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In the optimal velocity model proposed as a version of car following model, it has been found that a
congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density.
A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property,
such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except with a
time delayT. This leads to a global pattern formation in time development of the vehicle’s motion, and gives
rise to a closed trajectory ofix-v (headway-velocity plane connecting congested and free flow points. To
obtain the closed trajectory analytically, we propose an approach to the pattern formation, which makes it
possible to reduce the coupled car following equations to a single difference-differential eqirxdioto
equation. To demonstrate our approach, we employ a class of linear models which are exactly solvable. We
also introduce the concept of “asymptotic trajectory” to determihandvg (the backward velocity of the
patterr), the global parameters associated with the vehicle’s collective motion in a congested flow, in terms of

parameters, such as the sensitivity,
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which appeared in

the original coupled equations.

PACS numbs(s): 64.60.Lx, 89.40+k, 02.30.Ks, 02.60.Cb

I. INTRODUCTION

ence between his velocity and the optimal velodt§Ax).

As easily noticed, a homogeneous flow is a solution to Eq.

Traffic flow is one of the most interesting phenomena of(1.1). In such a flow, vehicles have a common headway
many-body systems which may be controlled by a basic dyt/N, which is the inverse of the vehicle density. Stability of
namical equation. Recent developments in the study of traffibomogeneous flows is analyzed within a linear approxima-
flow has brought a renewed interest in microscopic apition [1,2]; it is stable forf=V'(L/N)<f. and unstable for

proaches, such as the optimal velocity mod@V mode)

[1-3], which is a new version of the car following model

[4—6€], cellular automaton model§—-9], coupled map lattice
models[10], and the fluid dynamical modeJ41]. The OV-

f>f.. The critical value is found to b&.=a/2.

In order to demonstrate that the OV model describes
“spontaneous generation of congestion,” numerical simula-
tions were made using Ed1.1). It was found that for

model, among others, has especially attracted interest bé<f, i.e., if the density is above the critical value, a slightly
cause it provides us with a possibility of unified understand-perturbed homogeneous flow develops to a congested flow
ing of both free and congested traffic flows from commonafter enough time. The congested flow consists of alternating
basic dynamical equations. Unlike traditional car followingtwo distinct regions; congested regiofftigh density, and

models, it introduces optimal velocity function(Ax) as a
desirable velocity depending on headway distace The

smoothly moving regions or free regioiilw density. In
this way the traffic congestion occurs spontaneously in the

basic equation of the OV model for a series of vehicles on @V model. This phenomenon can be understood as a sort of

circuit of lengthL is

Xa()=alV[Axy(1)]—x,()} n=1,2,...N, (1.1
where x,, denotes the position of thenth vehicle,
AX,=X,_1—X, headway, andN the total vehicle number.
The constant parameteris the sensitivity. A driver accel-

erates(or decelerateshis vehicle in proportion to the differ-
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phase transition from a homogeneous flow state to a con-
gested flow statgl,2].
A remarkable feature of the well-established congested

flow is that the velocity of theath vehiclex, has the same
time dependence as that of the precedifrg— 1)th] vehicle,
except at a certain time delay. It is also found that the
global pattern moves backward with a veloaity. This kind

of behavior of the vehicles may be called “repetitive pattern
formation.” It leads to formation of a closed trajectory
(“limit cycle” ) on anAx-v plane, along which representa-
tive points for all the vehicles move one after another. The
convergence of the vehicle’s trajectories to a closed trajec-
tory signals the congestion in a traffic flow. Therefore, the
determination of the closed trajectory is one of the most im-
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FIG. 1. A result of the numerical simulation with 20 vehicles on a circuit with the circumferercé0. The sensitivity and the OV
function are chosen as=1.0 andV(h)=tanhf—2)+tanh(2).(a) Trajectories of vehicles passing through a congested regitm.The
“limit cycle” on the Ax-v (headway-velocity plane. The cusp point€ andF correspond to congested and free regions, respectively.
Representative points for vehicles move anticlockwise along this “limit cycle.” They run fast on curves connecting the two cusps, while
they stay around cusps for a while. The thin line shows the OV function.

portant subjects to understand congested flows. However thiganding the OV model. We derive the difference-differential
has been done mostly in computer simulations. The purposequation and present a general strategy on how to solve it in
of the present paper is to obtain this closed trajectory directhBec. lll. This part summarizes the central idea of this paper.
by an analytical method. Actually it has been found that, inin order to demonstrate how the Rondo approach works, we
the vicinity of the critical point for the congested flow, Eq. analytically solve, in Sec. IV, some simple models with
(1.1 can be reduced to the modified Korteweq-de Vriespiecewise linear OV functions. Our first model has been in-
equation by the dynamical reduction methd®]. In this  vestigated by Sugiyama and YamadkB|. Here we solve
paper we propose an analytical approach to the pattern fothis model in the context of the Rondo approach. Although
mation, which may be applicable to any congested flow. an asymptotic trajectory is very close to a real trajectory
We argue that, once the repetitive pattern is formed, th@bserved in a computer simulation, it is not exactly the same
coupled car following equations reduce to a singleas the latter. We describe some aspects of real trajectories
difference-differential equatiofRondo equationfor a uni-  based on our knowledge of the asymptotic one in Sec. V.
versal function(Rondo function. A Rondo function deter- Section VI is devoted to summary and discussions.
mines a closed trajectory on axx-v plane. To make the
Rondo eq_uation tract_able, we have simplified our question on Il. PATTERN FORMATION IN OV MODEL
the following two points: firstly, we have assumed that OV
functions are piecewise linear; secondly, we have concen- Let us recollect what we have learned with the numerical
trated our attention on an asymptotic trajectory, which is thesimulations of an OV moddl1-3]. Suppose a simulation is
key concept to be explained in Sec. Il. We would like to performed with a given OV function and a fixed sensitivity
stress that our method does not lose its generality by making. After a congested flow is well established, typical features
the above assumption on OV functions: an OV function to beof the repetitive behavior can be observed in the following
obtained from real data may be approximated by a piecewistwvo figures.
linear function. Figures 1a) and 1b) show that vehicles move in alternat-
With the above simplifications, we have solved the Ronddng regions of free and congested flows. It is recognized that
equation for each model and given an asymptotic trajectorgvery vehicle behaves in the same manner as its preceding
on theAx-v plane. Our result clearly tells us that, once anone with a certain time delay: as a result, the congested
OV function and the sensitivitp are given, an asymptotic region moves backward with the velocitys. Once the lo-
trajectory is uniquely determined; this then implies that thecation of any vehicle, say, theth vehicle, is given as a
parameterd anduvg for a collective motion of vehicles are function oft, we may reproduce the pattern in Figallby
given as a function of. Therefore, our approach provides us plotting a series of functions shifted in time and position by
with a method to determina dependence of the global pa- T andvgT appropriately. Therefore, we expect that a con-
rametersT andvg. gested flow may be completely determined by a function of
This paper is organized as follows. Section Il summarizeg and global parameter§ andvgT. The precise specifica-
the main results obtained from numerical simulations of theions of our approach to this repetitive behavior will be ex-
OV model, with emphasis on the pattern formation in a con-plained in Sec. Ill.
gested flow. The concept of an asymptotic trajectory is ex- Figure Xb) clearly shows there exists a “limit cycle” on
plained in Sec. Il. As will become clear in later sections, anthe Ax-v plane, a closed curve with two cusps at points
asymptotic trajectory is a very important concept for under-C(Axc,v¢c) andF(Axg,vg), both of which are on the OV
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0.031555 . , . . : trolled by exponential functions in time. In Sec. V, we shall
see that exponential functions determine a curve near a cusp.
0.03155 |
0.031545 - Ill. RONDO APPROACH
We begin our description of the Rondo approach with two
g 003154 ¢ basic assumptions.
;3 . I (1) Velocities of thenth and fi—1)th vehicles have ex-
0031533 actly the same time dependence if a certain time délay
0.03153 | taken into account,_1(t) =X,(t+T).
(2) The pattern of traffic flow moves backward with a
0.031525 | - 4 constant velocity g .
The above described properties are expressed as,
0.03152 . - . . .
0.32274 0322745 032275 0.322755 0.32276 0322765 0.32277 X, () =x(t+T)+vgT. 3.1)

