n(\?v?lllyovr::Shntge?jvaigarfz:;?n::rg?heor:?/ZILOg;h:n:jnggnﬁgiVEIneqme
ShT in the _threshold frqm the determln_lstlc casg ¢, diatel );etk-zzbz for all j. Wegnow roceed by expandin
ap=airesho=0), @ spatially deterministically modulated Yy Selk; - P y expanding
and temporally fluctuating control parameter is sufficient tothe function®, and the eigenvalug, in powers ofe, i.e.,
change the threshold. It is not necessary to have both the

spatial and temporal fluctuations considered[29,30 to D(Xq,Xg, .. Xn) =1+ € (X, Xa, - . . Xp)

produce a threshold shift. 2D (X X+ X)

lll. THE SWIFT-HOHENBERG EQUATION 1 )
_ _ _ Ap=nat+exV+ e P +. ..
We now turn our attention to the slightly more compli-
cated case of the SHE in one dimension with a similar noises, fitting the above expansions into the equation for the
term. This equation has the feature that the threshold for thgi, moment Eq(16), one sees that at order
symmetry breaking instability occurs at nonzero wave vec- ’ '

tor, which is indeed the case for the experimentally realizable 4 3 2
EHC systems. The equation to be studied has the form 2 ( — W_4bi (9_)(3.4_4b2(9_xz A

J i i i
Jd 2 2\2 2
¥ =|a—|b*+ —7 W(x,t)+ecod QX)W (x,t) & :)‘(nl)_%<2 costj)

]
+ (nonlinear termps (15
o _"_ }2 Y

in the Stratonovitch interpretation. For clarity of presentation =M T7172 : cosx & COLIX;COLXy -
we shall, from now on, limit ourselves to the case of a simple
sinusoidal spatial modulation of the noise. The following re- (18)
sults could be generalized to other periodic functions by ex-
panding the periodic function as a Fourier series. The function{" must be periodic with period 2/Q and

To determine the threshold we need again only considehence the constant term on the right-hand side of (£8)
the linearized SPDE. Consider briefly the deterministic SHEmust vanish. This immediately gives us thé,i”znm. It is
Eq. (15), with e=0. This possesses plane wave solutionsagain interesting to note that this is independent of the modu-
e'** just as the deterministic GLE did. They have eigenval-lation wave vecto and is precisely the answer one obtains
ues a—(b?—k?)?2. The critical mode which becomes un- by replacing the spatial sinusoidal modulations by their av-
stable first therefore hag=b?. As for the GLE the deter- erage valuegi.e., cofx—0, cogQx—1/2) in Eq. (16).
ministic threshold occurs @&=0. Solving Eqg.(18) one finds that
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n one concludes that the true threshold for the probability dis-
¢§11)=j21 (C1C0s2X; + C,SiN2QX;) tLibution is given by the moment threshadg with n=0, so
- that
+ 2 [€5C0RQX;CONX+ C,4SINQX;SINQ X, € (16b%+ Q%)
1>k Athreshold™ — Z te 32Q2(4b2— Q2)2(4b2+ Q2)
+ C5(SINQ X;CON X, + CON X;SINQ X, ) |, (b2+Q?)

— =5 5.5 2 2|2
Q?#b?,4b%, (19 512Q2(b2—Q2)2}’ Q7 #p°b-. (23

wherec; (i=1, ...,5)depend orb andQ. The threshold for sinusoidal modulated noise in the SHE is
The separation of periodic behaviors inherent in our antherefore reduced from the deterministic thresheid0. The
satz(16) only works wherQ?# p2b?, p integer, so one must shift is identical to that in the GLE, to first order in the noise
exclude these resonances from the range of validity of oustrength. At second order in the noise strength the shift for
calculation. the SHE has a more complicated dependence on wave vector
To determine the second order temf), one needs to than that for the GLE, possessing resonances when the
expand Eq(16) to second order ie. One then obtains the modulation wave vecta® approaches a multiple of the criti-

partial differential equation cal wave vector of the systerh, Clearly, for spatially con-
stant noise the situation is the same as in the GLE.
g4 93 92 We note here that it is possible to obtain the results of
> ——4—4bi—3+4b2—2> ¢§12) Sec. Il using an analogous expansion scheme to that em-

