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Spectra in helical three-dimensional homogeneous isotropic turbulence
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Fluid Dynamics Research Center, Princeton University, Princeton, New Jersey 08544-0710

~Received 6 February 1997!

Three-dimensional homogeneous isotropic turbulence with helicity is studied numerically at high Reynolds
number. Helicity is generated by a large-scale white-in-time helical force. High Reynolds number is achieved
by using hyperviscous dissipation. It is shown that a cascade of helicity from large to small scales develops.
The scalings of the energy and helicity spectra are consistent with Kolmogorov inertial range scaling predic-
tions. No inverse cascade of helicity is observed.@S1063-651X~97!09206-4#

PACS number~s!: 47.27.Ak, 47.27.Gs, 47.27.Jv
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I. INTRODUCTION

Helicity, the scalar product of velocityv and vorticity
v, is an inviscid invariant of three-dimensional homog
neous turbulence. It is known to play an important part in
generation of magnetic fields~see@1# for a review!. In this
paper we consider the influence of helicity on turbulen
dynamics in the absence of a magnetic field. A recent gen
review of helical turbulent magnetic and nonmagnetic flo
can be found in@2#. We introduce isotropic energy and h
licity spectraE(k) andH(k) such that

1

2
^v2&5E

0

`

E~k!dk ~1!

and

^v•v&5E
0

`

H~k!dk. ~2!

It may be shown that

uH~k!u<2kE~k!. ~3!

Since, in the inviscid limit, both energy and helicity a
conserved, it was conjectured in@3# and extensively dis-
cussed in@4# that a simultaneous cascade of energy and
licity is possible. We consider the case when energy
helicity are injected by a white-in-time helical force at wa
numberkf . If the energy injection rate isE, then the helicity
injection rateh satisfies the inequalityuhu<2kfE. The most
straightforward scenario is a simultaneous cascade of
energy and helicity from large to small scales in which t
helicity is carried linearly along with the energy cascade.
this case, dimensional considerations suggest that, using
Kolmogorov scaling@5# for E(k),

E~k!5Ck

E2/3

k5/3
, ~4!

then the helicity spectrumH(k) satisfies

H~k!5Ch

h

E1/3k5/3. ~5!
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The prediction ~5! follows essentially from the fact tha
H(k) should depend linearly onh. It is clear from Eqs.~4!
and ~5! that the relative helicity

a~k!5
H~k!

2kE~k!
~6!

decreases at small scales. Thus helicity scales essentially
passive scalar@6# since it is dynamically unimportant a
small scales. The decrease of the relative helicity at sm
scales was qualitatively predicted in@4#.

Another hypothetical possibility@3# is that the presence o
the mean helicity suppresses the direct cascade of en
from large to small scales and leads to an inverse cascad
energy to even larger scales while helicity itself casca
directly from large to small scales. It was shown in@7# that
this possibility is inconsistent with Eulerian dynamics. T
eddy-damped quasinormal Markovian~EDQNM! closure
calculations in@4# also confirm that there is no inverse ca
cade in helical turbulence and that energy and helicity sp
tra scale according to Eqs.~4! and ~5!. Numerical simula-
tions of helical three-dimensional decaying turbulence w
carried out in@8#. Unfortunately, the low Reynolds numbe
of these simulations does not permit the determination
quantitative scalings of energy and helicity spectra.

In previous works@9#, we have already demonstrated th
for a given numerical resolution we can effectively increa
the extent of the inertial range of three-dimensional turb
lence by an order of magnitude by using alternative forms
dissipation. We replace the normal Newtonian dissipation
a higher power of the Laplacian, i.e., a hyperviscosity. It w
shown in@9# that three-dimensional inertial-range dynami
is relatively independent of the form of the hyperviscos
and that modest resolution simulations with high-order h
perviscosity lead to sufficiently extensive inertial ranges t
measurement of a broad variety of otherwise intracta
quantities can be made. Hyperviscosity is now a stand
tool for numerical simulations of two-dimensional turb
lence. The literature on the subject is extensive and too
merous to review here~see, e.g.,@10# and references therein!.
For three-dimensional turbulence, hyperviscosity was use
@11# for simulations of stratified turbulence~hyperviscosity
7005 © 1997 The American Physical Society
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7006 55VADIM BORUE AND STEVEN A. ORSZAG
was used concurrently with Newtonian viscosity to stabil
the calculations! and in @12# for simulations of rotating and
decaying turbulence.

