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Rapid solidification under local nonequilibrium conditions

S. L. Sobolev*
Institute of Chemical Physics, Academy of Sciences of Russia, Chernogolovka, Moscow Region, 142432 Russia

~Received 22 April 1996!

The effects of local nonequilibrium solute diffusion on a solute concentration field, solute partitioning,
interface temperature, and absolute stability limit have been considered. The model incorporates two diffusive
speeds,VDb , the bulk-liquid diffusive speed, andVDi , the interface diffusive speed, as the most important
parameters governing the solute concentration in the liquid phase and solute partitioning. The analysis of the
model predicts a transition from diffusion-controlled solidification to purely thermally controlled regimes,
which occurs abruptly when the interface velocityV equals the bulk liquid diffusive speedVDb . The abrupt
change in the solidification mechanism is described by the velocity-dependent effective diffusion coefficient
D*5D(12V2/VDb

2 ) and the generalized partition coefficientK* . If V.VDb , thenD*50 andK*51. This
implies an undistributed diffusion field in the liquid~diffusionless solidification! and complete solute trapping
at V.VDb . @S1063-651X~97!08504-8#

PACS number~s!: 66.10.2x, 81.30.Fb, 05.70.Ln
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I. INTRODUCTION

Rapid phase transformation is a field of condensed-ma
physics and materials science that has developed rap
over the last years. It has proved to be of considerable in
est for both applied and fundamental research for a variet
reasons discussed extensively in the literature@1–22#. Dur-
ing pulsed-laser annealing or rapid solidification of high
undercooled melts, the phase transformation occurs u
conditions far from local equilibrium. The local nonequilib
rium nature of this process has made it possible to study
crystal-growth mechanisms and amorphous solid forma
kinetics, and produce metastable materials whose comp
tion or structure is unobtainable by other methods. The
viations from local equilibrium affect not only the partition
ing of species across the interface, but also the diffusi
temperature fields around the interface and the kinetics
crystal growth, which, in turn, influence the solidificatio
mechanism@12,13#.

The classical theoretical treatments of rapid solidificat
@1,2,6,17# take into account only the deviation from chemic
equilibrium at the interface introducing the velocit
dependent partition coefficient. However, all aspects of
models assume local equilibrium in the liquid phase, and r
on the classical Fick law for the mass flux, which describ
the spatial variation of the concentration field ahead of
interface as a continuous, smooth function. Such a mode
is valid only for relatively low interface velocitiesV!VDb ,
whereVDb is the diffusive speed, i.e., the speed of propa
tion of diffusive disturbances@11–13,23–28#. With increas-
ing undercooling—and correspondingly increasing drivi
force for crystallization—the growth rates increase, and m
reach rates of the order of 100 m/s, while the diffusive sp
is of the order of 1–10 m/s@1–5,9,22#. In these cases, i.e
whenV;VDb , the diffusion field in the liquid is far from
local equilibrium, and the solute concentration and sol
flux differ significantly from those predicted by the classic
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local equilibrium theory@12,13,23#. Our purpose is to pro-
vide: ~1! a theoretical framework within which a hierarchy o
deviations from equilibrium can be described;~2! a concep-
tual foundation, and a mathematical model based on it,
the study of local nonequilibrium solute transport associa
with rapid solidification conditions;~3! analysis of the parti-
tioning of species across the interface under the loc
nonequilibrium conditions; and~4! analysis of the influence
of the local nonequilibrium on the temperature field arou
the solid-liquid interface.

II. HIERARCHY OF DEVIATIONS FROM EQUILIBRIUM

In many situations, primarily those involving extreme
short times or high propagation velocities, the mode of h
and/or mass transport is not diffusive~parabolic!, but propa-
gative ~hyperbolic! @11–13,23–28#. The general theory of a
fast-moving phase boundary@23# shows that the local non
equilibrium effects begin to play the most important ro
when the interface velocityV is of the order of the speed o
signal ~disturbance! propagation, i.e., the diffusive spee
VDb for mass~solute! transport or the speed of heat wav
VT for heat transport. If the interface velocityV is much less
than the speeds of signals propagation, the correspon
fields ~i.e., the solute concentration field forV!VDb or the
temperature field forV!VT) are in local equilibrium, and
they can be described by the classical transport equatio
parabolic type. IfV is of the order ofVDb , the diffusion field
is far from local equilibrium. IfV;VT , the temperature field
is far from local equilibrium. In such situation the classic
transport equation of parabolic type is no longer valid, a
the local nonequilibrium effects should be taken into acco
@11–13,23–28#.

The diffusive speedVDb is of the order of 1–10 m/s, and
the speed of the heat waveVT is of the order of 103 m/s
@1–6#, i.e.,VDb!VT . This implies that, as the interface ve
locity increases, the diffusional local equilibrium first brea
down atV;VDb and, after that, the thermal local equilibrium
breaks down atV;VT . This allows us to introduce a hier
archy of deviations from equilibrium which is followed wit
6845 © 1997 The American Physical Society
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6846 55S. L. SOBOLEV
increasing solidification velocity:
~1! V50. Full equilibrium. No chemical potential gradi

ent ~composition of phases are uniform!, and no temperature
gradients@10#.

~2! V!VDb . Local equilibrium. There are concentratio
and temperature gradients near the interface; i.e., there
full equilibrium, but there is local equilibrium both in th
bulk liquid and at the interface. The partition coefficient
equal to its equilibrium valueKE . Certain hierarchies also
exist within the case 2@10#.

