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Rapid solidification under local nonequilibrium conditions
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The effects of local nonequilibrium solute diffusion on a solute concentration field, solute partitioning,
interface temperature, and absolute stability limit have been considered. The model incorporates two diffusive
speedsVpy,, the bulk-liquid diffusive speed, andp;, the interface diffusive speed, as the most important
parameters governing the solute concentration in the liquid phase and solute partitioning. The analysis of the
model predicts a transition from diffusion-controlled solidification to purely thermally controlled regimes,
which occurs abruptly when the interface velocityequals the bulk liquid diffusive speédy,. The abrupt
change in the solidification mechanism is described by the velocity-dependent effective diffusion coefficient
D*=D(1-V?/V3,) and the generalized partition coefficigtt . If V>Vp,, thenD* =0 andK* =1. This
implies an undistributed diffusion field in the liquidiffusionless solidificationand complete solute trapping
atV>Vp,. [S1063-651X97)08504-9

PACS numbg(s): 66.10—x, 81.30.Fb, 05.70.Ln

[. INTRODUCTION local equilibrium theory{12,13,23. Our purpose is to pro-
vide: (1) a theoretical framework within which a hierarchy of
Rapid phase transformation is a field of condensed-mattefteviations from equilibrium can be describéd) a concep-
physics and materials science that has developed rapidbyla| foundation, and a mathematical model based on it, for
over the last years. It has proved to be of considerable intetthe study of local nonequilibrium solute transport associated
est for both applied and fundamental research for a variety otith rapid solidification conditions(3) analysis of the parti-
reasons discussed extensively in the literafdre22]. Dur-  tioning of species across the interface under the local-
ing pulsed-laser annealing or rapid solidification of highly nonequilibrium conditions; ant#) analysis of the influence
undercooled melts, the phase transformation occurs und@f the local nonequilibrium on the temperature field around
conditions far from local equilibrium. The local nonequilib- the solid-liquid interface.
rium nature of this process has made it possible to study new
crystgl—growth mechanisms and amorphpus solid formation_”. HIERARCHY OF DEVIATIONS FROM EQUILIBRIUM
kinetics, and produce metastable materials whose composi-
tion or structure is unobtainable by other methods. The de- In many situations, primarily those involving extremely
viations from local equilibrium affect not only the partition- short times or high propagation velocities, the mode of heat
ing of species across the interface, but also the diffusionand/or mass transport is not diffusiiearabolig, but propa-
temperature fields around the interface and the kinetics ofative (hyperbolig [11-13,23—-28 The general theory of a
crystal growth, which, in turn, influence the solidification fast-moving phase boundaf23] shows that the local non-
mechanisni12,13. equilibrium effects begin to play the most important role
The classical theoretical treatments of rapid solidificationwhen the interface velocity is of the order of the speed of
[1,2,6,17 take into account only the deviation from chemical signal (disturbancg propagation, i.e., the diffusive speed
equilibrium at the interface introducing the velocity- Vp, for mass(solutg transport or the speed of heat wave
dependent partition coefficient. However, all aspects of thé/; for heat transport. If the interface velociyis much less
models assume local equilibrium in the liquid phase, and relghan the speeds of signals propagation, the corresponding
on the classical Fick law for the mass flux, which describedields (i.e., the solute concentration field fot<Vp, or the
the spatial variation of the concentration field ahead of theemperature field fo/<Vy) are in local equilibrium, and
interface as a continuous, smooth function. Such a modelinthey can be described by the classical transport equation of
is valid only for relatively low interface velocitie¢<Vpy, parabolic type. ItV is of the order oy, the diffusion field
whereVpy,, is the diffusive speed, i.e., the speed of propagais far from local equilibrium. I'V~V+, the temperature field
tion of diffusive disturbancegl1-13,23—-28 With increas- is far from local equilibrium. In such situation the classical
ing undercooling—and correspondingly increasing drivingtransport equation of parabolic type is no longer valid, and
force for crystallization—the growth rates increase, and mayhe local nonequilibrium effects should be taken into account
reach rates of the order of 100 m/s, while the diffusive speefi11-13,23—-28
is of the order of 1-10 m/g1-5,9,22. In these cases, i.e., The diffusive speed/p, is of the order of 1-10 m/s, and
whenV~Vp,, the diffusion field in the liquid is far from the speed of the heat wawg; is of the order of 18 m/s
local equilibrium, and the solute concentration and solutd1-6], i.e., Vpp<<Vy. This implies that, as the interface ve-
flux differ significantly from those predicted by the classical locity increases, the diffusional local equilibrium first breaks
down atV~Vp, and, after that, the thermal local equilibrium
breaks down aV~V+. This allows us to introduce a hier-
*Electronic address: sobolev@icp.ac.ru archy of deviations from equilibrium which is followed with
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increasing solidification velocity: It should be noted tha¥p, limits only the speed of pertur-
(1) V=0. Full equilibrium. No chemical potential gradi- bations, but the interface velocity can be greater than

ent(composition of phases are unifornand no temperature Vp,,. To derive the interface condition, we integrate the bal-

gradienty 10]. ance low over an infinitesimal zone that includes the inter-
(2) V<Vpy,. Local equilibrium There are concentration face between liquid and solid phases. The interface condition

and temperature gradients near the interface; i.e., there is e

full equilibrium, but there is local equilibrium both in the

bulk liquid and at the interface. The partition coefficient is V(C—Cy)=J—Js,
equal to its equilibrium valu&. Certain hierarchies also _
exist within the case £10]. whereCg andJg are the solute concentration and solute flux

