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Velocity-difference probability density functions for Burgers turbulence

S. A. Boldyrev
Princeton University, P.O. Box 451, Princeton, New Jersey 08543

~Received 5 December 1996!

In this paper the Polyakov equation@Phys. Rev. E52, 6183~1995!# for the velocity-difference probability
density functions, with the random Gaussian external force, with the correlation functionk(y);12ya, is
analyzed. Solutions for the casesa5$2,1/2,1% are found, which agree very well with available numerical
results. It is also argued that the stationary regime of Burgers turbulence can depend not only on the distribu-
tion of the external force, but also on the dissipative regularization.@S1063-651X~97!03306-0#

PACS number~s!: 47.27.Gs, 03.40.Kf
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The Burgers equation is attracting considerable atten
as a model for one-dimensional turbulence without press
which captures, in a simple manner, some of its characte
tic features. More precisely, when supplemented by a r
dom external force correlated at large distances,

ut1uux5nuxx1 f ~x,t !, ~1!

this equation can be used to describe the stationary tu
lence with nonlinear energy transfer over scales from
pumping region ~external force! to the dissipative one
~shocks!. It is always assumed that the regions of source
sink are very well separated, i.e., the formal limits of t
large dimension of the system and small viscosity are c
sidered. This is in accord with the general picture of dev
oped turbulence, first proposed by Kolmogorov@1#.

Recently, methods of quantum field theory became av
able for treating such a problem. They were developed
first applied to the Burgers turbulence by Polyakov@2#,
which allowed the qualitative explanation of numerical o
servations@3,4#. This indicates that the randomly driven Bu
gers equation is a possible candidate for an exactly solv
model. In this paper we present rather strong evidence
favor of such an assertion. We show that the methods of@2#
allow one to obtain quantitatively accurate results. The me
ods we are using in this paper can be applied with so
modifications to the turbulence with pressure, passive sc
advection, problems of self-organized criticality, etc.@2,12#.

In its usual formulation the problem is specified by choo
ing the force to be Gaussian with zero mean and white
time variance

^ f ~x,t ! f ~x8,t8!&5k~x2x8!d~ t2t8!. ~2!

Equation ~1! thus becomes the Langevin equation, whi
leads uniquely to the Fokker-Planck equation for the pr
ability distribution functional at timet

]

]t
P~@u#,t !5E dx

d

du~x! Fuux2nuxx

1
1

2 E dy k~x2y!
d

du~y!GP~@u#,t !. ~3!

The problem is completely defined if we assumeu(x)[0 at
some initial moment and consider the stationary limit
551063-651X/97/55~6!/6907~4!/$10.00
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P@u# as t→1`. After that, we have to go to the limi
n→0. We assume that both limits, taken in the specifi
order, exist. The solution for this equation can be represen
in the form of a path integral, though it seems to be rat
difficult to calculate it in a closed form. The saddle poi
approximations~instanton contributions! have been found in
a number of works@7–9#, which allowed the tails of the
probability density function~PDF! for velocity differences
and for velocity gradients to be calculated in some cas
Other direct approaches to the same calculations have
developed in@5,6#.

The approach proposed by Polyakov@2# allows one to
calculate not only the tails, but also thewhole velocity-
difference PDF. It is based on the self-consistent conjectu
on the operator product expansion, Galilean and scaling
variance. Starting with the Burgers’ equation with a rando
Gaussian stirring force@Eqs.~1! and~2!# it was obtained that
the characteristic function for the velocity-difference PDF~
Z function!, determined as

Z~m,y!5^exp„m@u~x1y/2!2u~x2y/2!#…&, ~4!

obeys the following differential master equation:

S ]

]m
2
2b

m D ]Z

]y
2„k~0!2k~y!…m2Z5a~m!Z. ~5!

The correlation function of the external forcek(y) can be
chosen at our discretion, andb anda(m) are undetermined
coefficients, the so-called ‘‘anomalies.’’ Them dependence
of the a anomaly must be chosen to conform to the scal
invariance and can be different depending on the sca
properties of the force correlation function. If for a larg
scale-correlated force this function can be expanded
k(y);12ya, then thea anomaly must depend onm as
follows: a(m)5ams,s5(22a)/(11a). Using the scaling
ansatzZ(m,y)5F(myg), g5(a11)/3, one can rewrite Eq
~5! in the form

gxF91g~122b!F82x2F5axsF, ~6!

wherex5myg.
The unknown parametersa andb should be determined

from the main requirement that the PDF be a positive, fin
and normalized function. Other possible restrictions for
theory are discussed later. Polyakov considered the caa
6907 © 1997 The American Physical Society
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52 and found the solution for Eq.~6!, corresponding toa
50. It gives the left tail for the velocity-difference PD
;1/u5/2, while the numerical results of@4# show ;1/u2.
@Here and in what follows we will refer to the velocity dif
ferenceDu[u(x1y/2)2u(x2y/2) simply asu.#

In fact, it was mentioned already in@2#, thata50 should
not be the only possible choice. Strong evidence for t
nonuniversality was also found in@4#. It was observed tha
the left tail of the PDF depends on the external force, wh
a50 would exclude such a possibility. This indicates th
there must be other solutions of the Polyakov equation, c
responding toaÞ0.