~3! V,VDb . Diffusional local equilibrium. There is no
local equilibrium at the interface, and the partition coefficie
depends on the interface velocityV @1,2,6#. The solute con-
centration field is still in local equilibrium.

In cases~2! and~3!, the solute concentration and temper
ture fields are governed by the classical~local equilibrium!
transport equation of parabolic type.

~4! V;VDb . Diffusional local nonequilibrium. In this
case solute diffusion occurs under local nonequilibrium c
ditions, and the solute concentration field is governed by
mass transport equation of hyperbolic type@11–13,23–27#.
The temperature field is still at local equilibrium due
V;VDb!VT , and it can still be described by the classic
heat conduction equation of parabolic type.

~5! V;VT . Both diffusional and thermal local nonequ
librium. At such high velocities there is no local equilibriu
both for diffusion and heat transport processes. The so
concentration and temperature fields are governed by hy
bolic transport equations@23–27#.

In this paper we consider in detail case~4! of deviations
from local diffusional equilibrium. The case is of great pra
tical interest@1,2#, but it has received little attention in th
literature@11–13#.

III. LOCAL NONEQUILIBRIUM DIFFUSION FIELD

According to extended irreversible thermodynamics~EIT!
@24–26#, the simplest generalization of the classical Fick la
for mass transport, which includes the relaxation to lo
equilibrium of the diffusion field, is given as

J1t]J/]t52D“C ~1!

whereJ is the solute flux,C is the solute concentration,D is
the diffusion coefficient,t is the relaxation time ofJ. In
contrast to the Fick law, which leads to the diffusion equ
tion of parabolic type, the evolutional equation~1! gives rise
to the hyperbolic equations for the solute concentration
solute flux:

]C

]t
1

D]2C

VDb
2 ]t2

5D¹2C, ~2!

]J

]t
1

D]2J

VDb
2 ]t2

5D“~“J!. ~3!

The hyperbolic equations~2! and~3! predict the finite speed
of the diffusive wave, i.e., the maximum speed with whi
the diffusional perturbations can propagate in the liquid@11–
13,23–27#

VDb5~D/t!1/2. ~4!
no
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It should be noted thatVDb limits only the speed of pertur
bations, but the interface velocityV can be greater than
VDb . To derive the interface condition, we integrate the b
ance low over an infinitesimal zone that includes the int
face between liquid and solid phases. The interface condi
is

V~C2Cs!5J2Js ,

whereCs andJs are the solute concentration and solute fl
in the solid at the interface. AssumingJs50, and using Eq.
~1!, we can rewrite the interface condition as

~V1tV̇!~C2Cs!1tVS ]C

]t
2

]Cs

]t D52D“C, ~5!

where the superscript dot implies differentiation with resp
to time. Note that condition~5! includes not only the inter-
face velocity, but also the interface acceleration.

Now let us consider the solute concentration and so
flux fields ahead of the interface moving with constant av
age velocityV5const. Following the usual steady-state a
proach, we view the solidification from a reference fram
attached to a planar liquid-solid interface. In such a ca
one-dimensional versions of Eqs.~2!, ~3!, and ~5! take the
forms

D~12V2/VDb
2 !

d2C

dX2
1V

dC

dX
50, ~6!

D~12V2/VDb
2 !

dJ

dX
1VJ50, ~7!

V~C2Cs!52D~12V2/VDb
2 !

dC

dX
. ~8!

Equations~6! and ~7! result in the solute concentration an
solute flux distributions in the liquidX.0 ~the origin of the
reference frame is fixed on the interfaceX50),

C~X!5H ~Ci2C0!exp@2VX/D~12V2/VDb
2 !#1C0 ,

V,VDb

C0 , V.VDb ,
~9!

J~X!5H Jiexp@2VX/D~12V2/VDb
2 !#, V,VDb

0, V.VDb ,
~9a!

whereC0 andCi are the solute concentration in the liquid f
from (X→`) and at the interface (X50), respectively, and
Ji is the solute flux at the interface. The solute concentrat
and solute flux distributions~9! clearly demonstrate that th
diffusion speedVDb plays the most decisive role in rapi
solidification. WhenV,VDb , the diffusion process affect
the solute concentration field in the liquid, and the solid
cation is essentially controlled by the solute flux. It is not
that as the interface velocity approaches zero, the re
ational model approaches the classical formulation. Ho
ever, as the velocity increases, the solute boundary la
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55 6847RAPID SOLIDIFICATION UNDER LOCAL . . .
shrinks more rapidly than expected from the classical m
transport theory, and its thicknessd defined as@see Eqs.~9!#

d~V/VDb!5HD~12V2/VDb
2 !/V, V,VDb

0, V.VDb
~10!

approaches zero atV5VDb . The correct definition of char
acteristic lengths plays an important role in the analysis
the solidification microstructures@2#. WhenV.VDb , solu-
tions ~9! and ~10! imply that the solute concentration an
solute flux fields ahead of the interface are undisturbed.
result has a clear physical meaning: a source of perturbat
~i.e., the interface! moving with a velocity greater than th
maximum speed of perturbations cannot disturb the med
ahead of itself@12,13,23#. In this case, the solute atoms d
not have enough velocity to escape the solid-liquid interfa
Thus there is no diffusion of solute in the liquid atV.VDb
and, consequently, the solidification cannot be controlled
diffusion. Hence the solidification mechanism changes qu
tatively when the interface velocityV passes through th
critical pointV5VDb . In this point, a sharp transition from
diffusion controlled to purely thermally controlled growt
occurs.