In this paper we address the question of scaling laws
the energy and helicity spectra in three-dimensional isotro
helical turbulence. We will demonstrate that in a statistica
steady state where both the energy and helicity are inje
by a white-in-time helical force at scalekf both energy and
helicity cascade from large to small scales with spectra
are consistent with Eqs.~4! and ~5!. No inverse cascade o
energy or helicity is observed.

II. NUMERICAL RESULTS

The hyperviscosity-modified Navier-Stokes equations

] tv i1v j] jv i52] i p1~21!h11nhD
hv i1 f i , ~7!

where the pressurep is calculated from the incompressibilit
condition ] iv i50. Vorticity is defined asv i5« i jk] jvk ,
where « i jk is the antisymmetric tensor and the summat
over repeated indices is assumed. On the right-hand sid
Eq. ~7! we include a white-noise-in-time Gaussian force th
is nonzero only at some characteristic scalekf :

^ f i~k,t ! f j~k8,t8!&;Fi j ~k!d~k22kf
2!d~k1k8!d~ t2t8!,

~8!

and a hyperviscosity dissipation designed to provide an
ergy sink at small scales. The force injects both energy
helicity

Fi j ~k!5d i j2
kikj
k2

2 ib« i j l
kl
k
, ~9!

wherek5uku. If the force ~8! and ~9! injects energy at the
rateE, the rate of helicity injection ish52kfbE. Therefore
ubu<1. The caseb561 corresponds to a maximally helica
force. The helical force can be easily implemented num
cally as

f i~k!5S d i j2
kikj
k2

2 ig« i j l
kl
k D j j ~10!

using Gaussian complex random variables with^j ij j&50
and ^j ij j* &5d i j . The representation of the random force
Eq. ~10! leads to a helical force with the tensor correla
structure~9! in which b52g/(11g2) so thatubu<1 is sat-
isfied automatically.

We solve Eq.~7! using a pseudospectral parallel co
@13#. We performed simulations with resolution 1283 in a
periodic box with sizeL52p in each direction. The powe
h of the hyperviscous dissipation is chosen to maximize
extent of the inertial range. As in our previous work@9#, we
chooseh58. For h58, the hyperviscous dissipation
nearly zero at wave numbersk<N/3 and abruptly turns on
for k>kd'N/3 ~whereN3 is the numerical resolution!. The
hyperviscosity coefficientnh (h58) for both the velocity
and temperature equations is chosen so
nh(N/2)

2hdt'0.5, wheredt is the time step of the numerica
scheme. The time step, on the other hand, is fixed by
characteristic maximum velocity at large scalesvmax by the
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Courant number criteria:vmaxdtN/2p<0.2. Thus all param-
eters are uniquely defined by the large-scale flow and
numerical resolution. The Taylor microscale Reynolds nu
ber for this system may be defined asRl'50(kd /kf)

2/3,
where kd is the wave number wherek2E(k) is maximum
(kd'41 for 1283 numerical resolution!.

We use only 1283 numerical resolution since the Rey
nolds number dependence of the energy spectrum has
studied by us previously@9# and we expect that the Reynold
number dependence of the helicity spectrum is similar to t
of the energy spectrum. Moreover, it follows that the to
helicity is a strongly fluctuating, not positive-definite, qua
tity since a long total integration time is required to g
meaningful results. The use of 2563 numerical resolution is
still computationally quite expensive; we do not expect a
new helicity specific physics to emerge at higher Reyno
number and the present 1283 resolution, which is, we be-
lieve, big enough to verify basic concepts and allows us
explore a sufficiently broad range of parameters.

We start our numerical investigation by considering t
maximally helical force withb5g51 that acts only at the
largest scales, i.e., on wave-number shellskf51,2. We mea-
sure wave numbers in 2p/L51 units. The time scale of the
problem is set by an amplitude of the force~8! that is chosen
so that the characteristic velocityv0}(EL)1/351 and the
characteristic time scalet05L/2pv051. The characteristic
vorticity is v052pv0 /L51 and the characteristic helicity i
h05v0v0. We characterize the global behavior of the flo
by a time-dependent root-mean-square velocity, vortic
and helicity defined as

v rms5
1

A3
^v2&1/2, v rms5

1

A3
^v2&1/2, h5^v•v&,

~11!

respectively. The averaging in Eqs.~11! is carried out only in
space. Flow in a periodic box is an open flow and is char
terized by strong large-scale intermittency@9#. The signals
for v rms(t), v rms(t), andh(t) obtained during the total inte
gration time are shown in Fig. 1. It is evident from Fig. 1 th
helicity is a more intermittent quantity than the large-sc
velocity.