(3) V<Vpy,. Diffusional local equilibrium There is no In the solid at the interface. Assumidg=0, and using Eq.
local equilibrium at the interface, and the partition coefficient(1), we can rewrite the interface condition as
depends on the interface veloci¥[1,2,6]. The solute con-
centration field is still in local equilibrium. (V+ TV)(C—C )+ 7V @_ dCs
In caseg2) and(3), the solute concentration and tempera- s ot ot
ture fields are governed by the classi@ialcal equilibrium
transport equation of parabolic type. where the superscript dot implies differentiation with respect
(4) V~Vpy. Diffusional local nonequilibrium In this  to time. Note that conditiort5) includes not only the inter-
case solute diffusion occurs under local nonequilibrium conface velocity, but also the interface acceleration.
ditions, and the solute concentration field is governed by the Now let us consider the solute concentration and solute
mass transport equation of hyperbolic tyjid—13,23-2]. flux fields ahead of the interface moving with constant aver-
The temperature field is still at local equilibrium due to age velocityV=const. Following the usual steady-state ap-
V~Vpe<Vr, and it can still be described by the classical proach, we view the solidification from a reference frame
heat conduction equation of parabolic type. attached to a planar liquid-solid interface. In such a case,
(5) V~V;. Both diffusional and thermal local nonequi- one-dimensional versions of Eq®), (3), and (5) take the
librium. At such high velocities there is no local equilibrium forms
both for diffusion and heat transport processes. The solute )
concentration and temperature fields are governed by hyper- D(1—VZ/V2 )d_C+Vd_C:0 (6)
H H Db 2 ’
bolic transport equation®3—-217. dXx dX
In this paper we consider in detail cagb of deviations
from local diffusional equilibrium. The case is of great prac- o1 12 dJ
tical interest[1,2], but it has received little attention in the D(1-V*/Vpp) g +VI=0, 7
literature[11-13.

)I—DVC, 5

dC
IIl. LOCAL NONEQUILIBRIUM DIFFUSION FIELD V(C—Cq)=— D(1—v2/v§b)ﬁ. )

According to extended irreversible thermodynaniesT) . _ _
[24-26], the simplest generalization of the classical Fick lawEquations(6) and (7) result in the solute concentration and

for mass transport, which includes the relaxation to locasolute flux distributions in the liquik>0 (the origin of the
equilibrium of the diffusion field, is given as reference frame is fixed on the interfake=0),

J*radlot=—-DVC @ (Ci— Co)exd — VX/D(1-V2/V23,) ]+ Co,
wherel is the solute fluxC is the solute concentratioD), is c(X)=) V<Vpp 9)
the diffusion coefficient,r is the relaxation time ofl. In
contrast to the Fick law, which leads to the diffusion equa- Co, V>Vop,
tion of parabolic type, the evolutional equatitl) gives rise
to the hyperbolic equations for the solute concentration and

— _\/2/\/2
solute flux: _ JieXF[ VX/D(]. V /VDb)]’ V<VDb
J(X)= (99
0, V>Vpy,

dC D#*C )

—+ ——=DV-C, (2 P o

gt Vgt whereC, andC; are the solute concentration in the liquid far

from (X—o) and at the interfaceX{=0), respectively, and

3 Do J; is the solute flux at the interface. The solute concentration
E* V%bmz =DV(VJ). () and solute flux distribution§9) clearly demonstrate that the

diffusion speedVp, plays the most decisive role in rapid

The hyperbolic equation&®) and(3) predict the finite speed Solidification. WhenV<Vp,, the diffusion process affects
of the diffusive wave, i.e., the maximum speed with whichthe solute concentration field in the liquid, and the solidifi-

the diffusional perturbations can propagate in the ||([l1|]j_ cation is essentia”y controlled by the solute flux. It is noted
13,23-21 that as the interface velocity approaches zero, the relax-

ational model approaches the classical formulation. How-
Vpp=(D/ 7). (4) ever, as the velocity increases, the solute boundary layer
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shrinks more rapidly than expected from the classical mass
transport theory, and its thicknedsdefined agsee Eqs(9)]
09
D(1-V2V3)IV, V<V
AV =| o I * o _
0, V>Vp 08
x S e
approaches zero at=Vp,. The correct definition of char- gor /S T
acteristic lengths plays an important role in the analysisof 3§ f /.7
the solidification microstructure®?]. WhenV>Vp,, solu- § 06 |
tions (9) and (10) imply that the solute concentration and O
solute flux fields ahead of the interface are undisturbed. The § 05 +
result has a clear physical meaning: a source of perturbations ¥
(i.e., the interfacemoving with a velocity greater than the PO
maximum speed of perturbations cannot disturb the medium
ahead of itsel{12,13,23. In this case, the solute atoms do 03 +
not have enough velocity to escape the solid-liquid interface.
Thus there is no diffusion of solute in the liquid ¥t Vp, 0.2 . , , , , ,
and, consequently, the solidification cannot be controlled by 0 02 04 06 08 10 12

diffusion. Hence the solidification mechanism changes quali-
tatively when the interface velocity passes through the
critical pointV=Vp,. In this point, a sharp transition from
diffusion controlled to purely thermally controlled growth
occurs.

The behaviors of the solute concentration and solute flux FIG. 1. Partition coefficienK as a function of interface velocity

P : . V scaled to the bulk liquid diffusive speéd,,. Solid curve: the
distributions(9) and(10) allow us to introduce the effective . ) )
diffusion coefficientD* as[12,13 local-nonequilibrium model, Eq12); dotted curve: CGM.