The behaviors of the solute concentration and solute
distributions~9! and ~10! allow us to introduce the effective
diffusion coefficientD* as @12,13#

D* ~V/VDb!5HD~12V2/VDb
2 !, V,VDb

0, V.VDb .
~11!

If V!VDb , the effective diffusion coefficientD* reduces to
the classical diffusion coefficientD for the local equilibrium
conditions. But whenV is of the order ofVDb , D* predicts
less solute fluxJ52D*“C than expected from the classic
Fick law J52D“C. If V>VDb , thenD*50. It implies the
absence of solute diffusion ahead of the interface. Thus
local nonequilibrium effects in the bulk liquid lead to th
diffusionless solidification, i.e., solidification with zero e
fective diffusion coefficientD* @Eq. ~11!#, which can be
reached at finite interface velocitiesV>VDb .

IV. PARTITION COEFFICIENT

The effective diffusion coefficientD* can be used to
modify some results of the local equilibrium theory by su
stitutingD* for D. For example, according to the continuo
growth model~CGM! of Aziz and Kaplan@6#, the partition
coefficientK(V) takes the form

K~V!5@KE1V/VDi#@11V/VDi#
21,

whereKE is the equilibrium partition coefficient, andVDi is a
parameter for solute redistribution. The diffusive speed
our local nonequilibrium model,VDb , and the parameter fo
solute redistribution of the CGM,VDi , require further dis-
cussion. The CGM definesVDi as the ratio of solute diffu-
sivity through the interface Di to the atomic jump distanceat
the interfacel i @6,17#. In other words,VDi is the average
diffusive speed over the interface region, and it can be ca
the interface diffusive speed VDi @17#. The interface diffusive
speed is a kinetic rate parameter for solute redistribution
ss
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relatively low interface velocityV,VDb . The local nonequi-
librium model of solute transport, Eqs.~1!–~4!, defines the
diffusive speedVDb as the speed of propagation of diffusiv
wave in the bulk liquid~see also Refs.@12,13,23–27#!. Tak-
ing into account that the relaxation timet in Eqs. ~1!, ~4!,
and~5! can be rewritten ast5l/VDb , wherel is the atomic
jump distancein the bulk liquid, the diffusive speed in the
local nonequilibrium solute diffusion model, Eqs.~2!–~4!,
takes the form

VDb5D/l,

whereD is the solute diffusion coefficientin the bulk liquid.
ThusVDb can be calledthe bulk (liquid) diffusive speed, i.e.,
the speed with which the solute atoms can diffuse in the b
liquid. Assuming thatDi'D and l i'l, one is led to
VDi5VDb . This assumption is a zeroth-order approximatio
and it was considered in@12#. In a general case these tw
velocities can be different, and the partitioning of solute d
pends on bothVDb andVDi @13#.

Thus introduction ofD* , Eq. ~11!, into the expression for
K(V) leads to the generalized partition coefficientK* ,

K* ~V!5H KE~12V2/VDb
2 !1V/VDi

~12V2/VDb
2 !1V/VDi

, V,VDb

1, V.VDb .

~12!

The local nonequilibrium partition coefficientK* , Eq. ~12!,
together with the prediction of CGM, are shown in Fig. 1
functions of interface velocityV scaled to the bulk-liquid
diffusive velocityVDb with VDb /VDi52. The choice of ratio
betweenVDb and VDi will be discussed below. Expressio
~12! clearly demonstrates that the transition to complete
solute trappingK*51 occurs at a finite interface velocit

FIG. 1. Partition coefficientK as a function of interface velocity
V scaled to the bulk liquid diffusive speedVDb . Solid curve: the
local-nonequilibrium model, Eq.~12!; dotted curve: CGM.
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6848 55S. L. SOBOLEV
V5VDb , while the CGM predicts complete solute trappin
only at V→` ~see Fig. 1!. The solute partitioning is gov
erned by both theinterfacediffusive speedVDi and thebulk-
liquid diffusive speedVDb . At a relatively low interface ve-
locity V;VDi,VDb , the limiting stage for solute
redistribution is the solute diffusion through the interfac
and the solute partitioning is governed byVDi . As the inter-
face velocity increases, the diffusive coefficientD* , Eq.
~11!, tends to zero, and the solute diffusion near the interf
becomes a limiting stage for solute partitioning. In this ca
the solute redistribution at the interface is governed by
bulk-liquid diffusive speedVDb .

V. INTERFACE STABILITY

It is known that mass transport can lead to an instabi
of the solid-liquid interface@1,2,15,16,21#. Solute rejected by
the interface creates a concentration gradient in the liq
layer next to the interface. The concentration gradient cau
the liquid ahead of the interface to be undercooled. Acco
ing to the interface stability theory~see Refs.@1,2,15,16,21#
and references therein!, the destabilizing effect of the con
centration gradient is compensated by the stabilizing ef
due to the interface energy~Gibbs-Thomson effect!. From
this theory a planar interface is stable for an alloy if t
interface velocityV exceeds the absolute stability limi
Va . Preliminary results@16,17,21# indicate that the classica
absolute stability limit obtained by Mullins and Sekerka f
the local equilibrium conditions@15# holds with velocity de-
pendentK(V) andm(V). It allows us to assume~as a zeroth
order approximation! that the local nonequilibrium stability
limit can be obtained from the classical one@15# by replacing
the local equilibriumKE , m, andD with velocity dependent,
local nonequilibriumK* (V), m(V), andD* (V). Thus, for
high velocities, the absolute stability limit with allowance f
the local nonequilibrium effects takes the form

