
PHYSICAL REVIEW E JUNE 1997VOLUME 55, NUMBER 6
Dynamics and thermodynamics of delayed population growth

VicençMéndez and Juan Camacho
Grup de Fı´sica Estadı´stica, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Spain

~Received 31 January 1997!

The dynamic and thermodynamic properties of delayed nonlinear reaction-diffusion equations describing
population growth with memory are analyzed. In the dynamic study we first apply the speed selection mecha-
nisms for wave fronts connecting two steady states obtaining, on one hand, a decrease in the lower bound
speed, and also an upper bound velocity; we also calculate an exact wave front solution. In the thermodynamic
study, we show an agreement between the stochastic description and extended irreversible thermodynamics in
the presence of a source of particles.@S1063-651X~97!10205-7#

PACS number~s!: 05.70.2a, 05.40.1j
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I. INTRODUCTION

Reaction-diffusion models have been used to describe
ferent phenomena in fluid dynamics, dendritic growth, po
lation growth, pulse propagation in nerves, and other biolo
cal phenomena. The ensuing equations are derived from
classical diffusion equation taking into account a source te
of particles; the most commonly one used in the study
population growth is the Fisher equation, in which the sou
term is logistic@1–4#. Some authors have generalized th
study by introducing diffusion coefficients depending on t
number density@2,3#, so that the problem becomes high
nonlinear. However, no memory is considered in the la
models.

In the present paper we generalize the previous react
diffusion models in biological populations by includin
memory effects. It is well known that an animal’s motio
during a small time period has a tendency to proceed in
same direction as it did in the immediate period before@5#.
This memory has as an immediate consequence the del
the appearance of the population flux, a delay that has
been considered in previous models to our knowledge. Le
notice, on the other hand, that delayed transport equat
have been widely used to solve diffusion problems, hyp
bolic heat conduction, and viscous transport processes@6#.
These kinds of transport equations show an important
ture: the propagation speed of the perturbations is finite,
is, these equations are causal.

In Sec. II the new equation is derived from three differe
methods: from the theory of stochastic processes, phen
enologically, and from the extended irreversible thermo
namics~EIT! framework@6#.

In Sec. III we study the main dynamical features of t
delayed reaction-diffusion equations. Firstly, we revise
recent problem of the speed selection mechanisms by ap
ing to our model the classical linearization method and
recent method proposed by Benguria and Depassier@4#. Sec-
ondly, we find an exact solution for stable heteroclinic wa
fronts connecting homogeneous steady states for the par
lar case of a generalized logistic source term.

We compare in Sec. IV the thermodynamic functions o
tained at the stochastic level of the description and the o
supplied by EIT, and end the paper with some underly
conclusions.
551063-651X/97/55~6!/6476~7!/$10.00
if-
-
i-
he
m
f
e

r

n-

e

in
ot
us
ns
r-

a-
at

t
m-
-

e
ly-
e

e
u-

-
es
g

II. DELAYED NONLINEAR DIFFUSION EQUATIONS

In this section we provide some different frameworks f
delayed reaction-diffusion equations in order to descr
more realistic diffusive~for instance, migration animal! and
generating particle~for instance, sexual reproduction! pro-
cesses in an unbounded one-dimensional space. First o
we find the evolution equation from the correlated or pers
tent random walk with a nonlinear population source. T
second one is a phenomenological derivation, where the
is a delay of timet for the population flow after imposing
the population gradient. Finally, we obtain the delayed eq
tion in the framework of extended irreversible thermodyna
ics.

A. Correlated random walk

When memory effects are taken into account, succes
movements of the dispersive particles are not mutually in
pendent, so there is a correlation between successive s
This model was developed initially by Goldstein@8# in 1951
starting from a pioneering work by Taylor in 1921@9#. Fol-
lowing this approach we now show how to construct a d
ference equation and its limiting partial hyperbolic differe
tial equation, which characterize the correlated random w
described. Let us assume that at initial timet50 many par-
ticles ~animals, viruses, bacterias, etc.! are at x50. Let
n(x,t) be the fraction of particles that at timet are at posi-
tion x. Denoting byn1(x,t) and n2(x,t) the fraction of
particles that are arriving from the left and from the righ
respectively, then

n~x,t !5n1~x,t !1n2~x,t !. ~1!