Nondimensional Velocity

D(1-V3VZ,), V<Vp, relatively low interface velocity/ <Vp,,. The local nonequi-
D*(V/Vpp) = 0 VsV (11 librium model of solute transport, Eq&l)—(4), defines the
’ Db

diffusive speed/p, as the speed of propagation of diffusive
wave in the bulk liquidsee also Ref412,13,23-27). Tak-
ing into account that the relaxation timein Egs. (1), (4),
and(5) can be rewritten as=\/Vp,, where\ is the atomic
jump distancein the bulk liquid the diffusive speed in the

If V<Vpy, the effective diffusion coefficier* reduces to
the classical diffusion coefficie® for the local equilibrium
conditions. But wherV is of the order ofVp,, D* predicts
less solute fluxd= —D* VC than expected from the classical S e _
Fick law J=—DVC. If V=Vp,, thenD* =0. It implies the 'tgﬁzlsrgﬁgigfr'r']'b””m solute diffusion model, Eqi2)~(4),
absence of solute diffusion ahead of the interface. Thus the

local nonequilibrium effects in the bulk liquid lead to the Vpp=DI/\,

diffusionless solidification, i.e., solidification with zero ef-

fective diffusion coefficientD* [Eq. (11)], which can be whereD is the solute diffusion coefficierih the bulk liquid

reached at finite interface velociti&s=Vp,. ThusVp, can be calledhe bulk (liquid) diffusive speeile.,
the speed with which the solute atoms can diffuse in the bulk
IV. PARTITION COEFFICIENT liquid. Assuming thatD;~D and \;=\, one is led to

. I - . Vpi=Vpy. This assumption is a zeroth-order approximation,
The effective diffusion coefficienD* can be used t0 gnqg it was considered ifL2]. In a general case these two

modify some results of the local equilibrium theory by sub-ye|ocities can be different, and the partitioning of solute de-
stitutingD* for D. For example, according to the continuous pends on botiVpy, and Vp,; [13].

growth model(CGM) of Aziz and Kaplan[6], the partition Thus introduction oD*, Eq. (11), into the expression for
coefficientK (V) takes the form K(V) leads to the generalized partition coefficiétit,
K(V)=[Keg+VIVp][1+VIVp] ™, Ke(1—V2IV2,)+VIVp,

, V<V
whereK is the equilibrium partition coefficient, and; is a K*(V)=1 (1=V?/V5,)+VIVp, (12
parameter for solute redistribution. The diffusive speed of 1, V>Vp,.
our local nonequilibrium modelp,, and the parameter for
solute redistribution of the CGMYy;, require further dis- The local nonequilibrium partition coefficiett*, Eq. (12),
cussion. The CGM definegp; as the ratio of solute diffu- together with the prediction of CGM, are shown in Fig. 1 as
sivity through the interface Pto the atomic jump distanc  functions of interface velocity scaled to the bulk-liquid
the interface); [6,17]. In other words,Vp; is the average diffusive velocityVp, with Vp,/Vpi=2. The choice of ratio
diffusive speed over the interface region, and it can be callebbetweenVp,, and Vp,; will be discussed below. Expression
the interface diffusive speed;)M 17]. The interface diffusive  (12) clearly demonstrates that the transition to complete the
speed is a kinetic rate parameter for solute redistribution at aolute trappingk* =1 occurs at a finite interface velocity
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V=Vp,, while the CGM predicts complete solute trapping 1
only at V—« (see Fig. 1L The solute partitioning is gov-
erned by both thenterfacediffusive speed/p; and thebulk-
liquid diffusive speed/p,,. At a relatively low interface ve-
locity V~Vp<Vp,, the Ilimiting stage for solute
redistribution is the solute diffusion through the interface,
and the solute partitioning is governed Yy; . As the inter-
face velocity increases, the diffusive coefficiedt, Eq.
(11), tends to zero, and the solute diffusion near the interface
becomes a limiting stage for solute partitioning. In this case,
the solute redistribution at the interface is governed by the
bulk-liquid diffusive speed/py,.

0.1

0.01

Critical Concentration

V. INTERFACE STABILITY

0.001 . .
It is known that mass transport can lead to an instability 02 0.4 06 08 1
of the solid-liquid interfac¢1,2,15,16,2] Solute rejected by Nondimensional Velocity
the interface creates a concentration gradient in the liquid
'aye'f ne_xt to the mterfa(.:e' The concentration gradient causes FIG. 2. Critical concentration as a function of the velocity of
.the “qur']d "?‘heafd of thet;rll_terf?]ce to beémfdeicgilgdi 6A2CC0rdébsolute stability limitV, scales toVp,. Solid curve: Eq.(13)
Ing to the interface Sta lity t eor(§§§§ efs[1,2,15,16,2} assuming local nonequilibrium in the bulk liquid with(V) and
and references therginthe destabilizing effect of the con- K(V) given by Eqs(11) and(12). Dotted curve: Eq(13) assuming

centration gradient is compensated by the stabilizing effegtcq equilibrium in the bulk liquid withD = const and<(V) given
due to the interface energysibbs-Thomson effegt From  py the coMm.