C05
@K* ~Va!#

2TmGVa

m~Va!D* ~Va!@12K* ~Va!#
; ~13!

hereTm is the melting point of pure solvent andG is the
Gibbs-Thomson coefficient. Figure 2 shows the critical b
concentrationC0 as a function of the nondimensional velo
ity Va /VDb calculated from Eq.~13!. For the dotted curve
we usedK(V) from the CGM, andD5const. For the solid
curve, the local nonequilibrium partition coefficientK* (V),
Eq. ~12!, and the velocity dependent diffusion coefficie
D* (V), Eq. ~11!, are used. Values for the thermophysic
parameters corresponding to Si-Sn alloys are taken f
@21#. For the sake of simplicity, we also assumed thatm is
equal to its equilibrium value in both cases due to relativ
weak dependence ofm on V. The value forVa is very sen-
sitive to local nonequilibrium effects because of the stro
dependence ofK* and especiallyD* on the interface veloc-
ity. These effects stabilize the interface due to the decrea
solute diffusion atV→VDb @see Eq.~11!#. If V.VDb , there
is no solute gradient ahead of the interface and, theref
there are no destabilizing effects. This implies that the pla
interface is stable atV.VDb , and the limit of absolute sta
,
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bility Va is smaller thanVDb at any values forC0 and other
parameters~see Fig. 2!. Expression~13! can be rearranged in
the form

Va5Vae~12Va
2/VDb

2 !,

whereVae is the classical absolute stability limit@15#, with
K(V) predicted by the CGM~dotted curve in Fig. 2!. The
solution to the last equation, to leading order in small para
eterVae /VDb , results in

Va5Vae~12Vae
2 /4VDb

2 !.

This implies that the absolute stability limit with allowanc
for the local nonequilibrium effectsVa ~the solid curve in
Fig. 2! is smaller thanVae ~the dotted curve in Fig. 2! at the
same value forC0. Thus the local nonequilibrium effect
stabilize the interface, and reduce the value forVa due to the
decreasing solute diffusion.

A more general solution to the interface stability proble
should be based on the analysis of the hyperbolic mass tr
port equation~2!. In a moving reference frame, a one
dimensional version of Eq.~2! takes the form

]C/]t2V]C/]X1DVDb
22]2C/]t2

5D~12V2/VDb
2 !]2C/]X2.

Now we take the Fourier transform of this equation in bo
time and space (]/]t↔ iv, ]/]X↔ ih) to obtain the disper-
sion law

v2Vh1522D~12V2/VDb
2 !h1h2 ,

Vh1
22Dv2/VDb

2 52D~12V2/VDb
2 !~h1

22h2
2!,

FIG. 2. Critical concentration as a function of the velocity
absolute stability limitVa scales toVDb . Solid curve: Eq.~13!
assuming local nonequilibrium in the bulk liquid withD(V) and
K(V) given by Eqs.~11! and~12!. Dotted curve: Eq.~13! assuming
local equilibrium in the bulk liquid withD5const andK(V) given
by the CGM.
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55 6849RAPID SOLIDIFICATION UNDER LOCAL . . .
whereh1 andh2 are real, andh5h11 ih2. These equations
can be solved for the wave numberh1(v) and attenuation
h2(v), but such expressions are rather awkward. Here
are interested only in the asymptotical behavior of the w
numberh1(v). If V!VDb , the spectrum is purely diffusive
with h1

2;v. As the velocityV increases~but V,VDb), the
spectrum transforms to the wave spectrumh1

2;v2. In this
case, numerical simulations reveal an increase of the am
tude of the perturbations at the wave front@27#. Such an
increase of the concentrational oscillations is to be expe
at the solid-liquid interface under rapid solidification cond
tions. However, ifV.VDb , D*50, and the solidification
front cannot disturb the concentration field in the liqu
Hence, whenV passes through the critical pointV5VDb , a
sharp drop of the amplitude of the diffusional oscillations
the interface is expected. These oscillations affect the st
ture of the solidified phase@1,2#, and may also play an im
portant role in grain refinement, which occurs atV5VDb @1#,
but the problem requires special consideration.

VI. INTERFACE TEMPERATURE

We now consider the influence of the loca
nonequilibrium solute diffusion on the interface temperatu
This will be done by including the velocity-dependent diff
sion coefficient~11! and the generalized partition coefficie
~12! obtained in Sec. IV into the results of the dendri
growth theory for a plane interface and an Ivantsov dend
~see Refs.@1,2#, and references therein!.

A. Planar front growth

The planar front temperature under steady-state gro
can be written as@2#

Ti5Ts1Sm~V!

K~V!
2

m

KE
DC02

V

m
, ~14!

whereTi is the interface temperature,Ts is the equilibrium
solidus temperature of the alloy,m is the interface kinetic
coefficient, andm(V) is the effective liquidus slope. Th
physical interpretation ofm(V) is that it represents the slop
of the line in the phase diagram that connects the mel
point of pure solvent with the nonequilibrium interface com
position in the liquid at a given interface temperature in
absence of interface attachment kinetic effects@2#. The ef-
fective liquidus slopem(V) is given by@1,2,10#

m~V!5mS 12K~V!1K~V!ln„K~V!/KE…

12KE
D .

Under local equilibrium conditions, the planar interface te
perature isTs , but, as the local nonequilibrium effects b
come important, the planar interface temperature increa
because of the increase in the effective solidus tempera
and their increase is represented by the second term in
~14!. If V→VDb , thenK(V)→1, and the effective solidus
temperature

Ts*5Ts1Sm~V!