ployed here. This simple scheme of separation of the period-

1 2 icities inherent in the system and then expanding eigenvalues

=AD A D gl §¢§3>( > costi> . (200  and eigenvectors in powers of the noise strength will be used
: again in the following section to study the coupled equations

obtained for liquid crystals subject to electric fields.
The constant term on the right-hand side of E20) must a y )

again vanish aa&ﬁz) is also periodic and this condition gives

one the value of)\ﬁf). Substituting in the expression for V. ONE-DIMENSIONAL EHC

¢>§11) from Eq. (19 one concludes that We now turn our attention to the most complicated case
we shall consider in this paper, the one-dimensional theory
(2_Nc1  n(n- 1) of electrohydrodynamic convection in a thin slab of nematic
n g 16 ©3 liquid crystal with the director aligned parallel to the slab,
say in thex direction. This system has been under intensive
_ n(b*+Q? n(n—1)(16b*+ Q%) experimental study for many years and its near-threshold be-
© 5120Q%(b?—Q%)? + 32Q%(4b%>—Q?)?(4b%*+Q?)’ havior is understood quite weffor recent reviews on EHC

see[61]). The 1D theory gives the simplest set of equations

Q2#0b2,4b2, (21) that one can derive directly from the basic equations of hy-

drodynamics and Maxwell's equations to describe EHC

Notice that)\ﬁf) diverges at the excluded poin@=b? and [59,60,58. In the deterministic case, i.e., for an applied dc or

4b2. At higher order ine such resonances should occur Whenlow-frequency ac yoltage, It is now mal'nly of_hlgtorlpal n-
2_p%h? (integer p). A similar structure of divergences terest, but for(spatially constantstochastic excitation it has

would appear for the GLE in Sec. Il, when perturbing aroundbe(len ‘;fed ugtill rﬁcently_tfsl—dzq. f freed dicul
a nonzero wave-vector mode, see E@.and (10), if one n this model the spatial degrees of ireedom perpendicular

had a nonzero cutoff, for example. As before, our solution ido the slab are rather brutally eliminated and, if one is inter-
not valid whenQ=0 ,as we have éssumed a, modulation ofésted only in the most important case where convection rolls
finite period ' run perpendicular to the undistorted nematic dire¢toor-

Summarizing our results, one sees that for a sinusoida{f1a| .roll”), one IS left with two couplepl S.PDES in a s!ngle
noise modulation in the SHE one obtains an eigenvalue fo§pat|al coordinate for the two stochastic fiefglt), spatial
the nth moment charge density, ang(x,t), the spatial derivative of the angle

made by the director with the equilibrium state. For details of

ne n(b%+Q?) the derivation of the equations we refer the reader, e.g., to
An=na+ —+ €| o 73 [58,19. We adopt here the notation §19,20. The price
4 5120%(b"= Q%) paid for the drastic simplification is that the threshold for the
n(n—1)(160%+ Q% y . onset of 'ghe symmetry breaking instability in the determinis-
+ 32Q2(4b2—Q2)2(4b2+Q2)}’ Q°#pb-. tic equations is shn‘ted from the nonzero wave vector and
nonzero electric field of the full theory and experiment to

(220  zero wave vector and electric field. To attempt to alleviate

this unwanted feature, one may atrtificially restore the non-

Again it is apparent that, contains only terms proportional zero threshold by introducing a cutoff wave vector of appro-
to n andn? and so the ansatz $29—31] is again exact and priate magnitude. This is analogous to working around a
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nonzero wave vector mode in the GLE, although one knowsimple sinusoidal modulation with wave vectQr The pa-
the critical mode to have zero wave vector. In addition, werameterX, T, a, ando depend upon material properties of
have introduced an extra relaxation timd Jin our coupled the liquid crystal system and are defined in Appendix B. The
equations as an alternative method of restoring a nonzerassumption of isotropy in the permittivity means that the
electric field threshold (T/, can of course be set equal to noise occurs only off-diagonally in the coupled equations. If
zerg. Making the one additional simplification that there is one allows anisotropy in the permittivity one also needs to
no anisotropy in the permittivity of the system, so that theconsider the square of the control parameter,As the
dielectric tensor is isotropic, one obtains the following square of white noise is ill-defined, it is necessary to intro-
coupled SPDEs: duce a finite correlation time for the temporal noise to allow
a controlled calculation, but we do not consider this case
here. The SPDE&4) and (25) are derived from Maxwell's
equations and the basic equations of hydrodynamics and are
hence to be interpreted in the Stratonovitch sense. Before
—a[E+\Jecog Qx)&]a(x,b), (24)  performing any manipulations with these it is therefore
easier to transform to the Ito representation. The equivalent