this theory a planar interface is stable for an alloy if the
interface velocityV exceeds the absolute stability limit,
V,. Preliminary result$16,17,2] indicate that the classical
absolute stability limit obtained by Mullins and Sekerka for
the local equilibrium conditiongl5] holds with velocity de-
pendenK (V) andm(V). It allows us to assum@s a zeroth Vo=V, (1-V2IV2,)
order approximationthat the local nonequilibrium stability a -ae a’ ' bb

limit can be obtained from the classical drié] by replacing wh ; . G .
o ) ! ereV,, is the classical absolute stability lindit5], with
the local equilibriumKg , m, andD with velocity dependent, K(V) pre(‘;jicted by the CGMdotted curve%n Fig. 2 The

L - -
L?Czl n?nggumt;rrllumlg (I\q rrl(\t/))'l,'ta?da (.}[Q' I'Irhus, forf solution to the last equation, to leading order in small param-
igh velocities, the absolute stability limit with allowance for eterV,./Vpy, results in

the local nonequilibrium effects takes the form

bility V, is smaller tharVp, at any values foC, and other

parametergsee Fig. 2 Expressior(13) can be rearranged in
the form

Va=Vae(l— Vge/4vg)b)-
[K*(Va) Tl Va o L
CO:m(V JD* (V[ 1—K* (V )]; (13)  This implies that the absolute stability limit with allowance
a a a for the local nonequilibrium effect¥, (the solid curve in
Fig. 2) is smaller tharV,, (the dotted curve in Fig.)2at the
here T,, is the melting point of pure solvent ardd is the = same value forC,. Thus the local nonequilibrium effects
Gibbs-Thomson coefficient. Figure 2 shows the critical bulkstabilize the interface, and reduce the valueMfgrdue to the
concentratiorC, as a function of the nondimensional veloc- decreasing solute diffusion.
ity V,/Vp, calculated from Eq(13). For the dotted curve, A more general solution to the interface stability problem
we usedK (V) from the CGM, andD =const. For the solid should be based on the analysis of the hyperbolic mass trans-
curve, the local nonequilibrium partition coefficieit (V), ~ port equation(2). In a moving reference frame, a one-
Eq. (12), and the velocity dependent diffusion coefficient dimensional version of Eq2) takes the form
D*(V), Eq. (11, are used. Values for the thermophysical
parameters corresponding to Si-Sn alloys are taken from JdClat—VaClgX+DVpid°Clat?
[21]. For the sake of simplicity, we also assumed timis _ 2Ns2 N\ D 2
equal to its equilibrium value in both cases due to relatively =D(1=VAIVpy) °ClIXE.
weak dependence af on V. The value forV, is very sen- . . L
sitive to rI)ocal nonequilibrium effects becauase of %e strong, 0 W W€ take the Fourler transform of this e.quat|on. in both
dependence df* and especiallD* on the interface veloc- € and spaceq dt>iw, 6/3X«ih) to obtain the disper-
ity. These effects stabilize the interface due to the decreasin on law
solute diffusion alv—Vp, [see Eq(11)]. If V>Vp,, there
is no solute gradient ahead of the interface and, therefore,
there are no destabilizing effects. This implies that the planar ) o2 o2 s 12
interface is stable a¢/>Vpy,, and the limit of absolute sta- Vhi—Dw/Vp,=—D(1-V/Vp,)(h1—h3),

w—Vh;=—2D(1-V?/V3,)h;h,,
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whereh; andh, are real, anch=h;+ih,. These equations reaches its maximum value

can be solved for the wave numbey(w) and attenuation

h,(w), but such expressions are rather awkward. Here we T (KE_l_KEanE)mCO
are interested only in the asymptotical behavior of the wave smax  ©s Ke(1—Kg) '
numberh,(w). If V<Vp,, the spectrum is purely diffusive

with h?~w. As the velocityV increasegbut V<Vp), the ~ When V>Vp,, the effective solidus temperatui, Eq.
spectrum transforms to the wave spectrbf- w?. In this  (14), does not depend on the interface velocity and is
case, numerical simulations reveal an increase of the amplgqual to its maximum valu& g, .,=To. Thus the effective
tude of the perturbations at the wave frd@7]. Such an solidus temperatur€; changes from the equilibrium solidus
increase of the concentrational oscillations is to be expectettmperaturel at V=0 to its maximum valuélg, .= To at

at the solid-liquid interface under rapid solidification condi- V=Vp,.

tions. However, ifV>Vp,, D*=0, and the solidification If V>Vpp, then Egs.(14)—(16) imply that the planar
front cannot disturb the concentration field in the liquid. front temperaturdl; decreases linearly with' at due to the
Hence, wherV passes through the critical poiWt=Vp,, @ interface attachment kinetics,

sharp drop of the amplitude of the diffusional oscillations at

the interface is expected. These oscillations affect the struc- Ti=Tamax— V/ 1. 7

ture of the solidified phasgL,2], and may also play an im- o )

portant role in grain refinement, which occursvat Vi, [1], Thus the variation of t_he steady-state planar interface tem-
but the problem requires special consideration. perature shows a maximum ¥t-Vp .

