PHYSICAL REVIEW E

VOLUME 55, NUMBER 6

JUNE 1997

Spectra in helical three-dimensional homogeneous isotropic turbulence
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Three-dimensional homogeneous isotropic turbulence with helicity is studied numerically at high Reynolds
number. Helicity is generated by a large-scale white-in-time helical force. High Reynolds number is achieved
by using hyperviscous dissipation. It is shown that a cascade of helicity from large to small scales develops.
The scalings of the energy and helicity spectra are consistent with Kolmogorov inertial range scaling predic-
tions. No inverse cascade of helicity is obsenf&il063-651X97)09206-4

PACS numbds): 47.27.Ak, 47.27.Gs, 47.27.Jv

I. INTRODUCTION

Helicity, the scalar product of velocity and vorticity

w, is an inviscid invariant of three-dimensional homoge-

The prediction(5) follows essentially from the fact that
H (k) should depend linearly om. It is clear from Eqs(4)
and (5) that the relative helicity

neous turbulence. It is known to play an important part in the

generation of magnetic fieldsee[1] for a review. In this

paper we consider the influence of helicity on turbulence
dynamics in the absence of a magnetic field. A recent general

H(k)

a(k) 2kE(K)

6

review of helical turbulent magnetic and nonmagnetic flows

can be found if2]. We introduce isotropic energy and he-
licity spectraE(k) andH (k) such that

1 )
5<v2>=f0 E(k)dk M
and
<v-w>=f:H(k)dk. @)
It may be shown that
|H(K)|<2kE(k). (3

Since, in the inviscid limit, both energy and helicity are
conserved, it was conjectured [8] and extensively dis-

cussed in4] that a simultaneous cascade of energy and he:
licity is possible. We consider the case when energy an
helicity are injected by a white-in-time helical force at wave

numberk; . If the energy injection rate i§, then the helicity
injection rate satisfies the inequalityn|<2k:£. The most

straightforward scenario is a simultaneous cascade of bo
energy and helicity from large to small scales in which the
helicity is carried linearly along with the energy cascade. In
this case, dimensional considerations suggest that, using t

Kolmogorov scalind 5] for E(k),

2/3
E(k)=Ciizm: 4
then the helicity spectrurhl (k) satisfies
7
H(K)=Ch 1357 )
E7%k
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decreases at small scales. Thus helicity scales essentially as a
passive scalaf6] since it is dynamically unimportant at
small scales. The decrease of the relative helicity at small
scales was qualitatively predicted [i].

Another hypothetical possibility3] is that the presence of
the mean helicity suppresses the direct cascade of energy
from large to small scales and leads to an inverse cascade of
energy to even larger scales while helicity itself cascades
directly from large to small scales. It was shown[#] that
this possibility is inconsistent with Eulerian dynamics. The
eddy-damped quasinormal MarkoviaieDQNM) closure
calculations in[4] also confirm that there is no inverse cas-
cade in helical turbulence and that energy and helicity spec-
tra scale according to Eq$4) and (5). Numerical simula-
tions of helical three-dimensional decaying turbulence were
carried out in[8]. Unfortunately, the low Reynolds number
of these simulations does not permit the determination of

81uantitative scalings of energy and helicity spectra.

In previous workg 9], we have already demonstrated that
for a given numerical resolution we can effectively increase
the extent of the inertial range of three-dimensional turbu-

tlﬁnce by an order of magnitude by using alternative forms of

dissipation. We replace the normal Newtonian dissipation by
a higher power of the Laplacian, i.e., a hyperviscosity. It was
shown in[9] that three-dimensional inertial-range dynamics

he

i relatively independent of the form of the hyperviscosity
and that modest resolution simulations with high-order hy-
perviscosity lead to sufficiently extensive inertial ranges that
measurement of a broad variety of otherwise intractable
gquantities can be made. Hyperviscosity is now a standard
tool for numerical simulations of two-dimensional turbu-
lence. The literature on the subject is extensive and too nu-
merous to review hergsee, e.g10] and references thergin