EQ(X,IF _ T—q(x,t)—o-[E+ \/Ecos(Qx)gt]z/;(x,t). Ito SPDEs can be written concisely using a matrix notation,
q

d 1 @
E w(xat) - T_i// w(xrt) +K m lﬂ(X,t)

J = -
(29 S V=AV+BVE, (26)
The electric field applied to the system is taken to be a con- _ _ _
stant, E, plus a spatially modulated temporal fluctuation, where the vectoV = (#,q)'=(v,,v,)" andA andB are the

controlled in magnitude by the parameterAgain we use a matrices

1 LK & +a0'e 52( ) _aE
| T, et oS X
A=
o 1 +aa'Ecs 2 ' @7
o T_q 5 €0 (Qx)
- 0 —a\/ecoNx
B= (28
— o\ eCcoNX 0

As one now has two fieldg(x,t) andq(x,t) it is no longer now employ the same scheme as that outlined in Sec. Ill to
possible to write down a simple explicit equation for the determine the threshold electric field for the first moment,
nth moment, as we did for the GLE and SHE. To determineE;, to second order ine. A Floquet-type ansatz
the threshold electric field for theth moment one now has (v;)=C;exp(t+ikx)¢(x) is introduced, wherep, is again

to evaluate the eigenvalues of &22" matrix. Here we shall  periodic with period 2r/Q. ¢, and\, are then expanded to
restrict ourselves to the calculation of the thresholds for thesecond order ire,

first two moments only.

To calculate the first moment threshold one simply has to
average Eq(26) to obtaind(V)/dt=A(V). One now has to
determine the eigenvalues of this equation. It is clear from
Eq.(26) that, in the absence of noise, this has solutions of the A=A P+ eaP+ P+ (30)
form (v;)>expt+ikx), and one finds that whee=0

$r=1+edi P,

where
1/1 1
)\1:———+—+k2K) o Y1 1
2\Ty Tq S ﬂ+T—q+kmmK
1 1 1 2
iz\/T——T——kZK +4acE?. (29 1 11, )\ )
q W +§ T__T_lp_kminK +4acE”“.
q

Notice that one obtains the maximal eigenvalue by setting
k=0 and taking the positive sign, but as discussed above we As for the SHE, one obtains ordinary differential equa-
choose to keep a nonzero cutoff wave vedtqy,. We shall  tions for ¢{* and #{?, which are
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1
¢y

P d
K (?7 + 2i kminKa_X

acE? ao
1+ F) ( A - 7COSZQX) ,

31)

acE?

1+ 02

acE?
>>\<12>+(1+ 7 )

FEE ]
KW"'Z'kminK& 1=

X

a
AP - 7000§Qx) Y
acE? ao 2
- T( )\(11)— 7CO§QX) ,
(32
whereQ =[A{+ (1/T)].

MY andA{? are again determined by demanding periodic

solutions forg{") and ¢{?), respectively. From Eq31) one

sees that\{Y=ac/4, and then setting this value and the

solution of Eq.(31), #{¥, in Eq. (32 one concludes that

O alo°E? a’o?
1 7320%+acE?)Q 128K (k3,— Q)
acE? 2 )
X 1+T . kLinE Q. (33
Summarizing, one sees that
ao )
NN et e Ot |, K% QP
1 1 € 4 € 1 K(kr2n|n_Q2) min Q

(34)

where 6, , are independent of the modulation wave vectorwhere
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\, takes a trivial form and is exactly that obtained by solving
Eq. (26) with cos(QX) replaced by its average value 1/2 and
coNx replaced by 0. This correction is once again incorrect
whenQ=0, as our method breaks dowsee below for the
spatially constant cageAt second order we now obtain a
contribution independent of the imposed modulation wave
vectorQ and a term which diverges &3 approache& .