(16)

VI. INTERFACE TEMPERATURE B. Rapid dendritic growth

The basic dendrite growth model is given by the tip un-
rcooling expression and the dendrite tip selection criterion
(see Refs[1,2,1(, and references therginTo extend the
model on the case of local nonequilibrium growth with

We now consider the influence of the local- de
nonequilibrium solute diffusion on the interface temperature
This will be done by including the velocity-dependent diffu-
sion coefficient(11) and the generalized partition coefficient V~Vp,, we apply the result of Sec. Ill to the tip of an

(12) obtained in Sec. IV into the results of the dendritic ite The ti i LT
growth theory for a plane interface and an lvantsov dendritevantsov dendrite. The tip undercooling equation is given by

(see Refs[1,2], and references thergin AT(V)=AT(V)+ATL(V)+ATR(V)+AT(V)+ AT V),

A. Planar front growth whereAT,, ATg, ATr, andATg are the thermal, solutal,

curvature, and kinetic undercooling, respectively. An addi-
The planar front temperature under steady-state growtfjy o term

can be written a$2]
ATpe=(m— m(V))CO (18)
(14

m(V) m) Y,
0 T

=Tk ke

arises due to the difference between the slope of the equilib-

rium phase diagramtm and the slope of the nonequilibrium

whereT; is the interface temperatur&, is the equilibrium  phase diagrarm(V) [2]. SubstitutingD* for D andK* for

solidus temperature of the alloy, is the interface kinetic K in the expression for the solute undercoolifig2], the

coefficient, andm(V) is the effective liquidus slope. The local nonequilibrium solute undercooling takes the form

physical interpretation ai(V) is that it represents the slope

of the line in the phase diagram that connects the melting . 1

point of pure solvent with the nonequilibrium interface com- ATs=m(V)Co 1- 1—(1—K*(V)Iv(P¥)

position in the liquid at a given interface temperature in the

absence of interface attachment kinetic effd@k The ef-  where Iv(P?) is the Ivantsov function in terms of the local

fective liquidus slopen(V) is given by[1,2,10 nonequilibrium Peclet numbeP* =VR/2D*. Here D* is

the effective diffusion coefficient, E¢ll), andR is the den-

1-KMW)+KV)In(K(V)/Ke) drite tip radius. 1fV—Vp,, thenD* —0, Pf —», Iv—1,

1-Ke ' and K*—1. This implies that the solutal undercooling

o . . ATY=0 atV>Vp,. The additional termAT,. reaches at
Under local equilibrium conditions, the planar interface tem-V:VDb its maximum value

perature isTg, but, as the local nonequilibrium effects be-

come important, the planar interface temperature increases INKe—Kg+1
because of the increase in the effective solidus temperature, AT,TeaX=mCo(T
and their increase is represented by the second term in Eg. E

(14). If V—Vp,, thenK(V)—1, and the effective solidus ang does not change ¥t>Vp,. Thus, when the interface

m(V)=m

: (19

temperature velocity passes through the critical poitt=Vp,, the
AT(V) relationship will drastically change. W<Vp,, the

T = (m(V)_m) (15) dendrites are mostly solute diffusion controlled, and the
s K(Y) K/ AT(V) curve is essentially dependent okTZ(V) and
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AT.{V). As the interface velocity increases, the deviations TABLE I. Important parameters of dendritic growth\&&Vp;,
from local diffusional equilibrium will progressively arise, andV=>Vpy,.
leading to a growing partition coefficie#t* and a decreas-

ing effective diffusion coefficienD* (V). When V>V, V<Vop V=Viop
thenK*=1, D*=0, AT =0, andT,.=AT 2" In such a

case, the sample will solidify, and be diffusionless and parp* =p(1-Vv/V3,) 0
titionless, with the consequence that supersaturated solid sg=p(1—v2/v2)/v 0

lutions are formed. The interface undercooling does not de-* Ke(1—VANVZ,) + VIV,

pend on the solute diffusion, and is given as = . 1
(1—V2IVEy) + VIV,
AT(V)=AT,(V) + ATR(V) + AT (V) + AT, P¢=VR/I2D(1-V?/V{,)

Iv(PZ) 1

Thus, a sharp transition from a mostly solutal to a purely®: = Co/l1=(1=K*)M(Pg)] L Co

thermal growth is expected ¥t=\Vpy,. ATg=m(V)Co[1- (1~ (1-K*)IV(PE)) "] 0

The general tip radius selection criterion in an under- 1 2K* 0

cooled alloy melt in the first approximation can be obtainedc=1" 1-2K* —[1+(2m/P%)?H?

from local _equilibrium theony1,2], except thatk (V) _and 42T 47T
D are again replaced bi* (V) and D*(V), respectively. R=——— N
The resulting equation for the tip radius reads 0Pt 26cPclc vt

47T )

R= —, V,, and, hence, the lower value Kf* (V,,) along the sides of
0P+ 20.Pc & the dendrite tif5].

wherel is the Gibbs-Thomson coefficien® is the hyper-

cooling limit, and VIl. ON THE KINETICS OF LOCAL NONEQUILIBRIUM

CRYSTAL GROWTH

In modeling the velocity-undercooling function for solidi-

&=1- [1+(27T/pt)2]17 ' fication of alloys, the growth velocity is typically expressed
as
2K*
&=1+ V(T)=Vy(1—expg —AG/RT)),

1-2K* —[1+(27/P} )M

whereAG is the Gibbs free-energy change per mole of ma-
_ 2mGCy(K* —-1) terial solidified,V is the kinetic prefactor, anR is the gas
¢ 1—(1-K*)Iv(P¥)" constant. The driving force for solidificatiodG, depends
on the chemical potential changes of solvent and solute at the
As the interface velocity/ increases, the stability function interface, which are usually calculated on the basis of clas-
¢, begins to deviate from unity, and is equal to zero atsical, local eqU|I|br|L_1m the_rmodynam_lcs. According to EIT
V=Vp,. WhenV>Vp,, then £.=0, and the dendrite tip [24—26, th_e generalized Gibbs equation and entropy produc-
radius R depends only on thermal and capillarity effects. ion €quation have the forms
Thus, when the interface velocity passes through the criti-

cal pointV=Vp,,, the most important parameters of the den- dS=dS4—B7I-J (203
drite growth will change drastically. Expressions for these
parameters are summarized in Table I. 0=0eq— 237J-dJ/dt (20b)