Thusn1(x,t) andn2(x,t) characterize right and left moving
particles, respectively. Also letp be the probability of jump-
ing in the same direction as the previous jump, that is,
probability that the particle persists in its direction after co
pleting a step, whereasq512p denotes the probability for
jumping in the opposite direction. Note that in a classic
random walk, the probability of jumping to the right or to th
left is 1/2, so there is no correlation between the speed
rection at successive jumps. With steps of lengthd occurring
in time intervals of lengthT, we immediately obtain
6476 © 1997 The American Physical Society
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n1~x,t1T!5pn1~x2d,t !1qn2~x2d,t !,

n2~x,t1T!5pn2~x1d,t !1qn1~x1d,t !. ~2!

Define now g5p2q, the correlation coefficient betwee
two successive steps. In the limitT→0, d→0, keeping the
ratio d/T→v ~the finite velocity of the particle!, the correla-
tion coefficientg→1, and the probability of persistencep
tends to unity, whereas the probabilityq of reversal should
tend to zero. This means that we should have for smalT,
p512lT1O(T2) andq5lT1O(T2) wherel is the rate
of the reversal of direction. Introducing Taylor expansio
for n1 andn2 up to the first order inT andd and taking into
account the expansion ofp andq onT we find from the first
equation of~2! that

]n1

]t
1v

]n1

]x
52m, ~3!

wherem5l(n12n2) is the rate of creation or loss of pa
ticles. From the second equation of~2! we find analogously

]n2

]t
2v

]n2

]x
5m. ~4!

By adding Eqs.~3! and ~4! one obtains the particle conse
vation equation

]n

]t
1

]J

]x
50, ~5!

taking into account Eq.~1!, and subtracting Eqs.~3! and~4!
one finds for the particle flux defined asJ(x,t)
5v(n12n2), the following equation

t
]J

]t
1J52D

]n

]x
, ~6!

which adopts a Maxwell-Cattaneo form wheret51/2l is the
relaxation time andD5v2t the diffusion coefficient.

If we consider that there exists a source of partic
F(n).0 the conservation equation~5! hasF(n) in its right-
hand side instead of 0. Combining this equation toget
with Eq. ~6! we find the nonlinear reaction-diffusion equ
tion

t
]2n

]t2
1

]n

]t
5D

]2n

]x2
1F~n!1t

]F~n!

]t
, ~7!

which is the central one in the present paper and will
analyzed in the next section. This equation, without sou
terms, has been widely studied analytically with differe
boundary conditions in a one-dimensional medium@10,11#.

B. Phenomenological derivation

In this section we derive the transport equation~7! but
from a macroscopic point of view. The balance equation
the fraction of particlesn in an one-dimensional problem i

]n

]t
52

]J

]x
1F~n!, ~8!
s

s

r

e
e
t

r

whereF(n) is the generating particle source function. T
particle flux J(x,t) must take into account the relaxation
effect due to the delay of the particles in adopting one d
nite direction to propagate. Therefore, memory in the cor
lation between steps may be understood macroscopically
delay in the flux of particles for a given concentration gra
ent. Then, from the classical transport Fick’s law,

J~x,t1t!52D
]n~x,t !

]x
, ~9!

with t a characteristic time. Note that expandingJ up to the
first order int, one has

t
]J~x,t !

]t
1J~x,t !52D

]n~x,t !

]x
. ~10!

Combining Eqs.~8! and~9! we find the transport equatio

]n~x,t1t!

]t
5D

]2n~x,t !

]x2
1F@n~x,t1t!#. ~11!

Expanding in Taylor series the functionsn(x,t1t) and
F(x,t1t) up to the first order int we recover Eq.~7!, the
telegrapher equation. The physical difference between
equation and the classical diffusion equation~we refer to the
diffusion process without delay as classical! is that the first
one has a finite velocity of dispersionvp whereas the classi
cal one does not (vp must not be confused with the velocit
of a wave front of a diffusing populationv f , which we treat
later!. In the limit t@t both equations give similar behavio
@11#, but in the high-frequency limit (tv@1) the telegra-
pher’s equation gives a finite velocity of dispersio
vp5AD/t while the classical Fick’s law diverges in thi
limit. Since no organism can spread or propagate with
infinite speed, the telegrapher’s equation is more reali
than the classical diffusion equation when applied to anim
dispersal problems.