At higher order ine, resonances a@?=p?k2,, (p integed

will again emerge and as explained in the preceding setions
we have to exclude these points from our range of validity.
Inverting the formula in Eq(34) when\ ;=0 gives us the
threshold electric field for the first momert; :

kﬁ’]iﬂK 1 ao

acE3= o kfninK+i+i)e
Ty T,Tq 4 Ty Ty
N ag?( 2 2 K 1 ) 2, a20_2-|—q
L KR K2y 2T Ta
3\ T, ™ T, 128K (k% — Q?)

X

2 1 1 2 2
ki K+ —+ —| €. (39
Ty

min Tq
Note that theO(e€) correction of the shift does not depend
uponQ. It is interesting to note that in spite of the complex-
ity introduced by having two coupled equations, much of the
structure of the results obtained in Secs. Il and (#lg.,
simple form for the first order shift in the threshold and rela-
tively simple dependence of the second order shift on the
modulation wave vecto@, with divergences occurring as
Q approaches a multiple of the critical wave vegt@mains.

To calculate the threshold for the second moments, we
obtain a 4< 4 matrix equation for the second moments using
Ito calculus. This has the form

d — -
EU(X]_!XZat):MU(leXZat)! (36)

UT=[((xe, 1) (%2, 0, (1,1 A(X2, 1)),

Q. As in the previous two examples, the first correction to(q(xy,t) (x»,t)),{q(x4,t)q(x,,t))]=(uy,u,,uUs,u,), and

A11(X1) +Aga(X2) A1z
Ni— Az A11(X1) +AgaX2)
Az B12(X2)B21(X1)
B21(X1)B21(X2) Az

where A;; and B;; are the elements of the matricésand

A1z B12(X1)B1a(X2)
B12(X1)B21(X2) A1z (37
Aq1(X2) +Azx(X1) A '
Az Aga(X1) +AzxX2)

We carried out this procedure using the mathematical

B defined in Egs(27) and(28). One now acts analogously to packagemAPLE. One1 then ob;ains partial differential equa-
the first moment calculations, introducing the ansatzions to solve forg$ and ¢5” and demanding that these

Uj (Xl ,X2 ,t) = DJ eXpQ\2t+ ik1X1+ ik2X2) ¢2(X1 ,Xz), Whel‘e D]
are constants andl, is periodic with period 2/Q, and then
expanding in powers o&: A,=2\ D+ e+ AP+ .
and ¢,=1+ e+ 2pS+ - ...

solutions be periodic leads one x§" andA(?. AV again
has a simple form=ac/2=2\{". This leads one to
speculate thak(M'=nao/4 analogous in form to the GLE
and SHE.)\(22) has a very complicated form and we shall
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min
tor Q, this threshold with that for the case of spatially modulated
noise which we have conjectured to be the expres@énto
first order ine. One sees that unless one of the effective
correlation times 1, or k2. K+ 1/T, vanishes, the thresh-
old for spatially constant noise is always greater than that for

1 [dsQ?+dg] spatially modulated noise. The first order shift of the thresh-

show here only the dependence on the modulation wave veevhereA = (1/T,,+ k2. K+ 1/Tg). Itis interesting to compare

d
A2 = Q_‘;

—2;[ d,Q*+d,Q%+d3+
2 (kmin_ Q2)2

+
(kﬁqin—Qz) old takes a maximal value of zero when the two effective
q correlation times are equal, i.e..TL~ k2, K+ 1T, Inprin-
+ d-0%+ daO2+ do+ -2 ciple the results for spatially constant noise least as far as
(4kmin_Q2)2[ Q7+ dsQ7+do Q? the moments are concernedre included in the theory of
1 q q Refs.[16—20. We have not been able to make direct con-
+ 4024 d 1+ —4 ¥y ’ nection, since in that work the case of isotropic permittivity
(4kr2nin—Q2)[ Q™ diz) Q* Q7P appears as a complicatésingulay limit, and moreover, the