Headway

All the vehicle’s behavior is represented with a single uni-

FIG. 2. Trajectories for a vehicle passing through two congested . _ . .
regions different in size. The outer curve corresponds to the IargeYersal functionF(t)=x,(t) (this assumption bears some

congested region. The thin line is the OV function. Parameters ar?'rnllarltles with the travellng_ wave ansatz
the same as those in Fig. 1. d(x,t)—f(x—vt)] for the wave equation

function. At these cusp points, we find (Ax) <a/2, which Xn—k(t) = F(t+KT)+kvgT. 3.2
means that homogeneous flows with such headways and ve-

locities are linearly stable. Representative points for all veWith the nth vehicle’s headway given as

hicles move on this “limit cycle” in an anticlockwise direc-

tion. It follows from the conservation of flow AX,(1)=F(t+T)—F(t)+vgT, (3.3

Uctug Urtus _ 1 2.1) the N coupled car following Eqg(1.1) is reduced to a single
AXc Axg T’ ' difference-differential equation fde(t),

that the straight line connecting andF has the slopd ! 1. _

and intersects with the vertical axis-awg. (This relation is —F(t)+F({t)=V[F({t+T)—F(t)+vgT]. (3.9
an approximate one except for an asymptotic trajectory to be a

discussed below.

In the rest of this section, we would like to explain the _ . X
concept of an asymptotic trajectory on the-v plane. Sup- In this paper, we will seek the Rondo functiéi{t) for
pose that a vehicle passes through two congested regioH%,e asymptqtlg trajectorfwe W|Il_d|scgss more realistic situ-
different in size on a circuit. Then the representative poin@iOns With finite congested regions in Seg. Before study-
moves on curves as shown in Fig. 2. Each trajectory may ndf!d concrete models, let us consider its generic properties.
form an actual cusp, rather it will form a round shaped tip.>ince the position and the velocity of vehicles are obviously
Also we find that the larger the congested region, the sharpdPntinuous in time,F(t) is a continuously differentiable
the shape of the tip: the minimum velocity of the vehicle isunction. o _
smaller for a longer congestion. It is rather easy to imagine AN asymptotic trajectory connects the poirfisand C,

that for a very short congestion the vehicle cannot deceleraf@®ch of which corresponds to an infinitely long free or con-
itself enough to reach the velocity appropriate for a longeg®Sted regiorian approximately homogeneous flpsatisfy-

congested region. If we plot minimum velocities for longer N9 the stability condition mentioned in Sec._ Il. Therefo_re

and longer congested regions, we would find a limiting valug™(t) should be homogeneous flows asymptotically in the in-

for the minimum velocities. This value must be realized forfinite past and future:F(t)— const ast—=*«. An

an infinitely long congested region. With a similar argumentasymptotic trajectory interpolates two stable solutions of Eq.

we find the limiting value for maximum velocities corre- (1.1). In this sense-(t) may be regarded as a “kink solu-

sponding to an infinitely long free region. We may imaginetion.”

the following extreme situation: a vehicle starting from an Like OV models studied in earlier papers, each model in

infinitely long free (congestepiregion goes toward an infi- Sec. IV has an OV function which is symmetric with respect

nitely long congestedfree) region. The trajectory for this to a point,S(Axs,vs) (the symmetry of an OV function is

limiting situation will be called a deceleratini@n accelerat- absolutely not necessary to solve a system in the Rondo ap-

ing) asymptotic trajectory. Combining them we would find a proach. In Sec. VI, we discuss how to solve the Rondo equa-

closed curve with two real cusps on the OV function. tion for a generic situation So we assume this property in
The duration for a vehicle to stay in a congested regiorthe following arguments and quote our result in Appendix A.

would obviously get longer for a larger congested region.Two end points of an asymptotic trajecto§(Axc ,vc) and

For an asymptotic trajectory it becomes infinite. This does fitF(Axg ,vg), are symmetric with respect 8. Three points

to our linear analysis since the behavior of a vehicle is conC, F, andS are on a straight line with a slopg ! and an

In the following it will be called the Rondo equation.



6522

intersection—vg. Note that once the slope is given, the

intersection is uniquely determined since pdatnust be on
the line.