K~V!
2

m

KE
DC0 ~15!
e
e
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t
c-
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reaches its maximum value

Tsmax* 5Ts1SKE212KElnKE

KE~12KE! DmC0 . ~16!

When V.VDb , the effective solidus temperatureTs* , Eq.
~14!, does not depend on the interface velocityV, and is
equal to its maximum valueTsmax* 5T0. Thus the effective
solidus temperatureTs* changes from the equilibrium solidu
temperatureTs at V50 to its maximum valueTsmax* 5T0 at
V5VDb .

If V.VDb , then Eqs.~14!–~16! imply that the planar
front temperatureTi decreases linearly withV at due to the
interface attachment kinetics,

Ti5Tsmax* 2V/m. ~17!

Thus the variation of the steady-state planar interface t
perature shows a maximum atV;VD .

B. Rapid dendritic growth

The basic dendrite growth model is given by the tip u
dercooling expression and the dendrite tip selection criter
~see Refs.@1,2,10#, and references therein!. To extend the
model on the case of local nonequilibrium growth wi
V;VDb , we apply the result of Sec. III to the tip of a
Ivantsov dendrite. The tip undercooling equation is given

DT~V!5DTt~V!1DTs~V!1DTR~V!1DTK~V!1DTne~V!,

whereDTt , DTs , DTR , andDTK are the thermal, solutal
curvature, and kinetic undercooling, respectively. An ad
tional term

DTne5„m2m~V!…C0 ~18!

arises due to the difference between the slope of the equ
rium phase diagramm and the slope of the nonequilibrium
phase diagramm(V) @2#. SubstitutingD* for D andK* for
K in the expression for the solute undercooling@1,2#, the
local nonequilibrium solute undercooling takes the form

DTs*5m~V!C0F12
1

12„12K* ~V!…Iv~Pc* !G
where Iv(Pc* ) is the Ivantsov function in terms of the loca
nonequilibrium Peclet numberPc*5VR/2D* . HereD* is
the effective diffusion coefficient, Eq.~11!, andR is the den-
drite tip radius. IfV→VDb , thenD*→0, Pc*→`, Iv→1,
and K*→1. This implies that the solutal undercoolin
DTs*50 at V.VDb . The additional termDTne reaches at
V5VDb its maximum value

DTne
max5mC0S lnKE2KE11

12KE
D , ~19!

and does not change atV.VDb . Thus, when the interface
velocity passes through the critical pointV5VDb , the
DT(V) relationship will drastically change. IfV,VDb , the
dendrites are mostly solute diffusion controlled, and t
DT(V) curve is essentially dependent onDTs* (V) and
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6850 55S. L. SOBOLEV
DTne(V). As the interface velocity increases, the deviatio
from local diffusional equilibrium will progressively arise
leading to a growing partition coefficientK* and a decreas
ing effective diffusion coefficientD* (V). When V.VDb ,
thenK*51, D*50, DTs*50, andTne5DTne

max. In such a
case, the sample will solidify, and be diffusionless and p
titionless, with the consequence that supersaturated solid
lutions are formed. The interface undercooling does not
pend on the solute diffusion, and is given as

DT~V!5DTt~V!1DTR~V!1DTK~V!1DTne
max.

Thus, a sharp transition from a mostly solutal to a pur
thermal growth is expected atV5VDb .

The general tip radius selection criterion in an und
cooled alloy melt in the first approximation can be obtain
from local equilibrium theory@1,2#, except thatK(V) and
D are again replaced byK* (V) andD* (V), respectively.
The resulting equation for the tip radius reads

R5
4p2G

Q tPtjc12QcPc* jc
,

whereG is the Gibbs-Thomson coefficient,Q is the hyper-
cooling limit, and

j t512
1

@11~2p/Pt!
2#1/2

,

jc511
2K*

122K*2@11~2p/Pc* !2#1/2
,

Qc5
2mC0~K*21!

12~12K* !Iv~Pc* !
.

As the interface velocityV increases, the stability functio
jc begins to deviate from unity, and is equal to zero
V5VDb . WhenV.VDb , then jc50, and the dendrite tip
radiusR depends only on thermal and capillarity effec
Thus, when the interface velocityV passes through the criti
cal pointV5VDb , the most important parameters of the de
drite growth will change drastically. Expressions for the
parameters are summarized in Table I.

It should be noted that in this section we assume that
local nonequilibrium effects do not affect the shape of
solid-liquid interface, and the Ivantsov solution for a pa
bolic needle with a constant interface temperature and c
position are still valid atV;VDb . Strictly speaking, the
shape of the interface depends on the deviation from lo
equilibrium due to the velocity-dependent effective diffusi
coefficientD* (V) and velocity-dependent partition coeffi
cientK* (V). The precise shape preserving~invariant! solu-
tion of the steady-state dendrite growth under the local n
equilibrium condition must be determined such that
solutions of the heat conduction equation of parabolic ty
and the solute transport equation of hyperbolic type~2! sat-
isfy the shape-preserving conditions. This conditions sho
also take into account the lower value of the normal veloc
s

r-
o-
e-

y

-
d

t

.

-
e

e
e
-
-

al

-
e
e

ld
y

Vn and, hence, the lower value ofK* (Vn) along the sides of
the dendrite tip@5#.