However, as we show in turn, the finite velocity is n
maintained if we consider the exact expression given in
~11! instead of its first order approximation~7!. Transform-
ing in the Fourier space (v,k) we find for Eq.~11! the fol-
lowing dispersion relation:

k2D5veivt. ~12!

The phase velocity or the velocity of dispersion is

vp5
v

Re~k!
5A 2Dv

11cosvt
. ~13!

This velocity diverges when vt56(2n11)p for
n50,1,2,. . . . For vt562np, vp5vp

clas/A2 and for
vt56(2n11)p/2 both velocities coincide. The attenuatio
distance reads

d5
1

Im~k!
5

AD/v
sin~vt/2!

,

which diverges forvt562np. Surprisingly, the exact de
layed equation gives a divergent behavior but not its fi
truncated equation.
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This problem, however, does not occur when one dedu
the transport equation in the framework of extended irreve
ible thermodynamics.

C. Extended irreversible thermodynamics

In EIT one assumes that the entropy density depends
the classical variables and also the dissipative fluxes@6#; in
this cases5s(n,J), with n the number density of particle
and J the particle flux. In differential form the entropy i
written as

ds5S ]s

]nDdn1S ]s

]JDdJ, ~14!

where

S ]s

]nD
J

52T21m, S ]s

]JD
n

52
T21aJ

n
, ~15!

m being the chemical potential per particle anda a scalar
function not depending onJ at the lowest order of approxi
mation. The generalized Gibbs equation up to the sec
order inJ is then given by

ds5dseq2T21
a

n
JdJ ~16!

and integrating, one has for the generalized entropy

s5seq2
a

2Tn
J2. ~17!

Combining Eqs.~14! and ~15! with the particle balance
equation

]n

]t
1

]J

]x
5F~n!

and the balance equation for the entropy,ṡ1¹Js5ssyst, we
find for the entropy production of the system of particl
~with Js52mJ/T as usual!

ssyst52
J

TF¹m1
a

n

]J

]t G2
mF

T
. ~18!

Let us now notice that the physical volume element conta
two subsystems; on one hand, the particles—which are
center of our attention—and on the other, the medium g
erating new particles. What must be positive definite acco
ing to the second law of thermodynamics is the total entro
production, namely,sT5ssyst1sgen, i.e., the sum of the
entropy productions of both subsystems~and not each term
separately!. Thus we have

sT52
J

TF¹m1
a

n

]J

]t G2
mF

T
1sgen>0. ~19!

Expression~19! shows two contributions, one for each irr
versible process present. The first term is related to diffus
and the last two terms in the right-hand side are associate
es
s-

on

d

s
he
n-
-
y

n,
to

the creation of particles; as usual in irreversible thermo
namics, each one must be positive definite

sdif52
J

TF¹m1
a

n

]J

]t G>0, sgen2
mF~n!

T
>0. ~20!

The first inequality in Eq.~20! requires the term inside
brackets to depend on the fluxJ in order to be positive defi-
nite. In the simplest case, this relation is linear,

2F¹m1
a

n

]J

]t G5LJ, ~21!

with L a positive scalar quantity.
Defining the positive parameterst[a/nL and

D[(]m/]n)/L as the relaxation time and the diffusion c
efficient, we find for a one-dimensional environment at re

t
]J

]t
1J52D

]n

]x
, ~22!

as in Eqs.~6! and ~10!.

III. TRAVELING WAVE SOLUTIONS

In this section we are interested in finding traveling wa
solutions for our model. The motivation comes from t
widespread existence of wave phenomena in biology as
as the vast mathematical literature on aspects of the w
behavior where diffusion plays a crucial role.