(39) dichotomous nonwhite noise used there becomes Gaussian
and white only in another singular limit.

whered; are independent d@. Although the expression for

A is now very complicated, the characteristic resonances at V. CONCLUSION
Q?=0k2. and 42, are still present. To find the electric , _ _ .
field threshold for the second momeft;, one needs to in- We have considered SPDEs in one dimension with mul-

vert the formula 3(10)+6)\(21)+62)\(22)=0, but we shall not tiplicative noise in which the noise is a product of white

. ; . : pise in time and a deterministic periodic function in space.
do this here'as the '”}erESt'”g features are alregdy evident e results are contrasted with tﬁose for spatially coﬁstant
:he (ixtprzsilons{ fgh(zt)’( it (\j/vouclid b.e tlntteretstlng .to .?t' noise. For the GLE and SHE we have determined the thresh-
tﬁmp 0 t € e;rgw; Sgog)se(_:ont_”or T.:j”: Othfy 0 verify i olds for the integer moments of the field to second order in

I'e T(Sja z0 Aelltg _h 1 |shs i va It Er 'St rg‘:rrf com-b the noise strength away from resonances which occur when
plicated case. ough we have not attempted this cumbely, . periodic function modulating the noise has a wave vector
some task as we obtain the same thresholds for the first tw&ven by a multiple of the critical threshold wave vector
momef‘ts_ t‘.) first order ir, it seems reasonable to assUmerpase thresholds,,, were seen to take the form required by
that this is in fact the true threshold for the probability dIS-a recent ansatz introduced by Becker and Kramer. Having
tribution to first order ine. obtained all the integer moments one is able to determine the

For _explicit comparispn we have; als_o calculated the 35§ ue threshold for the probability distribution itself, which in
of spatially constant noise. Replacing in E84), (25) the these cases is then given by settimg O in the general for-

i i (1 . . .
function C(%QX by 142 we find \{”=ac/4 (unchangell s fora,. One sees that, in contrast to the case in which
but nowA}”=0, and one has spatially constant noise, where there is no shift in the

a alo?E? threshold with increasing noise strength, one obtains for spa-
g g

AD=Z7 (39) tially modulated noise a threshold which decreases with the
2 2 TI'’+4acE? i i i -

o noise strength and is dependent upon the modulating func

tion and its wave vector. The case of spatially modulated
2 1 aT? 2a%0°ET? white noise therefore contains the essential ingredients for a
A2 " 8[I'%+4acE?]? + [T2+4acE?2]5? (40 threshold shift which had already been observed and calcu-

lated for the GLE and SHE with noise which is the product

with ['=1/T— 1T, — kﬁqu. of white noise in time and white noise in spaf®l,29-

Instead of having §Y=2\{" as in the previous cases, we 31,22,23. _
now see that X(ll)g)\(zl)gln\(ll), the limiting case Further, we have considered the case of two coupled

AP=2\{ holding whenE=0, i.e., the driving of the sys- SPDEs obtained in the one-dimensional theory of electrohy-

tem is purely stochastic. For this case of spatially constangmdynamICS In liquid crystals. Here we were only able to

noise we have also calculated the third moment exponents { glculate the first two moments of the coupled fields. The
: . 1).(2) =XP é’lgenvalues giving the leading long time behavior of the first
second order in epsilofthe answera. 3’ '“’ are available on

. o two moments took similar overall forms to those obtained for
request from the authorsThis allows us to verify if the ho G| E and SHE. For the case of spatially constant noise
ansatz of[29] still holds. We find that the ansatz always \ye could calculate the first three moments and hence con-
holds to first order ire, but is only true to second order in ,,qe that here the ansatz[@—31 holds only to first order
e for the case of purely stochastic driving. To first order injj the noise strength. As we obtained identical thresholds for
€ we find that the threshold electric field takes the value  he first two moments for spatially modulated noise to first
order ine, we assume that this is also the threshold for the