It should be noted that in this section we assume that the
local nonequilibrium effects do not affect the shape of thevvhere
solid-liquid interface, and the Ivantsov solution for a para-
bolic needle with a constant interface temperature and co
position are still valid atV~Vp,. Strictly speaking, the
shape of the interface depends on the deviation from loc
equilibrium due to the velocity-dependent effective diffusion
coefficient D* (V) and velocity-dependent partition coeffi- oy ratiov/vy, . Indeed, in a moving frame of reference,
cientK* (V). The precise shape preservifigvariany solu- Eq. (20b) can be rewritten as
tion of the steady-state dendrite growth under the local non-
equilibrium condition must be determined such that the
solutions of the heat conduction equation of parabolic type
and the solute transport equation of hyperbolic typesat-
isfy the shape-preserving conditions. This conditions shouldhus, in a steady-state regime with high velocity-Vpy,
also take into account the lower value of the normal velocitythe system is far from local equilibrium and the entropy, as

Seq @nd o¢q are the equilibrium entropy and entropy
roduction, respectively, and is the coefficient. The non-
Classical terms in Eq20) play an important role when the
ystem is far from local equilibrium. In a steady-state regime
hen the solid-liquid interface moves with a constant veloc-
ity V, a degree of deviation from local equilibrium depends

0= 0eq—28DVVp?J-dJ/dX.
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TABLE Il. Hierarchy of deviations from equilibrium.

V=0 Global equilibrium T=const, C=const
V<Vpp Local equilibrium J=-DVC
both in the bulk liquid q=—AVT
and at the interfage
K=Kg d=D/V
V<Vpyp Diffusional local equilibrium dClot=DV3C
(no equilibrium at the interfage aTlgt=aV?T
K=K(V) d=D/V
V~Vpp Diffusional local nonequilibrium J+79J/ot=—-DVC
(both in the bulk liquid
and at the interfade 6C+ aZC—DVZC
K=K*—1 ot T
D*=D(1-V?/V3)—0
d=D(1-V?V3.)/IV—0
V>Vp, K*=1 D*=0 d=0 C=Cy=const J=0
V~Vq Diffusional and thermal qT/ot) + 7(6°TI 9t?) = aV?T

local nonequilibrium q+ 7709/ dt=—A\VT

well as the other thermodynamic functions, is velocity de-mally controlled with zero effective solute diffusion coeffi-
pendent. In such a case, the Gibbs free-energy chAige cient[D*(V)=0]. Itis predicted from thermodynamic argu-
takes the form ments that the liquidus and solidus lines approachThe
curve, which is the thermodynamic limit to diffusionless so-
lidification, at infinite growth velocity20]. According to our
model, theT, curve and diffusionless solidification can be
AG(V) may be complicated functions ¥f but they must go reached at a finite interface velocity=Vp,. Walder and
to zero asv—0, and must increase &-—Vp,. The expres-  Ryder [7] showed that a sharp transition from diffusion-
sion for AG(V) can be obtained in the framework of EIT controlled to purely thermally controlled growth for Ag-Cu
[24]-[26], and it is planned to be reported in future papers.alloys corresponds td, temperature, and occurs at finite
interface velocity. The same results have been obtained by
VIII. DISCUSSION Walder for Ti-Ni alloys[8]. Such a sharp transition from
diffusion-controlled to purely thermally controlled growth
In the previous sections we presented and analyzed was also observed in Cu-Ni alloy8] and Ni-B alloys[4]
local-nonequilibrium model of solute transport under rapidunder rapid solidification conditionésee also Refd1,5]).
solidification conditions. In particular the solution to this The investigation$3,4] showed that it is not a critical un-
model in the steady-state regimés- const has been consid- dercooling that initiates the transition, but rather a critical
ered. The most important difference between the presersolidification velocity, which approximately equals the diffu-
model and its predecessors is the incorporation of three chasive speed. Thus the experimental res[#s8] give strong
acteristic velocity scales: i.e., the interface diffusive speedupport to the idea that the local nonequilibrium solute trans-
Vpi, the bulk-liquid diffusive spee®p;, and the speed of port and the bulk-liquid diffusive speed described here play
heat waveV+ into the heat-mass transport problem. Thesean important role in rapid solidification, and govern the tran-
velocity scales define different degrees of deviation fromsition to diffusionless solidification, which occurs at a finite
equilibrium during solidification. Different degrees of non- interface velocitV=Vpy,.
equilibrium imply different solidification regimes, which The transition to diffusionless solidification is accompa-
should be described by heat-mass transport equations afed by complete solute trapping* (V)=1. The complete
parabolic or hyperbolic typésee Table I\ solute trapping at a finite interface velocity has also been
Our results clearly demonstrate that the solidificationobserved in experimental measurements. For example, val-
mechanism changes qualitatively when the interface velocityles forK =1 have been determined for B, P, and As impu-
V passes through the critical poikit=Vp,. At this point a rities in silicon at growth velocities of 2.7—4.5 m/s which can
sharp transition from mostly diffusion-controlled to purely be achieved by pulsed-laser anneali2g,21]. A molecular-
thermally controlled regimes occurs. Wher<Vp,, there is  dynamics study by Cook and Clan¢$8] for a Lennard-
a solute concentration gradient near the interface, and th#ones system also showed complete solute trapping for un-
solidification is governed by both redistribution of heat andstrained growth o01§100) when the interface velocity attained
solute, whereas &¢>Vp,, there is no solute concentration its steady-state regrowth value of 4 m/s. The CGM fails to
gradient in the bulk liquid, and solidification is purely ther- predict the complete solute trapping observed in the simula-

AG=AG+AG(V).
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TABLE Illl. Values for the ratiog(n)=D;/D between the av- 1
erage interface diffusion coefficieBt and the bulk-liquid diffusion
coefficientD for the diffusive interface consisting of solid-liquid
interfacial planes.