As shown in Appendix A, accelerating and deceleratin
asymptotic trajectories are symmetric with respectSo

Therefore it is sufficient to study one of them; in the rest ofC2=
this paper, we will take a decelerating asymptotic trajectory,
Here we summarize conditions which should be satisfied b

the functionF (t): (1) F(t) andF(t) are continuous for any
t(F(t) eCY); (2) ve=lim,_, _.F(t) andvc=lim,_ ,..F(t);
3 vptvc=2vg and AXg+AXc=2AXg,
where Axg=lim;_, _ [F(t+T)—F(t)+vgT] and
AXec=lim_  [F(t+T)—F(t)+vgT].

We would like to explain a way to solve the Rondo equa-

tion, which contains an OV function and a sensitivity as
well asT andvg associated the pattern formatiqd) First
we give the parametér. By drawing a straight line through
the pointS with the slopeT~ !, we find the intersection
—vg and the points<C andF. (2) Now a is the only free
parameter of the Rondo equation. If we could solve the equ
tion, we would obtain a one-parameter family ©br
a-dependentRondo functions(3) Among this family, the

right Rondo function is selected by requiring that it connects
the pointsC andF. This condition also determines a unique

value fora. Accordingly we find thea dependence of.

IV. PIECEWISE LINEAR FUNCTION MODELS

We consider here a class of models with piecewise linear

QV functions. The Rondo equation is now linearized for al
regions ofAx, and therefore exactly solvable.

A. Step function model

The first model has the step function for the OV function

(region )

0 Ax<Axg
V(Ax)= Ax>Axg (region ).

Vo 4.1

This OV model has been solved in R¢L3]. Here we ex-
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Vo+Cie 3 (t<0)

F(t)= Ce & (t=0).

(4.9

YThe integration constants are determined @s=0 and

V, from requirements tha(t) be a continuous func-
tion and asymptotically constant for = . The continuous
)f,unction F(t) is

=

Vot (t<

V
f(l_e—at) (t

0)

F(t)= (4.5

=

=

0).

Here we choose the origin of position coordinate so that
F(0)=0.

The function F(t), with its relation to the headway
Ax,(t)=F(t+T)—F(t)+vgT, completely determines a de-
celerating asymptotic trajectory on thex-v plane. From
condition (3) in Sec. lll, the asymptotic trajectory connects
Lymmetric points on the OV function. This gives us a con-
dition AX,(+ )+ AX,(—%°)=2Axg=2AX,(0),

vV
vaT+(Votuvg) T=2 f(l—e_aT)ﬂ—vBT . (4.9

This may be expressed as the transcendental equation for
p=aT

e P+ip—1=0.

= 4.7
ISince thep is found to be the constafl.593 & .. .), we
obtain
aT=p=1593@.... (4.8
"This gives us thea dependence of, which was first ob-
tained in Ref[13].

It is instructive to see a relation between the function
F(t) and the decelerating trajectory depicted in Fig. 3. Two
curves in Fig. &) correspond to then(— 1)th andnth vehi-
cle’s locations. At=0 thenth vehicle’s representative point

plain how this model can be solved in our Rondo approachy,gves into region | an (t) is described by an exponential

In this model, the Rondo equation is given by

g#(t)w(t):voa(F(HT)—F(t)+vBT—AxS),
4.2)

where #(x) is the Heaviside function.

function. Before that time, the functioR(t) is linear int.
The curve for the if—1)th vehicle changes from the linear
to the exponential behavior && —T. It is given via a par-
allel displacement by the vector(T,vgT) from the curve
F(t). For the timet<—T, curves are two parallel straight
lines, which implies the headway of ti¢h vehicle does not
change till that time from the infinite past. Timth vehicle

In the motion corresponding to a decelerating asymptotidas the constant velocity, for t<0. This tells us that the
trajectory, the representative point for a vehicle moves fronfith vehicle is in the free region fdr<—T, indicated by the

region Il into region I. Let us take the tintesuch that the
point moves into the region | at=0, which implies
AX,(0)=AXg.

The equation of motion is

Vo
0

(t<0)
(t>0).

%F(t)ﬂt(t): 4.3

The general solutions for two regions are

point F in Fig. 3@). It is also easy to observe that at
t=—T the (h— 1)th vehicle starts to decelerate. As a result
the headway of thath vehicle decreases; &t 0 it reaches
the valueAxg and thenth vehicle starts to decelerate itself.
In this model, the point& andC are both characterized
as points which are reached in the infinite future or past. As
a traffic flow, we are describing a solitonlike solution con-
necting half infinite vehicles, running with the velocity
and the headway x , and another half infinite vehicles go-
ing into the congested region associated with the pGint
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FIG. 3. (a) The OV function(thick line) and a decelerating asymptotic traject@ityin line with arrows for the step function model.(b)
The position functionx,(t) andx,_4(t) for the decelerating asymptotic trajectory.

B. Single slope function model which divideAx into three regions, I, Il, and Ill, as indicated

In the step function model, thdx dependence of the N FI9- 4. _ _ _
Rondo equation is too simpld@: dependence is not explicit. e would like to find a Rondo functioR(t) for a decel-
So we would like to consider a slightly improved model, €"aling asymptotic trajectory, along which headway of a ve-
whose OV function shown in Fig. 4 has a finite slope. Thughicle monotonically decreases frofixg to Axc. We as-
we call this model the single slope function model. The OvSUMe it reachedxg att=—r7 andAx, att=0. The Rondo
function is characterized by the following parametdrshe ~ €duation takes the form
slope;V, the maximum velocityAxg the headway for opti-
mal velocityV/2. From the linear analysis iri], we know 0 (t=0)
that a homogeneous flow becomes unstable and a congesteG{#(t)H':(t): f(F(t+T)—F(t)—6) (—7=<t=<0),
flow is expected for 2>a. This condition is assumed inour & Vv (t<—1)
analysis here. 0 =7 4.11)
The QV function has sharp bends at '

subject to the conditions,

V
Axa=Axs— ¢, (4.9
F(T)—F(0)+vgT=AXa, (4.12
VO F(_T+T)_F(_’T)+UBT:AXB (413)
Axg=Axs+ 5, (4.10

Here 6=Ax,—vgT. Note that the time— 7 is not a free
parameter. Rather, it should be determined from @dl3
via solving the Rondo equation.