In the present paper we find such solutions. We cons
the correlator of the force in its general formk(y);1
2ya, and analyze several solvable cases (a52,a51,a
51/2). The found solutions turn out to be in a remarka
agreement with numerical results of@4#. We then argue tha
in addition to the dependence on the external force, the
tionary regime could also depend on the structure of the
sipation term~see also@12#!.

To begin with, we write down the asymptotics of the s
lutions of Eq.~6! for small x

F~x!;11
ag

122bg
x3/~a11!1cx2b1••• , ~7!

and for large positivex

F~x!}exp
2

3Ag
x3/2, ~8!

wherea, b, andc should be determined from the condition
mentioned above.

We note that the most restrictive condition, the conditi
of normalizability of the PDF, can be reformulated direc
in terms of theF function. Indeed, the functionF must be
analytical in the right half of the complex plane Rex>0, and
must vanish forx→r6 i`, r>0. This, along with the con-
dition of normalizationF(0)51, gives the quantization rule
for a andb.

Let us denote the Laplace transform ofF(x) asw̃(z), the
velocity-difference distribution function beingw(u,y)
5w̃(u/yg)/yg. The integral representation forw̃(z) is

w̃~z!5E
r2 i`

r1 i`

e2xzF~x!dx. ~9!

The asymptotics ofw̃(z) for large positivez is deter-
mined by largex and is given byw̃(z)}exp(2gz3/3). To
find the asymptotics for large negativez, we deform the tails
of the integration contour to coincide with the negative r
axis. Sincee2xz decays rapidly asx→2`, the asymptotics
is determined by the leading singularity in the expansion~7!.

In general, two cases are possible. If 3/(a11),2b, the
asymptotics isw̃;z2123/(11a). Such behavior is observed i
numerical simulations@4#, which indicates that this inequa
ity usually holds, and theb anomaly does not affect th
asymptotics. For 2b,3/(a11) the asymptotics should in
general be determined by theb anomaly,w̃(z);z22b21, if
2b is not an integer. The asymptotics~7! also shows that
there exist two degenerate cases. These are the cases
is
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3/(a11) is an integer, and the corresponding term does
contribute to the integral. These cases (a51/2,2) are solv-
able and will be considered below. We will also consid
another solvable case, witha51. By solvability we mean
that the problem can be either solved exactly or reduced
finding the ground state in some potential, which can be d
numerically.

We start with the casea52. Let us Laplace transform Eq
~6! to get an equation for the probability distributio
w(u,y)5w̃(z)/y

w̃91z2w̃81~112b!zw̃52aw̃, ~10!

wherez5u/y, assuming the notation of@2#. All derivatives
in this equation are with respect toz. Below we consider
only the functionw̃ and drop the tilde sign. Asymptotics o
the solution atuzu→` can be easily found from Eq.~10!

w}e2z3/3, w;
1

z2b11 . ~11!

We are looking for a physically reasonable solution, with t
asymptotics

w}e2z3/3, z→1`,

w;
1

z2b11 , z→2`. ~12!

For thew function to be normalizable we should consid
only b.0. Upon writingw5Ce2z3/6, we exclude the first
derivative from Eq.~10! and get the Schro¨dinger equation
for theC function,

2C91S z4422bzDC5aC, ~13!

mentioned in@2#. The ground state of this equation is a po
tive and normalizable function. This is the only solution s
isfying the general requirements for the PDF. Thus, for a
b.0 we find the PDF as the ground state of the poten
~13!, a being the energy of the ground state. Note that
caseb51/2 corresponds to the left tail of the PDF;1/u2,
and the PDF obtained as a solution of Eq.~13!, fits well the
numerical observations@4# ~Fig. 1!. A numerical estimate in
this case gives for thea anomalya.0.354.

An important remark should be made here. Integrat
Eq. ~10! from 2` to 1` for the caseb.1/2, we get

~2b21!E zw~z!52aE w~z!.

We would like to stress that this expression does not c
tradict the requirement*w(u,y)u du50. A significant con-
tribution to the latter integral can come from nonunivers
tails of the distribution function, not described by Eq.~10!.
These tails are due to spontaneous breakdown of the Gal
symmetry@2#. This fact should be taken into account whe
one compares the theoretical results with experimental ob
vations.
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Nevertheless, a case exists for which^z&50, which cor-
responds toa50. To consider it, we seta50 in ~10!, and by
the substitutions52z3/3 arrive at the degenerate hyperge
metric equation

sw91~g2s!w82aw50, ~14!

with parametersg5 2
3, a5 1

3(2b11) @do not confuse these
parameters, used only in the analysis of Eq.~14!, with the
parametersa and g, introduced in Eq.~6!#. The positive,
finite and normalizable solution for this case has been fo
in @2#. This solution can be constructed in the following wa
the only solution, exponentially decaying ats→2` and
having powerlike asymptotics ats→1`, has the form

w~s!5E
2`

~s1 !

et~ t2s!2ata22/3dt, s,0,

w~s!5E
2`

~01 !

et~ t2s!2ata22/3dt, s.0, ~15!

where in each integral the contour of the integration sta
from 2`, goes around only one of the two singular poin
~denoted as the upper limits! in a positive direction and end
up at2` again. One of these solutions can be analytica
continued to the other one only ifa5n21/6, wheren is any
integer number. It is interesting to note that this exact qu
tization rule can also be obtained as the Bohr-Sommer
condition for quantum mechanics considered above, w
zero energy~I would like to thank V. Gurarie for pointing
this out!. Positivity of the solution requiresn51.