2
1 KninK a0 probability distribution itself and that the ansatz holds here to

2 ——Ae

ack

threshold T T, Tq 4 first order. It would be interesting to determine the threshold
1 for the third moment to check that this is correct and see if
R 2. the ansatz also fails at second order for the spatially modu-
+ +kinK | €, (41) X : :
TA\ Ty, lated case. This would be a possible, if extremely cumber-
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some, calculation using the scheme outlined in this paper. Finally we mention that a large system is not needed to
Comparison of the thresholds for spatially modulated andbtain the effects discussed in this paper. In fact the follow-
spatially constant noise to first order in the noise strengtling system of two coupled ordinary linear SDEs shows the
showed that the threshold for spatially constant noise alwaygssential featurei29,30

exceeds that for spatially modulated noise, except in the limit

where one of the inverse relaxation times vanishes. To first d

order ine one can in fact interpolate for the case of spatially qt=la+ Ve& ()] (t) = () + 1),  (42)
constant noise between the threshold shift for spatially

modulated noise and zero threshold shift by varying the re- d

laxation time_s. I_t would_be interesting to try to detect thesg allfz(t):[aJr \/Efz(t)]l//z(t)— Yo(t)+ g (t). (43
threshold shifts in experimentally realizable systems. For this

purpose spatially structured electrodes could be used in EHC

experiments. Although a direct quantitative comparison isThe coupling of the equations is of tidiscrete diffusion
questionable using this one-dimensional theory with a detertype. If the noise processeg(t) and £,(t) are taken to be
ministic dc electric fieldusually an ac field is appliedper- ~ equal, we are back to the one-component model with
haps the more qualitative featur@sg., existence of a thresh- aureshoi™0- If £1(t) and &,(t) are uncorrelated Gaussian
old shift and possibly its dependence on the external wavehite noise processes one finge[29,30)

vector Q) could be detected. To enable better comparison

with experiment it would obviously be desirable to extend € €2

these calculations to systems of equations giving a better Athreshold™ ~ 7 + 3—2+O(64), (44)
description of the experimental system, for example allowing

a dielectric anisotropy, and possibly using the two- = | _ .

dimensional theory for liquid crystals in an electric field Which is analogous to the spatially distributed case.
[19,20,61. This, however, seems a rather hard task due to ActuaII_y stochastic dr|V|_ng_|s not n_eeded. On(_a can re_place
the increased complexity of the coupled equations for thdN€ functions&(t) by periodic functions and find similar
two-dimensional theory, with the large number of spatial de-8ffécts. The stability exponent (which is now a Floquet
rivatives contained therein. We would like to mention that€XPonent is equal toa if the functions are equal. If one
there are nematic liquid crystal materials with vanishing, orche0ses the amplitudes to be different, one easily obtains a
nearly vanishing, dielelectric anisotropy. In fact one suchresult analogous to E@44). Generally the shift results from

material has recently been introduced in EHC experiment&" interaction between the spatially inhomogeneous driving
[64]. and the spatial coupling, which tends to flatten out inhomo-

From the present work, as well as the previous [28- geneities_. Such systema?ic _forces resulting_ from oscillgtory
31], it follows that a typical feature displayed by systemsand spanally varying excna_mo(not necessarily parametjic
subjected to spatially distributed multiplicative noise is that2'® known in plasma physics under the name of “pondero-
the behavior of the system is to leading nontrivial order inMotive forces”(see, e.966]). Similar effects occur in nem-
the noise strength determined already by the first moment gitic liquid crystals subjected to an oscillatory flow with a
the distribution function. This feature has been stressed rdlonlinear flow field(e.g., Poiseuille flow[67].
cently in other works where a type of mean-field approxima-

tion was used as an analytical starting pdia?,54,55,24 ACKNOWLEDGMENTS
Additive noise of(in principle) arbitrary strength was in- _
cluded. In the presence of not too we@kterna) additive One of us(L.K.) wishes to thank the Dept. E.C.M. of the

noise a reentrant behavior with increasing multiplicativeUniversity of Barcelona, where part of this work was per-
noise Strength was found in the GLE, which presumab|y ocformed, for its kind hospitality, and acknowledges financial
curs also in the SHIE22,24, i.e., strong multiplicative noise support through the Alexander von Humboldt—J.C. Mutis
could destroy again the order that it supported initially. AsProgram for the Scientific Cooperation between Spain and
far as we see these interesting effects are out of reach of o@ermany. J.R. thanks the Freistaat Bayern for financial sup-
approach. However, finding a suitable experimental systerfort that allowed the bulk of these calculations to be per-
may also be very difficult. One can have a noise-inducedormed. Helpful dicussions with A. Herndez-Machado are
phase transition also in models that have no transition at agratefully acknowledged.
in the absence of noid&4,55.