For regions | and lll, the Rondo equation becomes the
same as that in the step function model. Therefore, we obtain

consixe @ (for region |)

F(= Vo (for region Il1). 4.14

Our purpose in this subsection is to describe a method to find
the Rondo function in region Il which correctly interpolates
those in Eq(4.14). To this end, we may introduce a series of
functions for each time interval

T . L

. . | Fl(t) (0=t
Axp Axg Axg Ax Fi(t) (—T<t<0)

F(t)y={ Fa(t) (—2T<t<-T) (4.15

FIG. 4. The OV function for the single slope function model.
f is the gradient in region II. The function is symmetric with respect ’ ’
to the point Axs,V/2). Fl'(t) (t=<-—1).
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The first functionF'(t)=F,(t) and the last on&"(t) are A general solution is given as
for regions | and I, respectively. - _

Let us findF'(t) ( for t=0). It follows from Eq.(4.14 Fi(t)=Fo(t+T)—6+e @' (Asinwt + BCOSvt)( )
that 4.2

[':I(t):uoe—at, (4.16 The constantsA and B are determined a®\=ad/w and
B=0, by the requirement th&t,(t) andF,(t) must be con-

Uo tinuous up to the first derivative at= 0. Therefore,

F'(t)=;(1—e‘at), (4.17)

6 aé _
, : . _ Fi()= -—=7(1—e 2 T)— 5+ —e (@sinet,
where we fix agairF'(0)=0. Thenth vehicle’s headway is 1-e w
then given by (4.28

Uo and the headway and the velocity for thid vehicle is given
Ax,(1)=F'(t+T)+vgT—F'(t)= ;(1—e—aT)e—at+uBT. as

(4.18

aé
. . . AX (1) =Fo(t+T)—F,(t) +vaT=AX,— —e (@lsinet,
Since the conditior{4.12) determines the constan, n(O=Fo(t+T)=Fs(O)+vs A w ©

AXA_UBT o 35 ) . a
Up=a 1—e 2Tl = 1—e 2al’ (419) Xn(t)ZFl(t): ea-r—_le_at
we find the Rondo function for=0 to be asd 2 a
wL;e‘(a A wCOSVt — SsiNwt |. (4.29

)
Fl(t)= ———57(1—e™2Y), 4.2
®) l1-e at ) (4.20 We would now like to give general formula fdf,(t)

. . ) i (for tel=[—kT,—(k—1)T]) with k>1. Suppose that
This leads to a linear relation between the velocity and thq:k(t) for tel, is known to us and we are trying to find

headway Fraq(t) for tel,,,. Fyuq(t) satisfies the second order lin-
a ear differential equation
Xp=7——=7(Ax,—vgT). 4.2
e (el @2 DFyc1()=Fy(t+T) =4, (4.30
In thet—oo limit, we find thatx,—0 andAx,—uvgT. with boundary conditions
Now we considerF,(t) ( for —T<t<0). In this time
interval, the Rondo equation fét,(t) is expressed as Frr1(=kT)=F(=KkT),

giil(m|':1(t)=f(F0(t+T)—F1(t)—5), (4.22 Fira(—KT)=Fy(=kT), (4.39

while F(t) satisfies a similar equation
in terms of the Rondo function for the region |

F!(t)=F(t). By using the differential operator DF(t)=Fy-_1(t+T)—6. (4.32
1d> 1d The functionF(t) describes the behavior of thh ve-
D=sae T fatt (423 hicle only forte .. However we will find it useful to define
the function by the relatiof4.32 even outside the interval
we may rewrite the above equation as |- The function used outside the interval will be denoted as
F(1). The difference of Eqs4.30 and(4.32 gives us the
DF(t)=Fo(t+T)—6. (429 following equation fort e I, ;=] — (k+1)T,—KkT]:

The general solution may be written as a sum of a particular D(Fkﬂ(t)—Ek(t)): Fk(t+T)—Ek,l(t+T) (k=1).

solution and the solution to the homogeneous equation (4.33

DF°™t)=0. It is easy to see th&ty(t+T)— & is a particu-

lar solution, since the functioffy(t)=F'(t) given in Eq. From Eqs.(4.24 and(4.25 we find

(4.20 satisfies - -
D(F1(t)—Fo(t)=Fq(t+T)—Fo(t)— 6=8(e"*'—1),

The exponentg for a homogeneous solution are fortel,=[—T,0].
o 12 By using the functiorG,(t) defined in the relation,
a a a
= — —+j - — =_— —+j ~
y=-p*iatmg gl (426 Fls(D=F((0+ Gy y(1+KT), (439
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Egs.(4.33 and(4.34 are rewritten into the following equa-
tions for - T<t<0:

DGy+1(1) =Gy(t) (k=1), (4.36
DGy (t)=68(e” - 1)=Gq(t). (4.3
Note that Gy(t) defined in Eqg. (4.37) satisfies

DGy(t)=Gy(t). The conditions(4.31) becomeG,(0)=0
andG,(0)=0 (for k=1).

The Rondo functior-(t) for region Il is given as a sum
of G(t),

F'(t)=Fo(t)+ kEO 6(—t—KT)G,1(t+kT), (4.38

for t>— 7. In Appendix B we will give general solutions to
differential equation$4.36 and (4.37). G,(t) from the ap-
pendix,

ao _
G1(1)=Go(1) + —e~ @'sinut= (e~ 1)

ald
+—e~ (@igingt,
w

(4.39
is consistent with Eq(4.28. Similarly G,(t) is given as

ao .
Gy(1)=Ga(t)— — ——e 32U ytcoswt — sinwt}.

4f—a
(4.40
SoF,(t) fortel,=[—2T,—T] becomes
Fo(t)=F4() +Gy(t+T)
=F(t)+ (e 2T —1)
ao
+ ;e*a’z)“”)sinw(HT)
as 2f
T A (a+T)
T {w(t+T)cosw(t+T)
—sinw(t+T)}, (4.41
while the headway for thath vehicle is
aé as 2f
_ _ 29 (a2t ae —(al2)(t+T)
AXp(t)=AXp we Sinwt + - 4f—ae
X{w(t+T)cosw(t+T)—sinw(t+T)}. (4.42

SOLVABLE OPTIMAL VELOCITY MODELS AND. ..
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0.4 0.6
Sensitivity a

0 0.2 0.8 1

FIG. 5. Sensitivity dependence @f and = for the single slope
function model. The conditior= 7, is assumed, which is satisfied
fora<0.988 Y . ... Thedotted line shows tha-T relation for the
step function model.