For three-dimensional turbulence, hyperviscosity was used in
[11] for simulations of stratified turbulendéyperviscosity
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was used concurrently with Newtonian viscosity to stabilizeCourant number criteriat 5, 0tN/27<0.2. Thus all param-

the calculationsand in[12] for simulations of rotating and eters are uniquely defined by the large-scale flow and the

decaying turbulence. numerical resolution. The Taylor microscale Reynolds num-
In this paper we address the question of scaling laws ober for this system may be defined Bs~50(kq/k;)%"3,

the energy and helicity spectra in three-dimensional isotropigvhere k4 is the wave number wherk’E(k) is maximum

helical turbulence. We will demonstrate that in a statistically(ky~41 for 128 numerical resolution

steady state where both the energy and helicity are injected We use only 128 numerical resolution since the Rey-

by a white-in-time helical force at scalg both energy and nolds number dependence of the energy spectrum has been

helicity cascade from large to small scales with spectra thagtudied by us previously9] and we expect that the Reynolds

are consistent with Eqg$4) and (5). No inverse cascade of number dependence of the helicity spectrum is similar to that

energy or helicity is observed. of the energy spectrum. Moreover, it follows that the total
helicity is a strongly fluctuating, not positive-definite, quan-
II. NUMERICAL RESULTS tity since a long total integration time is required to get

] ] -~ ) ) meaningful results. The use of Z58umerical resolution is
The hyperviscosity-modified Navier-Stokes equations are;)| computationally quite expensive; we do not expect any
new helicity specific physics to emerge at higher Reynolds
number and the present 28esolution, which is, we be-
lieve, big enough to verify basic concepts and allows us to
explore a sufficiently broad range of parameters.
We start our numerical investigation by considering the

&tvi-i-vj(?jvi:—&ip+(—1)h+1thhvi+fi, (7)

where the pressuneis calculated from the incompressibility
condition djv;=0. Vorticity is defined asw;= ¢ djvy,
where g;; is the antisymmetric tensor and the summation , S
over repeated indices is assumed. On the right-hand side aximally helical force with3=y=1 that acts only at the

Eq. (7) we include a white-noise-in-time Gaussian force that argest scales, i.e., on wave-numper shleﬂls 1,2. We mea-
is nonzero only at some characteristic sdale sure wave numbers in7/2L=1 units. The time scale of the

problem is set by an amplitude of the for@ that is chosen
(Fi(k, D (K )~ Fiy (K) 8(k2— k2) 8(k+K ') 8(t—t"), so that the characteristic velocityp><(£L)"*=1 and the
(8) characteristic time scalgy=L/2wmvy=1. The characteristic
vorticity is wg=2mvy/L=1 and the characteristic helicity is
and a hyperviscosity dissipation designed to provide an emig=vywy. We characterize the global behavior of the flow
ergy sink at small scales. The force injects both energy antly a time-dependent root-mean-square velocity, vorticity,

helicity and helicity defined as
kikj K 1 o 1 o
Fij(k)z&ij_?_l’gsmi' ©) Urms:ﬁa’ >4 wrms:ﬁ<w )75 h=(v-w),

11
wherek=|k|. If the force (8) and (9) injects energy at the (D

rate &, the rate of helicity injection isy=2k;BE. Therefore respectively. The averaging in Ed41) is carried out only in
|B|<1. The casgg=*1 corresponds to a maximally helical space. Flow in a periodic box is an open flow and is charac-
force. The helical force can be easily implemented numeriterized by strong large-scale intermittenf@]. The signals

cally as for v, ms(t), wms(t), andh(t) obtained during the total inte-
gration time are shown in Fig. 1. It is evident from Fig. 1 that
B kikj K helicity is a more intermittent quantity than the large-scale
fik)=| 8= 1z —ivein 1 |§ (10) velocity.