For helical homogeneous isotropic three-dimensional
bulence, velocity spectra consistent with the definitions~1!
and ~2! have the tensor structure

^v i~k!v j~2k!&5S d i j2
kikj
k2 D E~k!

4pk2
2 i« i j l

kl
k2

H~k!

8pk2
.

~12!

It is instructive to demonstrate the existence of energy
helicity cascades from large to small scales. We define
energy~helicity! flux as

JE~h!~k!5E
k8.k

`

TE~h!~k8!dk8, ~13!

where the isotropic energy~helicity! transfer function
TE(h)(h)(k) equals

TE~h!~k!5E NE~h!~p!2kd~p22k2!dp, ~14!
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with

NE~k!52^v i~k!@v j] jv i #~2k!& ~15!

in the case of the energy flux and with

Nh~k!522^v i~k!@v j] jv i #~2k!& ~16!

in the case of the helicity flux.
We have verified directly that the velocity spectra inde

have the structure~12! consistent with isotropy. The isotro
pic energy spectrumE(k) and the energy fluxJE(k) for the
case of maximal helicity force are plotted in Fig. 2. T
energy spectrum is scaled to verify the scaling law~4!. The
spectrum and the energy flux are nearly identical to the o
observed by us previously@9# in the case of homogeneou
isotropic turbulence driven by a white-in-time force. As
the case of nonhelical isotropic turbulence, there is
bottleneck part of the spectrum near the dissipation cu
kd @9#. In both cases the scaling of the energy spectr
slightly deviates from the Kolmogorov law~4!. These small
deviations were extensively discussed by us earlier. We th
that these deviations probably reflect the fact that, altho
the energy spectrum is globally isotropic, at each given m
ment of time it is anisotropic. Only after substantial avera
ing is global isotropy recovered. If we should expect t
Kolmogorov scaling law to hold only at scales that are
cally isotropic regardless of global anisotropy, we need ab
a decade of scales to reach this state of local isotropy. Th
fore, although the system is formally globally isotropic, it
locally isotropic starting only fromk'7210 @9#. Thus we
believe that any small deviations from the Kolmogorov la
reflect the fact that the system is locally anisotropic at la
scales. However, there is a possibility that these deviat
are real.

FIG. 1. Time series averaged in space:~a! mean helicity
h(t)/h0, ~b! v rms(t)/v0, and~c! v rms(t)/v0. Time, velocity, vortic-
ity, and helicity are measured in units oft0, v0, v0, andh0, respec-
tively.
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The isotropic helicity spectrumH(k) and the helicity flux
for this case of maximal helicity force are plotted in Fig. 3
those results show that the helicity spectrum exhibits
bottleneck phenomenon similar to that of the energy sp
trum. It is interesting to note that a bottleneck part in both t
energy and helicity spectra was also observed in
EDQNM closure in @4#. H(k) approximately satisfies the
Kolmogorov law ~5!. There are also small deviations from
the Kolmogorov law as in the case of the energy spectru
again, small deviations could be local anisotropy. A consta
helicity flux from large to small scales can be observed. It

FIG. 2. ~a! Scaled energy spectrumE(k)k5/3/E2/3 and~b! scaled
energy fluxJE(k)/E as functions of log10k.

FIG. 3. ~a! Scaled helicity spectrumH(k)k5/3E1/3/h and ~b!
scaled energy fluxJE(k)/E as functions of log10k.
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7008 55VADIM BORUE AND STEVEN A. ORSZAG
interesting to compare Kolmogorov constants for the ene
and the helicity spectraCk andCh , respectively, with the
values obtained using EDQNM closure@4#. In our simula-
tion, we findCK'1.4 andCh'1. According to the EDQNM
closure,CK'1.4 andCh'2.23. Therefore, if the value o
CK is in good agreement with the EDQNM closure, the val
of Ch exhibits substantial deviation from it. Qualitatively, th
scenario that the linear helicity cascade is similar to the c
of a passive scalar discussed in@3,4# is quite well satisfied
according to our data.