The continuity condition for the first derivative requires also
that
F'(=71)=F"(-7n)=V,. (4.49

This completes our construction of an asymptotic trajectory.

Now let us find thea dependence of for the present
model. The time— 7 may be determined by the condition
(4.13, F(—7+T)—F"(—= 1) +vgT=Axg; then Eq.(4.44
gives us a relation betweenandT. By using Eq.(4.38 for
F''(— 7), concrete expressions of Eq4.13 and(4.44 may
be obtained. For—T<—r, F'"(—7) is simply given by
F.(—7) and the above conditions are expressed as

ad o . Vo
?e(a )Tsmwr=AxB—AxAET, (4.45
i e+ a—ﬁe(a’z)f wCo T+ SsinwT| =V
-1 ® 2 0
(4.49
The requirement of symmetryAx,(+ )+ AX,(—»)
=2AXg, mentioned in Sec. 1] becomes

vgT+(Vo+vg) T=2AXg. This relation and Eq4.10 allow
us to expres®=Ax,—vgT as,

5=(fT—1)§. (4.47

The general formula in Appendix B may be used further tofinally, we reach to the coupled equations which determine

generateF3,F,, . .
region Il.

Let us consider region Ill. At=— 7, the function(4.38
for region Il must be continuously connectedRd'(t), in-
cluding their first derivatives. This condition yieldd" (t)
fort<s—ras

F'(t)=Vo(t+ ) +F"(— 7). (4.43

., heeded to describe the trajectory in T and 7 for a given slopef and sensitivitya

2w
(fT—1)e® sinw = =

(eaT_ 1) (a/2)7"

(4.48

=we

a
(f— E)sinwr— wCOSW T
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FIG. 6. Thin curves show “limit cycles” for the single slope function model obtained from simulations(a)ith=1.8, (b) a=1.5, (c)
a=1.0, and(d) a=0.9. Trajectories generated frofy(t) for te[—T,0] are drawn with thick curves. The curves inside region Il
(1<Ax<3) are parts of asymptotic trajectories. The dotted line shows the OV functionfwith0,V,= 2.0, andAxs=2.0.

where w is given in Eq.(4.26. For f=1.0, Eq.(4.48 is
solved numerically to give tha dependence of and r as
shown in Fig. 5. Since we usdg (t) for F''(t), Eq.(4.48 is
valid only for 7<T (7 coincides with T when
a=0.988% ... atr=T=1.7407 .. .).

We observe in Fig. 5 thal behaves as &/for small a:

curves. The functior4(t) is enough to give an asymptotic
trajectory fora<0.988 ¥ . . . , asmentioned above. It is ex-
pected that whena gets closer to its critical value
(agritica= 2f=2.0, in this casg we need functiond=(t)
with a higherk to form an entire trajectory.

There again appears a flat trajectory in region Ill. As in

this implies that, for congested flows to be formed, the delayhe step function model, it takes tiniefor a vehicle to move
T must be larger for less sensitive drivers. In the limit of on the flat trajectory and there is only one vehicle traveling
f—oo, the present model reduces to the step function modebn this interval.
in whichaT=p and7=0. This may be confirmed with Eq.
(4.48 sinceaT reaches a constanp=1.593@& ..., and
a7 behaves like @/(fp) whena/f goes to zerdnote that
Eqg. (4.48 may be rewritten in terms of rescaled variables The OV function for the single slope model has flat re-
aT, ar, anda/f). gions | and 11, like the step function model. For those re-
In order to see the validity of our approach, let us com-gions the Rondo equation does not dependFgh+T): a
pare our results and trajectories obtained by simulations. Inehicle does not react to the motion of the preceding one.
Fig. 6, thick curves show parts of the asymptotic trajectoriesThis motivates us to consider a more realistic model with an
to be determined by the functioR,(t), for a=1.8, 1.5 OV function which has a nonzero gradient for any headway.
(r>T),a=1.0 (r~T),anda=0.9 (7<T). These curves are The OV function has a slopg, in regions | and Ill, and
to be compared with numerical simulations shown as thirf, in region Il (see Fig. 7

C. Double slope function model
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f1AX AX<AXp (region )
V(AX)=1 fo[AX—(1—k)AXa] AXpa<AX<Axg (region Il (4.49
fi[AX+(k 1=1)(Axg—AXp)] Axg<AX (region 11I).
|
where x=f,/f,. Obviously this function is symmetric ¥

around (Axs,V(AXg)), where Axs is the middle point of Xn(t)_UC:TTyinT[AXn(t)_AXC]- (4.57
region Il. Here we should note that the sensitivitymust
satisfyf,<a/2<f, for a generation of the congestion in this
model, since the homogeneous flow is expected to be Iint-
early unstable only in region Il.

As in Sec. IV B, we assume that the headway reache

Axg att=—7andAx, att=0. The solution of the Rondo

In region Il the functionF'"(t) is divided intoF(t)’s for
el =[—kT,—(k—=1)T] as was done in Sec. IVB. We
ay now study the Rondo equation,

equation(3.4) must satisfy the condition@.12), (4.13. The DyF (1) =F_1(t+T)+vgT—(1—k)Axa(k=1),
Rondo functionF(t) for three regions will be denoted as (4.58
follows;
where Fo(t)=F'(t) and D, is D; with f; replaced byf,:
Fl(t) (0<t) D,=D;—(1-«)(D;—1). In terms of D,, Eq. (4.51) be-
comes
F(t)={ F'(t) (—7<t=<0) (4.50
Fl'(t) (t=—7). DoFo()=Fo(t+T)+vgT—(1— k) AXn(1), (4.59
For F'(t) (t=0), the Rondo equation is given by whereAx,(t) is given by Eq.(4.55.