VII. ON THE KINETICS OF LOCAL NONEQUILIBRIUM
CRYSTAL GROWTH

In modeling the velocity-undercooling function for solid
fication of alloys, the growth velocity is typically expresse
as

V~T!5V0„12exp~2DG/RT!…,

whereDG is the Gibbs free-energy change per mole of m
terial solidified,V0 is the kinetic prefactor, andR is the gas
constant. The driving force for solidification,DG, depends
on the chemical potential changes of solvent and solute a
interface, which are usually calculated on the basis of c
sical, local equilibrium thermodynamics. According to E
@24–26#, the generalized Gibbs equation and entropy prod
tion equation have the forms

dS5dSeq2btJ•J ~20a!

s5seq22btJ•dJ/dt ~20b!

whereSeq andseq are the equilibrium entropy and entrop
production, respectively, andb is the coefficient. The non-
classical terms in Eq.~20! play an important role when the
system is far from local equilibrium. In a steady-state regi
when the solid-liquid interface moves with a constant velo
ity V, a degree of deviation from local equilibrium depen
on the ratioV/VDb . Indeed, in a moving frame of referenc
Eq. ~20b! can be rewritten as

s5seq22bDVVD
22J•dJ/dX.

Thus, in a steady-state regime with high velocityV;VDb ,
the system is far from local equilibrium and the entropy,

TABLE I. Important parameters of dendritic growth atV,VDb

andV.VDb .

V,VDb V>VDb

D*5D(12V2/VDb
2 ) 0

d5D(12V2/VDb
2 )/V 0

K*5
KE~12V2/VDb

2 !1V/VDi

~12V2/VDb
2 !1V/VDi

1

PC*5VR/2D(12V2/VDb
2 ) `

Iv(PC* ) 1
Ci*5C0 /@12(12K* )Iv(PC* )# C0

DTS*5m(V)C0@12„12(12K* )Iv(PC* )…
21# 0

zC511
2K*

122K*2@11~2p/PC* !2#1/2
0

R5
4p2G

uiPtzt12uCPCzC

4p2G

u tPtz t
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TABLE II. Hierarchy of deviations from equilibrium.

V50 Global equilibrium T5const, C5const

V!VDb Local equilibrium J52D¹C
both in the bulk liquid
and at the interface!

q52l¹T

K5KE d5D/V

V,VDb Diffusional local equilibrium ]C/]t5D¹2C
~no equilibrium at the interface! ]T/]t5a¹2T

K5K(V) d5D/V

V;VDb Diffusional local nonequilibrium J1t]J/]t52D¹C
~both in the bulk liquid
and at the interface! ]C

]t
1t

]2C

]t2
5D¹2C

K5K*→1
D*5D(12V2/VDb

2 )→0
d5D(12V2/VDb

2 )/V→0

V.VDb K*51 D*50 d50 C5C05const J50

V;VT Diffusional and thermal (]T/]t)1tT(]
2T/]t2)5a¹2T

local nonequilibrium q1tT]q/]t52l¹T
e
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well as the other thermodynamic functions, is velocity d
pendent. In such a case, the Gibbs free-energy changeDG
takes the form

DG5DGeq1DG~V!.

DG(V) may be complicated functions ofV, but they must go
to zero asV→0, and must increase asV→VDb . The expres-
sion for DG(V) can be obtained in the framework of EI
@24#–@26#, and it is planned to be reported in future pape

VIII. DISCUSSION

In the previous sections we presented and analyze
local-nonequilibrium model of solute transport under rap
solidification conditions. In particular the solution to th
model in the steady-state regimesV5const has been consid
ered. The most important difference between the pres
model and its predecessors is the incorporation of three c
acteristic velocity scales: i.e., the interface diffusive spe
VDi , the bulk-liquid diffusive speedVDi , and the speed o
heat waveVT into the heat-mass transport problem. The
velocity scales define different degrees of deviation fr
equilibrium during solidification. Different degrees of no
equilibrium imply different solidification regimes, whic
should be described by heat-mass transport equation
parabolic or hyperbolic type~see Table II!.

Our results clearly demonstrate that the solidificat
mechanism changes qualitatively when the interface velo
V passes through the critical pointV5VDb . At this point a
sharp transition from mostly diffusion-controlled to pure
thermally controlled regimes occurs. WhenV,VDb , there is
a solute concentration gradient near the interface, and
solidification is governed by both redistribution of heat a
solute, whereas atV.VDb there is no solute concentratio
gradient in the bulk liquid, and solidification is purely the
-

.
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mally controlled with zero effective solute diffusion coeffi
cient@D* (V)50#. It is predicted from thermodynamic argu
ments that the liquidus and solidus lines approach theT0
curve, which is the thermodynamic limit to diffusionless s
lidification, at infinite growth velocity@20#. According to our
model, theT0 curve and diffusionless solidification can b
reached at a finite interface velocityV5VDb . Walder and
Ryder @7# showed that a sharp transition from diffusio
controlled to purely thermally controlled growth for Ag-C
alloys corresponds toT0 temperature, and occurs at finit
interface velocity. The same results have been obtained
Walder for Ti-Ni alloys @8#. Such a sharp transition from
diffusion-controlled to purely thermally controlled growt
was also observed in Cu-Ni alloys@3# and Ni-B alloys@4#
under rapid solidification conditions~see also Refs.@1,5#!.
The investigations@3,4# showed that it is not a critical un
dercooling that initiates the transition, but rather a critic
solidification velocity, which approximately equals the diffu
sive speed. Thus the experimental results@3–8# give strong
support to the idea that the local nonequilibrium solute tra
port and the bulk-liquid diffusive speed described here p
an important role in rapid solidification, and govern the tra
sition to diffusionless solidification, which occurs at a fini
interface velocityV5VDb .