For helical homogeneous isotropic three-dimensional tur-
using Gaussian complex random variables withé;)=0  bulence, velocity spectra consistent with the definiti¢hs
and(gigj?*): dij - The representation of the random force inand(2) have the tensor structure
Eqg. (10) leads to a helical force with the tensor correlator

structure(9) in which 8=2y/(1+ y?) so that|8|<1 is sat- _ en—| s kikj| E(k) .k H(k)
isfied automatically. (ilkv;(=R)={ 8=z |72 1% iz g i
We solve Eq.(7) using a pseudospectral parallel code (12

[13]. We performed simulations with resolution £2B a
periodic box with sizedL=2+ in each direction. The power
h of the hyperviscous dissipation is chosen to maximize th
extent of the inertial range. As in our previous w4, we
chooseh=8. For h=8, the hyperviscous dissipation is o
nearly zero at wave numbeks<N/3 and abruptly turns on JE(h)(k)=f Temy(k")dK', (13
for k=ky~N/3 (whereN? is the numerical resolutionThe k'>k

hyperviscosity coefficient, (h=8) for both the velocity where the isotropic energyhelicity) transfer function
and temperature equations is chosen so thaTE(h)(h)(k) equals

vh(N/2)?"8t~0.5, wherest is the time step of the numerical

scheme. The time step, on the other hand, is fixed by the _ 5 12

characteristic maximum velocity at large scaigs,, by the TE<h)(k)—f Neh)(p)2ks(p”—k*)dp, (14

It is instructive to demonstrate the existence of energy and
é‘nelicity cascades from large to small scales. We define the
energy(helicity) flux as
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FIG. 1. Time series averaged in spad@ mean helicity
h(t)/hg, (b) @;ms(t)/ ®g, and(c) v,ms(t)/vo. Time, velocity, vortic-
ity, and helicity are measured in units if v, wg, andhg, respec-
tively.

with

Ne(k)=—(vi(K)[vjdjvi](—k)) (15
in the case of the energy flux and with
Nh(K) = —2(w;(K)[v;d;v;]1(—K)) (16)

in the case of the helicity flux.
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FIG. 2. (a) Scaled energy spectruii(k)k>% £ and(b) scaled
energy fluxJg(k)/€ as functions of logk.

The isotropic helicity spectrurd (k) and the helicity flux
for this case of maximal helicity force are plotted in Fig. 3;
those results show that the helicity spectrum exhibits a
bottleneck phenomenon similar to that of the energy spec-
trum. It is interesting to note that a bottleneck part in both the
energy and helicity spectra was also observed in the
EDQNM closure in[4]. H(k) approximately satisfies the
Kolmogorov law(5). There are also small deviations from
the Kolmogorov law as in the case of the energy spectrum;
again, small deviations could be local anisotropy. A constant

We have verified directly that the velocity spectra indeedhelicity flux from large to small scales can be observed. It is

have the structur€l2) consistent with isotropy. The isotro-
pic energy spectrurk(k) and the energy fludg(k) for the
case of maximal helicity force are plotted in Fig. 2. The
energy spectrum is scaled to verify the scaling l@wv The
spectrum and the energy flux are nearly identical to the one
observed by us previoush®] in the case of homogeneous
isotropic turbulence driven by a white-in-time force. As in
the case of nonhelical isotropic turbulence, there is the
bottleneck part of the spectrum near the dissipation cutof
kq [9]. In both cases the scaling of the energy spectrun
slightly deviates from the Kolmogorov lay). These small
deviations were extensively discussed by us earlier. We thin
that these deviations probably reflect the fact that, althoug
the energy spectrum is globally isotropic, at each given mo
ment of time it is anisotropic. Only after substantial averag-
ing is global isotropy recovered. If we should expect the
Kolmogorov scaling law to hold only at scales that are lo-
cally isotropic regardless of global anisotropy, we need abou
a decade of scales to reach this state of local isotropy. Ther:
fore, although the system is formally globally isotropic, it is
locally isotropic starting only fronk~7—10[9]. Thus we
believe that any small deviations from the Kolmogorov law

(a) E
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reflect the fact that the system is locally anisotropic at large
scales. However, there is a possibility that these deviations FIG. 3. (a) Scaled helicity spectruntd (k)k®3¢¥% 5 and (b)

are real.