The basic technique in Sec. IV B may be used to solve

4y = El
DiF () =F(t+T)+veT, (4.5 Eq, (4.59 with a slight modification. Let us definG,(t)’s
where with Fy, 1(t) =F(t) + Gy 1(t+KkT), which satisfy the equa-
tions
1 d> 1d
Dl:a_fl W+ T &4— 1. (4.52 DG+ 1(1)=Gy(t)  (k=1), (4.60
To find a solution to the homogeneous equation D,G,(t)= (e Ynt—1)=Gy(t), (4.61)
DiFton() =Fhon(t+T), we use the ansatf,(t)~e”
which gives an equation for the exponent whered=(1— k)(Axp— AXxc). The boundary conditions are
) G(0)=G,(0)=0 for k=1. In solving these, we may use
3’_+y:f1(eyT_1). (4.53 aga_lin the formula give_n in Appen_dix“B. Once we fin_d the
a series ofG,(t), we obtain the functior"(t) by the relation

(4.38. Further we can determine the timer by the condi-
As long as the conditiorf; <1/T holds (when a congested tion (4.13, F(— 7+ T)—F"(— 7) +vgT=AXg.
flow is realized in this model, this condition is satisfied trivi-
ally), there are two real solutions: the negativey;, and the
positive one vy,,. Because of the asymptotic behavior,
F(t)—vc ast— +, only the exponent- y;, is relevant to
the functionF'(t). Adding a particular solution of E¢4.51),
we obtain the solution subject to conditiori4.12 and
F(0)=0 as

11

I

— e Vint
Fl(t)= AXa—A i 4.5
(D=vct+(AXa=AXe) T 57T (4.54

By calculatingAx,(t) andx,(t) from Eq. (4.54),

Axp(t)=AXc+ (AXpa—Axc)e it (4.595

Axp Axg Axg Ax
- Yin _
Xp()=vc+ (AXp—AXe)——=—e 7t (45
n(t) ct(AXa C)l—e Yin (4.56 FIG. 7. The OV function for the double slope function model,
which is symmetric with respect to the poiftxs,V(Axg)). It has

we obtain a linear trajectory given by the gradientf,(f,) in regions | and III(1).
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In region Il (t<—7), the Rondo equation takes the form . . . i . :

DiFM () =FX(t+T)+vaT+ (k1= 1)(Axg—AXa), 25 1
(4.62

where FX(t+T) is F'(t+T) for —r<t+T<-7+T and 27 1
F"(t+T) for t+T=<— 7. The solution must be continuously
connected tdF'"(t) including the first derivative at=— 7. G 1.5t 1
Equation (4.62 can be solved by the same manner as in %
region Il, though homogeneous solutions to E4.62 in- >
clude the hyperbolic functions instead of the trigonometric Ly 1
functions.

The logic at the end of Sec. Il may be used to get a better 05+t .
perspective on what we have discussed up to now, and it will Ay
lead us tlo find thea dependence of. First, with a given o = T . , T
slope T~ -, we draw a stral_ght line through pon& Th_e . 0 05 1 15 2 25 3 35 4
value of —vg and the coordinates a2 andF are given in Headway
terms of T and the parameters in the OV function,

fiT vg FIG. 8. Trajectories for the double slope model. Thin curve

(4.63 shows “limit cycle” from simulation with a=1.13124 when
T=7=1.58331. The analytical solution is drawn with a thick
curve. The dotted-dashed line shows the trajectory expressed by the

Uc:mvs, Xc:m,

ve= frogT+fa(x - 1)(Axg—AXa) exponential function with index, ;. The dotted line shows the OV
F 1-1,T ’ function with f;,=0.25f,=1.0,Ax,=1.0, andAxg=3.0.
_vpT+fT(k 1= 1)(Axg—AXp) into the details, here we only quote features relevant to our
XF= 1—f,T ., (469 arguments. There is only one solution with a negative real
part, it is actually a real solutior y;,. Other solutions have
and positive real parts, which are relevant when—cc. There is
only one real solutiony,,; there are complex pair solutions
_UB:(fl_ faT+1 « +f2T_1Ax 469 with their real parts larger thar,. Since yo, has the
2T AT 2T B smallest positive real part, it dominates among exponential

functions whent— —oo. Thus for very large negative the

In solving the Rondo equation, we have introduced a pafunction F'"'(t) may be approximated by the exponential
rameter7 determined by Eq(4.13. Using this7 andvg  functions with y,. In region I, we found that the deceler-
expressed as E¢4.65, we obtain a one-parameter family of ating asymptotic trajectory is linear on the-v plane owing
the (a-dependentsolution to the Rondo equation. Then, we to the exponential term iR'(t). Similarly, the approximated
find an appropriate value @ for a givenT by the require-  F"'(t) defines a line on thAx-v plane, starting poinE as
ment that the asymptotic trajectory conned@sand F:  shown in Fig. 8. We observe that this line is actually the
|':“'(—oo):vF_ tangent line to the trajectory at poiht

In Fig. 8, we show trajectories from our analytic study The absence of the flat region is directly related to our
and a computer simulation for the double slope model. Wepbservation that poirf is reached only in the infinite past. If
have chosen a particular value farso that7=T and we Wwe consider the limit to have a flat regida=0, we only
used the Rondo function fdr>—7—T to draw the part of have a negative solutiof;,= —a. When we would like to
the decelerating asymptotic trajectory. Clearly the Rondcconsider the OV model applied for a realistic situation, the
function reproduces the trajectory obtained via a computerelevant OV function may be approximately realized by a
simulation. piecewise linear function. Since it is unlikely that the func-

By the procedure described in this subsection, we mayion has a flat region, the above feature of the double slope
easily obtain the remaining part of the asymptotic trajectorymodel must be generic.
When this is carried out, we expect that it reaches to point
F in the infinite past. In the following we will give another
argument to support this expectation. The Rondo equation
for t<—7—T in region Il may be solved with exponential In Sec. IV, we discussed asymptotic trajectories in models
functions plus a particular solution, as for region I: the func-with piecewise linear OV functions. The asymptotic trajec-
tion F"(t) is the sum of a term linear ih and exponential tories can be realized only when the number of vehicles be-
functions. In the limitt— — oo, only the linear term survives comes infinite. In computer simulations in Refd-3], a
expressing that vehicles have the velocity for a free regiorinite number of vehicles run around a circuit; a vehicle goes
ve; the exponents satisfy E¢4.53 and have positive real through all the free and congested regions in a finite time.
parts so that exponential functions vanishtas— . The Rondo equation probably has solutions even for such

It would be appropriate to explain how solutions to Eg.situations. Though we have not worked out how to obtain
(4.53 are distributed on the complexplane. Without going entire trajectories for such vehicles, we are able to discuss

V. TRAJECTORIES AROUND CUSPS



Decelerating
Asymptotic Trajectory

Linearized
Optimal Velocity

Trajectory

Accelerating
Asymptotic Trajectory

FIG. 9. A trajectory in linear approximation for a vehicle pass-
ing through the congested region with a finite size. It has two as
ymptotes, accelerating and decelerating asymptotic trajectories. Th

time development is indicated with arrows.

parts of the trajectories around poir@sor F. We are going
to discuss this subject in this section.