09

n 1 2 3 4 5 «

g(n) 0.5 0.37 0.33 0.29 0.26 g
:§0.8 i

%

S

tion [18]. In this caseV=Vp,,, and, according to Eq12), 5
our model predictK =1, which is in agreement with the S 07 L

molecular-dynamics study. S

The interface region between pure solid and pure liquid
phases can be treated as a two-phase zone consisting of both
phases. This implies that the interface diffusive coefficient
D, attains a value betwedn, the bulk liquid diffusion co-
efficient, andD¢~0, the bulk solid diffusion coefficient. For :
example, a nonequilibrium molecular-dynamics simulation 05 0 : 1 2 3
[18] indicated that the interface diffusion coefficient can be .
as much as 5-10 times less than in the bulk liquid. This also Interface Velocity (m/s)
holds true for the interface diffusive speed, i.e,

Vpp>Vpi>Vps~0, WhereVp, is the diffusive speed in the FIG. 3. Partition coefficienK as a function of interface velocity
solid. For an atomically abrupt solid-liquid interface consist-for Si-As alloys. Data points are from R¢]; the dashed curve
ing of one solid-liquid interfacial plane, it is reasonable toePresents the Aziz mods,17], with Kg=0.3 andV;=0.46 m/s;
assume thaW/p, = (Vpy+Vpe)/2~Vpy/2. If we adopt this the solid curve is obtained from E@l2) with the sameKg and
idea for the diffusive interface consisting af solid-liquid Voi=0.75 m/s and/p,=2.7 m/s.

interfacial planes, and use a value for the diffusive speeg;,_g; alloys is half as much as the bulk diffusive speed
Vi in the kth atomic layer equal to half a sum of the diffu- v/~ This finding is consistent with our remark that the
sive speed of its nearest-neighbor layeWy 1) and  yajye of Vp, ranges betweeWp, and Vps~0. For Ge-Si
Vbk-1), the average interface diffusive spe¥g; and the  gjioys, Yu and Clancy19] calculated a diffusive speed of 5
average interface diffusion coefficiel?; take the form my/s, dividing the diffusion coefficient by the atomic layer
Vpi=g(n)Vp, andD;=g(n)D, whereg(n) is a coefficient.
The values fog(n) are given in Table lll. Fon>6 one can
approximately estimatg(n) as 1h. Thus the interface dif-
fusive speed/p; can be determined by dividing the interface
diffusion coefficientD;, which is an average diffusion coef-
ficient over the interface region, by the atomic layer spacing
\, i.e.,,Vp;=D;/x=Dg(n)/\. On the other hand, it can be
treated as a ratio between the bulk-liquid diffusion coeffi-
cientD and the effective interface width=\/g(n).

The velocity dependence of the partition coefficient was
measured for rapid solidification of polycrystalline Si-As al-
loys induced by pulsed-laser meltifg]. The experimental
results are compared with predictions of the CGM and our
local nonequilibrium model, Eq12), on Fig. 3. The CGM
fits the data well only at a relatively low interface velocity
with the diffusive speed of 0.46 m[9]. Our model fits the
experimental results better &p;=0.75 m/s andVp,=2.7
m/s (see Fig. 3.

The K vs V experimental data obtained by pulsed-laser
melting of Ge-Si alloyg22] are shown in Fig. 4 together — .
with the predictions of both CGM and E{L2). At a rela- 0 1 2 3 4 5

Partition Coefficient, K

tively low interface velocity, the CGM accurately fits the Interface Velocity (m/s)
data atKg=0.4 andVp,=2 m/s. Using the sam&g and
Vpi results in a best-fiv/p, of 4.9 m/s at high interface ve- £, 4. Partition coefficient plotted vs interface velocity for

|0Cities. Figure'4 ShOWS that the |Oca| nonequi”brium moqel,si_Ge a||0ysl Data points are from RéZZ], the dashed curve rep-
Eq. (12), describes the data very well both at low and highresents the Aziz moddb,17], with Kg=0.4 andVp;=2 m/s; the
interface velocities. Note that for Si-As alloys the interfacesolid curve is obtained from Eq12) with the sameKg and Vo ;

diffusive speedVp,; is approximately one-fourth, and for andVp,=4.9 m/s.
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spacing. This value is very close to the fitted value for thetotal undercooling, i.e.V~AT at V>Vp, (see Sec. VA
bulk diffusive speed/p,=4.9 m/s obtained in our local non- Thys the linear dependense~AT observed in the experi-
equilibrium model(see Fig. 4 The relation betweeVp,  ments[3] may correspond to a planar interfage almost
andVp; corresponds to two atomic layers in our mo¢ete  planar withRy>R) growth without solutal undercooling due
Table I11), and three atomic layer in RdfL9]. Thus the local to diffusionless solidificatioD* (V) =0 atV>Vp,.
nonequilibrium results for the partition coefficient repro-
duced the experimental determination with good accuracy. IX. CONCLUSION