scaled energy fludg(k)/€ as functions of logk.
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FIG. 4. (a) Relative helicitya(k) and (b) ratio Hg(k)&/E(K) 7 FIG. 5. (a) Scaled energy specti&(k)k>¥£%3 and (b) scaled
as functions of logk. helicity spectraH (k)k>3¢¥% 5 as functions of logk. Spectra are

obtained for different levels of mean helicity
interesting to compare Kolmogorov constants for the energy=0.15,0.35,0.55,0.75,1 and are superimposed.
and the helicity spectr&, and C,,, respectively, with the
values obtained using EDQNM closuf4]. In our simula-

' - ; system. Also the helicity spectra are indeed linearly propor-
tion, we findCx~1.4 andC~1. According to the EDQNM

; tional to the helicity injection rate;. The scatter in the he-
closure,Cx~1.4 andCy~2.23. Therefore, if the value of Y Inj %

L ; licity spectra for lower levels of helicity is more pronounced
Cy Isin gpqd agreemept W'th.th.e EDQNM closu.re,.the Valuesince relative fluctuations of the helicity increase as the level
of C,;, exhibits substantial deviation from it. Qualitatively, the

scenario that the linear helicity cascade is similar to the cas%f mean helicity decreases. The higher level of fluctuations

of a passive scalar discussed[B\4] is quite well satisfied at smaller \wave ngmbers_ are caused by our meas_urement
according to our data. procgdure in which isotropic spectra are mea.lsure.d using sub-
It is interesting to calculate also the relative helicity Stantially thinner shelis at low wave numbétisis being nec-
a(k) (6) and the ratio of the helicity and energy spectra®SSary to av0|ql systematic errors in representing isotropic
He(K)E/[E(K) 7], which are plotted in Fig. 4. As can be spectra by a histogram with bins that are too thick at low
seen from Fig. 4, at large scales, the velocity field is nearlyVave numbers o _ o
maximally helical and the relative helicity decays-ag/k at To check the possibility of inverse energy or helicity cas-
large wave numbers. The ratio of the helicity to the energyc@des as suggested 8] we made several runs with the
spectrum is approximately constant, except in the dissipatiof€lical force at intermediate scalés~10. No inverse en-
range. The value of this constas0.7 is surprisingly close €rgy or helicity cascade was observed. Both energy and he-
to the corresponding quantity for a passive scalar or for holicity cascade from the scale of injection toward small scales
mogeneous convectiofl4], where this ratio is called the leading to constant energy and helicity fluxes from large to
effective (turbuleny Prandtl number. small scales. This conclusion agrees with the same conclu-
The scenario of a linear helicity cascade carried alongsidsion reached within the framework of EDQNM closuyr.
the energy cascade requires tliltk) depends linearly on
7. We can easily check this dependence by carrying out
simulations with variable levels of helicity by tuning the pa-
rametery in the force(10). We have performed runs for
the helical forcing at the sanig as for the case of a maxi-  The main conclusion of this paper is that helicity appar-
mally helical force ¢y=1) with y~0.075,0.185,0.3,0.45 ently does not play a significant role in the cascade of energy
corresponding, according to Eq#8), to helicity level from large to small scales. Helicity is inherently a large-scale
B~0.15,0.35,0.55,0.75. We verified that, for these runsguantity. When helicity is injected at large scales, it is trans-
nlExB=2v/(1+v?). In Fig. 5 we plot energy and helicity ferred to small scales by the energy cascade. In this sense,
spectra for different levels of injected helicity. Enerffye-  helicity behaves similarly to a passive scalar. Helicity spectra
licity) spectra are superimposed and scaled in order to chealepend linearly on the level of helicity injection and scale
the Kolmogorov scalings for enerdy) and helicity(5). Itis  similarly to spectra of a passive scalar in accord with the
clear from the results plotted in Fig. 5 that the energy specObukhov-Corrsin hypothes|$]. Relative helicity decreases
trum is nearly independent of the mean helicity level in theat small scales; even if helicity could play some significant

Ill. DISCUSSION
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dynamic role at the largest anisotropic scales of the systenas given here can help to understand the more complicated
its role would decrease at small scales where the turbulendgnetic helicity dynamics in magnetohydrodynamics.
dynamics become more universal. No inverse helicity or en-

ergy cascade has been observed. Although the presence of ACKNOWLEDGMENTS
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