The transition to diffusionless solidification is accomp
nied by complete solute trappingK* (V)51. The complete
solute trapping at a finite interface velocity has also be
observed in experimental measurements. For example,
ues forK51 have been determined for B, P, and As imp
rities in silicon at growth velocities of 2.7–4.5 m/s which ca
be achieved by pulsed-laser annealing@20,21#. A molecular-
dynamics study by Cook and Clancy@18# for a Lennard-
Jones system also showed complete solute trapping for
strained growth on~100! when the interface velocity attaine
its steady-state regrowth value of 4 m/s. The CGM fails
predict the complete solute trapping observed in the sim
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tion @18#. In this caseV>VDb , and, according to Eq.~12!,
our model predictsK51, which is in agreement with the
molecular-dynamics study.

The interface region between pure solid and pure liq
phases can be treated as a two-phase zone consisting o
phases. This implies that the interface diffusive coeffici
Di attains a value betweenD, the bulk liquid diffusion co-
efficient, andDs'0, the bulk solid diffusion coefficient. Fo
example, a nonequilibrium molecular-dynamics simulat
@18# indicated that the interface diffusion coefficient can
as much as 5–10 times less than in the bulk liquid. This a
holds true for the interface diffusive speed, i.
VDb.VDi.VDs'0, whereVDs is the diffusive speed in the
solid. For an atomically abrupt solid-liquid interface consi
ing of one solid-liquid interfacial plane, it is reasonable
assume thatVDi5(VDb1VDS)/2'VDb /2. If we adopt this
idea for the diffusive interface consisting ofn solid-liquid
interfacial planes, and use a value for the diffusive sp
VDk in thekth atomic layer equal to half a sum of the diffu
sive speed of its nearest-neighbor layers,VD(k11) and
VD(k21) , the average interface diffusive speedVDi and the
average interface diffusion coefficientDi take the form
VDi5g(n)VDb andDi5g(n)D, whereg(n) is a coefficient.
The values forg(n) are given in Table III. Forn.6 one can
approximately estimateg(n) as 1/n. Thus the interface dif-
fusive speedVDi can be determined by dividing the interfac
diffusion coefficientDi , which is an average diffusion coe
ficient over the interface region, by the atomic layer spac
l, i.e.,VDi5Di /l5Dg(n)/l. On the other hand, it can b
treated as a ratio between the bulk-liquid diffusion coe
cientD and the effective interface widthL5l/g(n).

The velocity dependence of the partition coefficient w
measured for rapid solidification of polycrystalline Si-As a
loys induced by pulsed-laser melting@9#. The experimental
results are compared with predictions of the CGM and
local nonequilibrium model, Eq.~12!, on Fig. 3. The CGM
fits the data well only at a relatively low interface veloci
with the diffusive speed of 0.46 m/s@9#. Our model fits the
experimental results better atVDi50.75 m/s andVDb52.7
m/s ~see Fig. 3!.

The K vs V experimental data obtained by pulsed-las
melting of Ge-Si alloys@22# are shown in Fig. 4 togethe
with the predictions of both CGM and Eq.~12!. At a rela-
tively low interface velocity, the CGM accurately fits th
data atKE50.4 andVDi52 m/s. Using the sameKE and
VDi results in a best-fitVDb of 4.9 m/s at high interface ve
locities. Figure 4 shows that the local nonequilibrium mod
Eq. ~12!, describes the data very well both at low and hi
interface velocities. Note that for Si-As alloys the interfa
diffusive speedVDi is approximately one-fourth, and fo

TABLE III. Values for the ratiog(n)5Di /D between the av-
erage interface diffusion coefficientDi and the bulk-liquid diffusion
coefficientD for the diffusive interface consisting ofn solid-liquid
interfacial planes.

n 1 2 3 4 5

g(n) 0.5 0.37 0.33 0.29 0.26
d
oth
t

n

o
,

-

d

g

-

s

r

r

l,

Ge-Si alloys is half as much as the bulk diffusive spe
VDb . This finding is consistent with our remark that th
value of VDi ranges betweenVDb and VDS'0. For Ge-Si
alloys, Yu and Clancy@19# calculated a diffusive speed of
m/s, dividing the diffusion coefficient by the atomic laye

FIG. 3. Partition coefficientK as a function of interface velocity
for Si-As alloys. Data points are from Ref.@9#; the dashed curve
represents the Aziz model@6,17#, with KE50.3 andVDi50.46 m/s;
the solid curve is obtained from Eq.~12! with the sameKE and
VDi50.75 m/s andVDb52.7 m/s.

FIG. 4. Partition coefficient plotted vs interface velocity fo
Si-Ge alloys. Data points are from Ref.@22#; the dashed curve rep
resents the Aziz model@6,17#, with KE50.4 andVDi52 m/s; the
solid curve is obtained from Eq.~12! with the sameKE andVDi ;
andVDb54.9 m/s.
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spacing. This value is very close to the fitted value for
bulk diffusive speedVDb54.9 m/s obtained in our local non
equilibrium model~see Fig. 4!. The relation betweenVDb
andVDi corresponds to two atomic layers in our model~see
Table III!, and three atomic layer in Ref.@19#. Thus the local
nonequilibrium results for the partition coefficient repr
duced the experimental determination with good accurac

The results of an investigation of the solidification beha
ior of undercooled bulk Ag-Cu alloys were presented
Walder and Ryder@7#. It was shown that when the interfac
undercooling exceeded theT0 temperature for all Ag-Cu al-
loys investigated, an abrupt increase of the growth rate
observed. At critical undercooling, the experimental valu
of Ag-Cu alloys approached those of pure Cu. In a rec
paper, Walder observed the same critical behavior of
V(DT) curve in Ti-Ni alloys@8#. The sharp rise of the mea
sured growth velocities at a critical undercooling was a
observed for Ni-B alloys@4#. Note that the rise of the mea
sured growth velocities is sharper than its theoretical pre
tion, especially for the Ni-1 at. % B sample@5#. This discrep-
ancy was attributed to the model’s assumption of smo
concentration profiles ahead of the solidification front@5#.
The smooth concentration profiles arise due to the class
~i.e., local equilibrium! Fick law for mass flux. When
V5VDb , our model predicts a discontinuous change in
diffusion field @see Eqs.~9! and ~10!#, and consequently a
sharper rise of the growth velocity than expected from
classical theory.