It is interesting to calculate also the relative helici
a(k) ~6! and the ratio of the helicity and energy spect
HE(k)E/@E(k)h#, which are plotted in Fig. 4. As can b
seen from Fig. 4, at large scales, the velocity field is nea
maximally helical and the relative helicity decays as;1/k at
large wave numbers. The ratio of the helicity to the ener
spectrum is approximately constant, except in the dissipa
range. The value of this constant'0.7 is surprisingly close
to the corresponding quantity for a passive scalar or for
mogeneous convection@14#, where this ratio is called the
effective ~turbulent! Prandtl number.

The scenario of a linear helicity cascade carried alongs
the energy cascade requires thatH(k) depends linearly on
h. We can easily check this dependence by carrying
simulations with variable levels of helicity by tuning the p
rameterg in the force ~10!. We have performed runs fo
the helical forcing at the samekf as for the case of a maxi
mally helical force (g51) with g'0.075,0.185,0.3,0.45
corresponding, according to Eq.~8!, to helicity level
b'0.15,0.35,0.55,0.75. We verified that, for these ru
h/E}b52g/(11g2). In Fig. 5 we plot energy and helicity
spectra for different levels of injected helicity. Energy~he-
licity ! spectra are superimposed and scaled in order to ch
the Kolmogorov scalings for energy~4! and helicity~5!. It is
clear from the results plotted in Fig. 5 that the energy sp
trum is nearly independent of the mean helicity level in t

FIG. 4. ~a! Relative helicitya(k) and ~b! ratio HE(k)E/E(k)h
as functions of log10k.
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system. Also the helicity spectra are indeed linearly prop
tional to the helicity injection rateh. The scatter in the he
licity spectra for lower levels of helicity is more pronounce
since relative fluctuations of the helicity increase as the le
of mean helicity decreases. The higher level of fluctuatio
at smaller wave numbers are caused by our measurem
procedure in which isotropic spectra are measured using
stantially thinner shells at low wave numbers~this being nec-
essary to avoid systematic errors in representing isotro
spectra by a histogram with bins that are too thick at l
wave numbers!.

To check the possibility of inverse energy or helicity ca
cades as suggested in@3# we made several runs with th
helical force at intermediate scaleskf'10. No inverse en-
ergy or helicity cascade was observed. Both energy and
licity cascade from the scale of injection toward small sca
leading to constant energy and helicity fluxes from large
small scales. This conclusion agrees with the same con
sion reached within the framework of EDQNM closure@4#.

III. DISCUSSION

The main conclusion of this paper is that helicity app
ently does not play a significant role in the cascade of ene
from large to small scales. Helicity is inherently a large-sc
quantity. When helicity is injected at large scales, it is tra
ferred to small scales by the energy cascade. In this se
helicity behaves similarly to a passive scalar. Helicity spec
depend linearly on the level of helicity injection and sca
similarly to spectra of a passive scalar in accord with
Obukhov-Corrsin hypothesis@6#. Relative helicity decrease
at small scales; even if helicity could play some significa

FIG. 5. ~a! Scaled energy spectraE(k)k5/3/E2/3 and ~b! scaled
helicity spectraH(k)k5/3E1/3/h as functions of log10k. Spectra are
obtained for different levels of mean helicit
b50.15,0.35,0.55,0.75,1 and are superimposed.



e
n
en
ce
he
ca
nc
ity
ve
th
dy
eld

ated

s.
allel
on-
lity
er-
at
er

55 7009SPECTRA IN HELICAL THREE-DIMENSIONAL . . .
dynamic role at the largest anisotropic scales of the syst
its role would decrease at small scales where the turbule
dynamics become more universal. No inverse helicity or
ergy cascade has been observed. Although the presen
mean helicity may be unimportant for the dynamics of t
energy cascade, the situation changes drastically in the
of magnetohydrodynamics. In a magnetic fluid, the prese
of a small-scale kinetic helicity leads to magnetic helic
production that cascades toward large scales, leading e
tually to large-scale magnetic-field generation through
dynamo effect. We hypothesize that information on the
namics of kinetic helicity in the absence of a magnetic fi
-
e,

re
m,
ce
-
of

se
e

n-
e
-

as given here can help to understand the more complic
kinetic helicity dynamics in magnetohydrodynamics.
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