The results of an investigation of the solidification behav- (1) During rapid solidification different degrees of non-
ior of undercooled bulk Ag-Cu alloys were presented bygqjjjibrium constitute a hierarchy which is followed with
Walder and Rydef7]. It was shown that when the interface i creasing solidification velocityi) full equilibrium, (ii) lo-
undercooling exceeded ttlg temperature for all Ag-Cu al- ¢4 equilibrium,(iii) local interface nonequilibrium(v) dif-

loys investigated, an abrupt increase of the growth rate wagsional local nonequilibrium, ang/) thermal local nonequi-
observed. At critical undercooling, the experimental valuesiprium.

of Ag-Cu alloys approached those of pure Cu. In a recent (2) The effects of deviations from local equilibrium on
paper, Walder observed the same critical behavior of thgolute concentration field can be described by the velocity-
V(AT) curve in Ti-Ni alloys[8]. The sharp rise of the mea- dependent diffusion coefficientD*(V), Eq. (11). If
sured growth velocities at a critical undercooling was alsov>Vp,,, whereVp, is the bulk-liquid diffusive speedhen
observed for Ni-B alloyg4]. Note that the rise of the mea- the solid-liquid interface does not disturb the solute concen-
sured growth velocities is sharper than its theoretical predictration field in the liquid, and the effective diffusion coeffi-
tion, especially for the Ni-1 at. % B saml&]. This discrep- cient D* (V) is equal to zero. These imply a transition to
ancy was attributed to the model’'s assumption of smoothiiffusionless solidification when the interface velocity
concentration profiles ahead of the solidification frgsf.  passes through the critical poivt=Vpy.
The smooth concentration profiles arise due to the classical (3) The transition to diffusionless solidification is accom-
(i.e., local equilibrium Fick law for mass flux. When panied by complete solute trapping witkk*=1 at
V=Vpy, our model predicts a discontinuous change in thev>V,,. The solute partitioning is governed by two kinetic
diffusion field [see Egs(9) and (10)], and consequently a rate parameters: thimterface diffusive speedVp; and the
sharper rise of the growth velocity than expected from thepulk-liquid diffusive speedVp,. The bulk-liquid diffusive
classical theory. speedVp, is the speed of propagation of diffusive distur-
To describe the sharp rise of the growth velocity, Waldemances in the bulk liquid, i.e., the speed with which the sol-
and Rydef 7] proposed a simple empirical expression, whichyte atoms can diffuse in the bulk liquid. The speed is equal to
ensured that the liquidus and solidus lines approached th@e ratio between the bulk-liquid diffusive coefficient and the
To curve for infinite growth rates. If the expression is modi- jump distance in the liquid. The interface diffusive speed
fied with the effective diffusion coefficieriL1), the liquidus v, can be treated as an average velocity with which solute
and solidus lines coincide for=Vp, [8]. This simple em- atoms diffuse through the interface. At a relatively low in-
pirical term is similar to the additional undercooling terface velocityV~Vp<Vpy, the limiting stage for solute
AT, =Ts —Ts obtained here, taking into account the redistribution is the solute diffusion through the interface and
velocity-dependent slope of the phase diagram and the locghe solute partitioning is governed ;. As the interface
nonequilibrium solute diffusiorisee Eqgs.(14)—(16), (18),  velocity increases, the diffusive coefficieBt*, Eq. (11),
and(19)]. Note that the calculated growth rate as a functiontends to zero, and the solute diffusion near the interface be-
of undercooling with the velocity-dependent diffusion coef- comes the limiting stage for solute partitioning. In this case,
ficientD* (V), Eq.(11), fits the experimental data quite well, the solute redistribution at the interface is governed by the
and exhibits a steeper rise at a critical undercooling than it isulk liquid diffusive speed/py,.
expected from classical consideratid]. (4) WhenV>Vyp,, there is no solutal undercooling, and
The experimental measurements of solidification velocithe additional termA T, due to the difference between the
ties as a function of undercooling for Cu-N8] alloys show  sjope of the equilibrium and local nonequilibrium phase dia-
that the transition from diffusion-controlled to thermally con- grams has its maximum value.
trolled growth is accompanied by a change of WA T) (5) The local-nonequilibrium effects play a stabilizing
curve from a power law/~AT# with S~3 to a linear de- role at high interface velocities, and decrease the value of the
pendenceV~AT. The linear dependence differs markedly velocity of the absolute stability,, which is always less
from current predictiong3]. According to our model, as the thanVp,,.
interface undercooling increases, the interface velocity first (6) The directional solidification with a planar interface at
reaches the absolute stability limt, and then the diffusive v>V >V, obeys the linear dependende- AT due to the
speedVp, becauseV,<Vp,. When the interface velocity kinetic undercooling.
passes through the poilt=V,, a transition from diffusive Finally, there are still many other aspects of the problem
dendritic growth to thermal dendritic growth with almost where the local-nonequilibrium effects should be taken into
planar interface occurR;>R, due toa>D, whereRy and  account. As future directions for the theoretical research the
R are the dendrite tip radii of thermal and diffusive growth, following subjects seem promising to the author: interface
respectively, andxa is the thermal diffusivity. If V>Vpy, kinetics, interface stability, the shape-preserving condition
then there are no solutal and curvature undercoolings at thier the dendrite tip, the selection criterion for dendrites, and
interface (or curvature undercooling is very small due to models for banded structures and grain refinement phenom-
Rr>R), and the interface velocity varies linearly with the enon.
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