To make our explanation concrete, we take a trajectory
around the end poin€. In a congested region, all the ve-
hicles have almost the same velocity. When a vehicle is
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Viaxe)

a
a+ou

ViAxe)

OVF

a
a-"Yin

ViAxe)

_ FIG. 10. The flow diagram around poif@ obtained by the
Iienear approximation. Two asymptotes are asymptotic trajectories.

(2= ¥in) You€ ™ '+ (a+ Your) 'Yineyo‘“l v

AX,(t)=AXxc+

a(¥int Yow E1
(5.9
_Vint—|- .e7’0u1t
po()=pot T T Y o (5.6

YinT Yout

about to reach a congested region, its velocity would be

slightly different fromv ¢ and the functior-(t) may be writ-

By eliminating the timet, we find the equation for the tra-

ten asF(t) =vct+ &(t). We take a linear approximation for Jectory around poinC
an OV functionV(Ax) (here as an OV function we have in
mind a smooth, but not necessarily a piecewise linear, func-

afc(Ax—Axc)—(a—yin)(v—ve) |in

tion) around the point4&xc,vc¢),

V(AX)=fc(AX—AXc)+vc. (5.
Since pg+uvc) T=AXc, the Rondo equatiofB8.4) becomes
a linear difference-differential equation fg(t),

0

5 TEO=f[Et+T) - &), (5.2

For the ansatz(t)=e!, we find an equation for the expo-
nenty,
72

§+y:fc(eﬂ—1). (5.3

Yin6v
(a+ You (v —vc) —afc(Ax—Axe)
Youtov

Yout

X

(5.7)

This curve, shown in Fig. 9, has two asymptotes throGgh
with slopesafc/(a—v;,) andafc/(a+ yq, which corre-
spond to the decelerating and accelerating asymptotic trajec-
tories, respectively.

Two asymptotes of Eq5.7) divide theAx-v plane into
four areas. In Fig. 10, curves are shown for solutions to Eq.
(5.2 with various initial conditions: pointC is a saddle
point. The linear analysis applies to poikt as well, so
curves in the left-lower region would describe the behavior
of vehicles close to a free region.

The condition,[v(t) —vc]/vc<1, helps us to evaluate

As long asf.<1/T, there are two real solutions: the nega- tc: the time interval a vehicle would spend around point

tive, — yi,, and the positive oney,,; (we ignored complex

solutions in this approximation since the real part of those

solutions are larger tham,,;. See the discussion in Sec.)VI

Trajectories considered here crgast=0) the OV func-
tion at points slightly different fronC: we denote their co-
ordinates by Ax,v)=(AXc+ dv/fc,vc+ 6v). We find the
solution forF(t) as,

2 A=yt 2
~ Youf "M+ yiperout

ov.
YinYoul Yint You)

F(t)=vct+ (5.4)

We may findAx,(t) andv,(t) from this solution

Uc 2

2< —~tg. :
t YinYout 6V e ©8

The timetc is related to the length of a congested region
Lc and the number of vehicles in this regibly as follows:

t
NC:

c tc
T, LC:NCAXC:AXC?' (59)

Therefore the size of a congested region is larger for smaller
ov.
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VI. SUMMARY AND DISCUSSION The Rondo equation gives us a functional relation which

. . " . may be written as,
We have investigated the repetitive pattern formation ob- y

served in a computer simulation from an analytical point of
view. The Rondo approach was proposed to describe the

repetitive pattern. - In addition toa and V(Ax), the  yih three parametera, vg, and T. When we know the
d|ffer§nce—d|fferent|al equgtlon for the Rondo funan(lt) function F(t) for the time intervalt e [ty,to+T], there are
contains two macroscopic parametets,and vg, which o ways to use the above equatidh) substituting this on
specify the motion of a global pattern. In this paper Wethe right-hand side, we finB(t) for te[ty+T,to+2T]; (2)
mainly paid attention to the Rondo functions for asymptotiCthe same information may be used on the left-hand side to
trajectories. The Rondo equation was solved for three simplpave a differential equation foF(t) on the intervalt
models with piecewise linear OV functions. In order to de- e[t,—T,t,]. Although the former sounds much easier, we
termine thea dependence of andvg, we gave analytic have been able to use the Rondo equation only in the latter
expressions for Rondo functions. We would like to empha-manner. Here we will explain why.
size that the concept of asymptotic trajectory plays a key role  Now let us consider, for concrete, a decelerating
in determining thea dependence of andvg. As a first step  asymptotic trajectory in the double slope model. In order to
to understand more realistic situations, we have studied sonise Eq.(6.1) in approach(1), we need the Rondo function
trajectories around cusps. describing a part of the asymptotic trajectory coming out of

Our asymptotic trajectories were compared with closed™; the rest of the asymptotic trajectory may be obtained just
trajectories obtained via simulations. Except for some detail§y differentiating the initial function repeatedly. So the ini-
around cusps, the agreement is quite good. Our work is ndta! Rondo function is of vital importance.
the first one where the comparison was made between simu- Since the OV function is symmetric, the transcendental
lations and analytic results. In RéL4], Nagatani proposed a €duation(4.53 may be used to find the initial Rondo func-
stochastic cellular automaton model for which the closed trallon- Let us remember'how solutions are d'St”bUted.' There
jectory was analytically obtained with a mean field method.2'® only wo real solutions: yiy<0 and yo,>0, and infi-
The analytic result recovers the simulations qualitatively fornltely many CF’”?P'GX solutions \_/vho_se ”?a' parts are '?‘rger

X T thany,,. The initial Rondo function is a linear combination

a certain range of acceleration in his model. of infinitely many exponential functions with Rg(>0

In the following we discuss four questions related to the i

Rond 1 a d ini fah f Therefore, it contains infinitely many coefficients, which
onado approgch( ) @ description ol a NOMOgeneous Tow, 1, st pe determined to give an asymptotic trajectory with
(2) an extension to OV models with asymmetric OV func-