To describe the sharp rise of the growth velocity, Wald
and Ryder@7# proposed a simple empirical expression, whi
ensured that the liquidus and solidus lines approached
T0 curve for infinite growth rates. If the expression is mod
fied with the effective diffusion coefficient~11!, the liquidus
and solidus lines coincide forV>VDb @8#. This simple em-
pirical term is similar to the additional undercoolin
DTne5Ts*2Ts obtained here, taking into account th
velocity-dependent slope of the phase diagram and the l
nonequilibrium solute diffusion@see Eqs.~14!–~16!, ~18!,
and ~19!#. Note that the calculated growth rate as a funct
of undercooling with the velocity-dependent diffusion coe
ficientD* (V), Eq.~11!, fits the experimental data quite we
and exhibits a steeper rise at a critical undercooling than
expected from classical consideration@8#.

The experimental measurements of solidification velo
ties as a function of undercooling for Cu-Ni@3# alloys show
that the transition from diffusion-controlled to thermally co
trolled growth is accompanied by a change of theV(DT)
curve from a power lawV;DTb with b'3 to a linear de-
pendenceV;DT. The linear dependence differs marked
from current predictions@3#. According to our model, as th
interface undercooling increases, the interface velocity fi
reaches the absolute stability limitVa and then the diffusive
speedVDb becauseVa,VDb . When the interface velocity
passes through the pointV5Va , a transition from diffusive
dendritic growth to thermal dendritic growth with almo
planar interface occurs (RT@R, due toa@D, whereRT and
R are the dendrite tip radii of thermal and diffusive growt
respectively, anda is the thermal diffusivity!. If V.VDb ,
then there are no solutal and curvature undercoolings a
interface ~or curvature undercooling is very small due
RT@R), and the interface velocity varies linearly with th
e
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total undercooling, i.e.,V;DT at V.VDb ~see Sec. V A!.
Thus the linear dependenceV;DT observed in the experi
ments@3# may correspond to a planar interface~or almost
planar withRT@R) growth without solutal undercooling du
to diffusionless solidificationD* (V)50 atV.VDb .

IX. CONCLUSION

~1! During rapid solidification different degrees of non
equilibrium constitute a hierarchy which is followed wit
increasing solidification velocity:~i! full equilibrium, ~ii ! lo-
cal equilibrium,~iii ! local interface nonequilibrium,~iv! dif-
fusional local nonequilibrium, and~v! thermal local nonequi-
librium.

~2! The effects of deviations from local equilibrium o
solute concentration field can be described by the veloc
dependent diffusion coefficientD* (V), Eq. ~11!. If
V.VDb , whereVDb is thebulk-liquid diffusive speed, then
the solid-liquid interface does not disturb the solute conc
tration field in the liquid, and the effective diffusion coeffi
cient D* (V) is equal to zero. These imply a transition
diffusionless solidification when the interface velocityV
passes through the critical pointV5VDb .

~3! The transition to diffusionless solidification is accom
panied by complete solute trapping withK*[1 at
V.VDb . The solute partitioning is governed by two kinet
rate parameters: theinterface diffusive speedVDi and the
bulk-liquid diffusive speedVDb . The bulk-liquid diffusive
speedVDb is the speed of propagation of diffusive distu
bances in the bulk liquid, i.e., the speed with which the s
ute atoms can diffuse in the bulk liquid. The speed is equa
the ratio between the bulk-liquid diffusive coefficient and t
jump distance in the liquid. The interface diffusive spe
VDi can be treated as an average velocity with which so
atoms diffuse through the interface. At a relatively low i
terface velocityV;VDi,VDb , the limiting stage for solute
redistribution is the solute diffusion through the interface a
the solute partitioning is governed byVDi . As the interface
velocity increases, the diffusive coefficientD* , Eq. ~11!,
tends to zero, and the solute diffusion near the interface
comes the limiting stage for solute partitioning. In this ca
the solute redistribution at the interface is governed by
bulk liquid diffusive speedVDb .

~4! WhenV.VDb , there is no solutal undercooling, an
the additional termDTne due to the difference between th
slope of the equilibrium and local nonequilibrium phase d
grams has its maximum value.

~5! The local-nonequilibrium effects play a stabilizin
role at high interface velocities, and decrease the value of
velocity of the absolute stabilityVa , which is always less
thanVDb .

~6! The directional solidification with a planar interface
V.VDb.Va obeys the linear dependenceV;DT due to the
kinetic undercooling.

Finally, there are still many other aspects of the probl
where the local-nonequilibrium effects should be taken i
account. As future directions for the theoretical research
following subjects seem promising to the author: interfa
kinetics, interface stability, the shape-preserving condit
for the dendrite tip, the selection criterion for dendrites, a
models for banded structures and grain refinement phen
enon.
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