_ Recent work _by Grinsteinet al. [65] has considgred APPENDIX A
simple SPDEs with spatially and temporally stochastic mul-
tiplicative noise from the point of view of theory of phase In this appendix we demonstrate that if one employs the
transitions(renormalization group In particular, it was sug- ansatz for the probability distribution of the stochastic field
gested that for the GLE there exists a critical dimensiorabove threshold introduced in Ref29—-31], the moments of
d.=2 above which there is no threshold shift for noisethe field have eigenvalues with terms proportional only to
strength below some nonzero value. It would be interestingy andn?.
to see if such featurd# they really occuy also persist when The ansatz assumes that in the long-time limit the loga-
the spatial stochasticity is replaced by spatial periodicity, butithm of the norm of the stochastic field|#(x,t)|=p(x,t) has
are absent for spatial homogeneity, as is the case for the Gaussian distribution with meant and widthat, where
threshold shift in the single SDE. we have adopted the notation [&0], i.e.,
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z can write down the viscous angular momentum per unit vol-
/ ume as
y — s =— electrodes N - - A~ >

X = —  — [is= —nX[(az—ay)N+(az+az)A-n], (B1)
where thea's are the Leslie viscosity coefficients, defined

as

FIG. 1. Geometry of the experimental situation used to derive .
the 1D equations of EHC. .~ on . I

N=E+v-grad1—§rotv><n, (B2)

1 (p—mt)?
P{p(x,t)}= exp - — : (A1)  describes the motion of the director relative to the hydrody-
V2ot ot . . . L ~
namic velocity of the flowing liquid andA is the symmet-
The moments of the field can then be seen to be given fofic part of the velocity tensor

integern by 1
<\I’2n(X,t)>=<62np>, A= E(ajvi'l'aivj)- (B3)
(W21 (x 1)) =sgn(W(x,t))(e2n+Dpy, (A2)  The stress tensor has both elastic and viscous parts. The vis-
cous partti’j can be written in terms of six constants,
so that ay, a3, a4, as, andag as
1 (p—mt)?
(W“(X,t)>~—f Dp(X,t)eX np————— ti'j=a1ninjz n|A|knk+a2niNj+a3Ninj+a4Aij
N 20t Kl
nat 1
=exg——+nmt. (A3) +§(a5+a6_a2_a3)ni; NKAg;
The moments hence have eigenvaldgssuch that 1
, +§(a5+a6+a2+a3)nj§ Aiknk. (B4)
n“o
Ap=—%—+nm, A4 . .
no2 (Ad) Further, our nematic has the conductivity

gij= 0 6T oaninj, an isotropic permittivity€;; = €,

i.e., the eigenvalues can only have a term proportional to aan an elastic bending constdtys. 0

and a term proportional to®. It is helpful to define effective shear viscosities:
In this framework the true threshold occurs when

{p(t))—const ast—w, i.e., whenm—0 for large time or 1 1

equivalently M= s ag—ast S (astagtaz—as)|, (BS)
)\2 )\n 2

N=— or — =0. (A5) -

4 ni o m=asTazT (B6)
APPENDIX B One can now express the coefficients of Hg4) and(25) in

terms of the material parameters of the nematic as follows:
The SPDEs(24) and (25) are derived from a consider-

ation of the following experimental situation. One has a K=Ksa/7, (B7)
nematic liquid crystal layer confined by two flat plate elec-

trodes, lying in thexy plane with the director of the nematic a=—az/nn, (B8)
liquid crysEaI altzng a unit vectan, see Fig. 1(note that for UTy=4mn(o, +oy)le, (B9)
a directorn=—n).

We adopt the notation used [d9]. For this system we o=0,. (B10)
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