; . i X e properties described in Sec. Ill. To find an asymptotic trajec-
tions; (3) more on realistic trajectories; arid) a possibility tory in this way, we probably need some new techniques.

to find the Rondo functiofiorward in time. In this paper we have considered the repetitive pattern in
It would be appropriate to mention how a homogeneousraffic flow. Such a repetitive structure is also observed in

flow may be described in the Rondo approach. A homogeyarious phenomena, and we believe that our approach may

neous flow is described by the solution to the Rondo equape helpful to understand them.

tion, F(t) =vo=const, whereél andv are chosen to satisfy

the relationp o= V[(vo+vg) T]. The trajectory of the flow is APPENDIX A: ASYMPTOTIC TRAJECTORY IS

represented by a single point on the OV function. We know SYMMETRIC

that the instability of this trajectory to a small perturbation . .

gives us a congested flow. The stability analysis of an N this paper we have used the following property of an

asymptotic trajectory might help us to understand the natur@SYmptotic trajectory:&xc,vc) and Axg,vg) are at sym-

of this pattern formation. metric positions for ov fu.nctlon symmetric around a point
Studying more realistic models, we may encounter ar>- Here we v_vould like to give a proof of the above claim for

asymmetric OV function. We explain how our procedure,n OV function symmetric with respect to the pofiit

developed in this paper, may be extended to such situations, SUPPose an OV-function function and a sensitivity are

Even with an asymmetric OV function, we may define thediven. Our Rondo equation contains two paramelersnd

concept of accelerating and decelerating asymptotic trajectd:s

ries. When the symmetry is absent, accelerating and deceler- 1

ating asymptotic trajectories are not related to each other and e =TT _

must be found independently. The condition that both of aF(t)+F(t) VIF(t+T) = F(O)+veT]. (AL)

them share the same end poitsand F will determine the

a dependence of. If we could find a solutiorf(t) for the equation, this means
Even though we have mainly studied asymptotic trajectothat, for the OV function and the sensitivity a correspond-

ries, the Rondo equation itself must be applicable for anyng pattern with the delayr and the backward velocityg

repetitive motion of vehicles. On the other hand, as we havenay be realized.

observed for piecewise linear models, the difference between The OV function is taken to be an odd function around

asymptotic trajectories and the results of computer simulathe pointS(Axs,vs). This assumption is expressed with an

tions are very small. Therefore, whether we would like toodd functionW(—x)=—W(x) as follows:

obtain a realistic trajectory out of the Rondo approach or not

very much depends on our purpose. V(AX)=vgtW(AX—AXsg). (A2)

F(t+T)=P[F(t),E(t),F(t):a,0g,T], (6.2
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By putting this form to the Rondo equation, it now looks  The solution for Eq(B2) is
like,

1. . Go(t)=d(e 2—1). (B3)
SFO+FO =05 WIF(t+T) = F(1) +vgT—Axg].

(A3) In terms of the functiorg,(#) defined as follows:

k
We assume that a solution to the Rondo equation has been asl af —(a/2)t

found. It gives a trajectory on th&x-v plane, whose coor- Crn(O=C+ -1 ) @ glwt)  (k=0),

dinate we denote gd x,(t),v4(t)). They are expressed with (B4)

the functionF(t) as follows:

the initial conditions at=0 are expressed as

v =Et), Axy()=F(t+T)—F(t)+vgT. (Ad) 9(0)=0, 6(0)=0, (k=1)

By using the fact thaW is odd, it is easily shown that 90(0)=0, gy0)=1. (B5)
(Ax,(t),v4(t)), given below, satisfies the Rondo equation aScrom Egs.(B1), (B2), and w?=af—a%4, the equation to

well. determineg,(6) is

va()=F (1), Ax()=F(t+T)—F(t)+v'sT, (A5) g0 +a( D=0k 1(0) (k=1)
where F(t)=2vgt—F(t) and ov'gT=-2vsT—vgT 9o(6)+9go(6)=0. (B6)
+2AXsg.

The initial value problem with Eq9B5) and (B6) may be

It is also easy to see thaldx(t),v4(1)) and solved with the spherical Bessel functioji$6) as

(Ax5(t),v4(t)) are symmetric with respect to poit There-
fore, if the former defines a trajectory from a free to a con- 1
gested region, the latter defines that for the opposite direc- gr(0)= W@"“j (09). (B7)
tion. :
Here we emphasize that two trajectories have differen

backward velocities but with the same delay tifndn com- We give functions fok=0, 1, 2, 3 explicitly.

puter simulations, we observe that a pattern of a congested Jo( 6) =sind

flow is characterized with two parametefsand vg; both

regions,_ connecting free to congestgd or congestgd to free, g1(0) = L(sind— dcos),

move with the same backward velocity. So two trajecto-

ries connecting free gnd congested regions must have the 9,(8) = L(3sing— 30coss— 6%sing),

same parameters. This must be also true for an asymptotic

trajectory. Thereforey’s must be equal twg itself. This 93(8) = & (15sind— 156c08) — 6 62sind+ §3cosh).

implies that the two trajectories discussed above form a (B8)
closed trajectory. Thus we may conclude the followi(b:

solutions expressed bf(t) and F(t) satisfy the Rondo In this paper, we also use another series of solutions

equation with the same parametdfsandvg; (2) the two  hi(t) of Egs.(B6) with the initial condition
points on the OV function connected by trajectories are sym-
metric with respect to poinS; and (3) the straight line h(0)=0, h(0)=0, (k=1)
through the two points includes the poiat
ho(0)=1, h{(0)=0. (B9)
APPENDIX B: GENERAL FORMULA

FOR STEP-BY-STEP METHOD It is easily shown thah,(6) is given by

In the following we will give a general formula for the g — i
second order linear differential equation: hi(0)=0k(0)= 2k i1 9), (B10

1d> 1d _ where the second equality is valid only fke1. We also
arae T T T/ C=Cra(D) give h(6) for k=0, 1, 2, 3 explicitly.

GW(0)=0, G(0)=0 (k=1), (B1) ho(9)=cos,

1 & h,(6)=136sing,

— ==+ - —+1|Gy(t)=Gy(t)

af d? ' f dt 0 0 h,(6) = %(6sing— 6%cosd),

Go(0)=0, Gy(0)=-as. (B2) ha(0) = %(36sind—36%cos¥— #3sing).  (B11)
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