For the other degenerate case, the correlator of the e
nal force has the form: k(y)512y1/2. This force leads to
a differential equation for thew(z) function, analogous to
Eq. ~10!

w91 1
2z

2w81~ 1
21b!zw5aw8, ~16!

FIG. 1. Collapse of the PDFs in the universal region ofDu, for
a52. The solution of Eq.~10! for b51/2 is depicted by the dashe
line. ~Courtesy of V. Yakhot and A. Chekhlov@4#.!
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wherez5u/y1/2. Asymptotics of the left tail of the solution
is given by Eq.~12!. Excluding the first derivative from this
equation, we obtain the Schro¨dinger equation for the func
tion C5w exp(z3/122az/2)

2C91S z4162 a

4
z22bzDC52

a2

4
C. ~17!

As in the previous case, one can find the solutions as
ground states of this equation. The numerically obser
PDF @4# has the left tail;1/u3 in the considered case. Th
same PDF can be obtained from our equation if we seb
51, i.e., when theb anomaly is absent. One can then n
merically obtaina.20.473. A comparison of the whole
PDF with the numerical results@4# reveals a very good
agreement~Fig. 2!.

To analyze the last case,a51, let us work in thex rep-
resentation. Note that by the substitutionz5x3/2 one can cast
Eq. ~6! into the form

3
2 zF91~ 3

222b!F82~z1a!F50. ~18!

This equation can be solved by the Laplace transfo
The solution with the correct asymptotics is

F~x!5Cx23/2@a11a211#eA2/3x3/2

3E
2`

~01 !

etta1~t12A2/3x3/2!a2dt. ~19!

with

a152 1
2 @114b/3#1a/A6, a252 1

2 @114b/3#2a/A6.

F(x) will be an analytical function for Rex>0, and a
decaying function forx→r6 i` only when a15n or a2
5m, wheren is any negative integer number andm is any
non-negative integer number. The only possibility of getti

FIG. 2. Collapse of the PDFs in the universal region ofDu, for
a51/2. The solution of Eq.~16! for b51 is depicted by the dashe
line. ~Courtesy of V. Yakhot and A. Chekhlov@4#.!
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6910 55S. A. BOLDYREV
F(0)51 is a15n, which gives the following quantization
rule: a/A622b/35n11/2. Positivity of the solution
forces us to selectn521, and Eq. ~19! reduces toF
5expA2/3x3/2.

Finally, we discuss an important general restriction t
can be imposed on the theory. This follows from the physi
condition of positivity of dissipation and was proposed
Polyakov@10#. It can be obtained if one notes that the ope
tor

]2

]x2
e~lu~x!1l1u~x1!1••• ! ~20!

is not singular ifx does not coincide with any otherxi .
Therefore,

lim
n→0

n
]2

]x2
elu~x!50, ~21!

which leads to

a~l!Z1
b̃

l

]

]x
Z52 lim

n→0
n^l2ux

2elu~x!1•••&, ~22!

where we use the notation of@2#. The right-hand side of this
expression is nonpositive. The functiona(l) is analytical in
the right half of the complex plane, and may have a disc
tinuity at the imaginary axis. Summing up corresponding
pressions forl15m/2, x15x1y/2 and l252m/2, x25x
2y/2, we get the following necessary condition, that m
be valid for all non-negativex:
t
l

-

-
-

t

axsF22~12b!F8<0, ~23!

whereb5b̃11.
One can easily see that this condition is rather strong

allows one to considerably restrict the possible solutions
Eq. ~5!. For example, it prohibits the solutions withb,3/4
for the casea52 and, probably, forces theb anomaly to
vanish fora<1/2.

Nevertheless, this inequality is absent~or, at least, the
above arguments do not work! if we consider the dissipation
in the form (21)p11n]2p/]x2p, with p.1 ~the so-called
hyperdissipation!. This is the case for which the numeric
simulations@4# have been performed. The structure of t
shock fronts is changed qualitatively forp.1 ~see, e.g., nu-
merical simulations in@11#!, which could lead to different
stationary regimes of the Burgers turbulence. In the fram
work of the Polyakov method the possibility of such a no
universality can be simply explained: any new small dis
pative operator, added to the system, has to be expand
into UV-finite ones, which are conjectured to beZ andZx8 ,
with some new coefficientsa andb.

I am very grateful to A. Polyakov for stimulating an
interesting discussions and suggestions. I would also like
thank V. Gurarie for many useful discussions, and V. Yakh
and A. Chekhlov for important conversations and for shar
with me the numerical results of@4#. This work was sup-
ported by U.S. D.O.E. Contract No. DE-AC02-76-CHO
3073.
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