In contrast to simple diffusion processes, when react
kinetics and diffusion are coupled there exist traveling wa
of the particle density. As is usual in the literature, a trav
ing wave is taken to be a wave that travels without change
the shape and with a constant speed of propagation, w
we denote byv f . We treat in this section the same selecti
mechanisms for these wave fronts, and also find and e
solution for the wave front in a particular case.

Let us find the equation governing the wave front. W
start from the nonlinear reaction-diffusion equation~7! de-
rived in three different ways in the previous sections. T
source term is often written asF(n)5k f(n), wherek.0
and f (n) is usually a nonlinear polynomial. In the logisti
case, for instance,F(n)5kn(12n). Our main objective is to
find heteroclinic solutionsn(x,t)5n(x2v f t)5N(z) con-
necting two steady states,z5x2v f t being the wave vari-
able; thenn(x,t) is a traveling wave moving at constan
speed in the positivex direction. For further purposes it i
convenient to rescale Eq.~7! as follows:

t*5kt, x*5xAk/D. ~23!

So, the front velocity may be written asv f5cAkD , thusc is
the dimensionless front wave speed. Defining the dimens
less groupa[kt, Eq. ~7! becomes, omitting the asterisks fo
notational simplicity,

a
]2n

]t2
1

]n

]t
5

]2n

]x2
1 f ~n!1a

] f ~n!

]t
. ~24!

Then, the steady spatially homogeneous states,N*5const,
satisfy f (N* )50 (N*>0 sincen,0 has no physical mean



e
s

al
y

n
r

o
lu

n
ac
ic
an
t
te
fo

r-
te
ha
e

b

ro
-
d
-

b
b

ac
m

i-

has

ote
s
ty.
it

i.e.,

sis
ve

g.

han
rm
the
the

-
ith
he
to
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ing!. Due to the fact that Eq.~24! is invariant under the
changex→2x, the front speed may be positive or negativ
To be specific we shall assume the positive values. Sub
tuting the traveling wave form withz*5x*2ct* and omit-
ting the asterisk inz, N(z) satisfies

~12ac2!Nzz1c@12a f8~N!#Nz1 f ~N!50, ~25!

where 85d/dN; in the limit a→0 one recovers the classic
equation@1,4#. As is usual in this context, this equation ma
be written in the form of a damped oscillator

dE~z!

dz
52c@12a f8~N!#Nz

2 ~26!

for f 8,1/a, where E(z)5 1
2(12ac2)Nz

21V(N) and
V(N)5* f (N)dN. The kinetic energy term is lower than i
the classical case but the dissipative term is also lowe
f 8.0 or, on the contrary, higher iff 8,0.

A. Speed selection mechanisms for fronts

In this subsection we study two main mechanisms
speed selection for the velocity of propagation of front so
tions connecting two homogeneous regions, let, say,n50
andn5M . It is observed both numerically and experime
tally that, despite the fact that the system can typically
commodate families of fronts, the global nonlinear dynam
rapidly selects a unique solution. The physically relev
question is at what speed does the front move towards
unstable region. This speed will be referred to as selec
speed.@The asymptotic speed will be the lowest speed
which Eq. ~24! has a front joining both states.# The oldest
studied mechanism was supplied by Kolmogorovet al. @12#,
who obtained the limit front speed from stability conside
ations on the linearized equation. Since this work, the at
tion has been focused in applying more restrictive mec
nisms of selection and giving lower bounds to that obtain
by linearizing. We subsequently apply to our Eq.~24! the
linearized method and another one recently proposed
Benguria and Depassier based in a variational analysis@4#.

1. Linearization method

In this subsection we apply the linearization method p
posed by Kolmogorovet al. @12#. This method takes advan
tage of the fact that the front profileN(z) can be represente
in a phase space (N,Nz) as a trajectory joining the homog
enous steady statesN*50 and N*5M . The trajectory
leaves from the unstable solution and finishes in the sta
one; the stability analysis is performed around this sta
point.

ac2Þ1. We rewrite Eq.~25! as the dynamical system

Nz5y, yz5
c~12a f8!

ac221
y1

f

ac221
. ~27!

The fixed points are the roots off (N), namely,N* . To ana-
lyze the stability of these fixed points in the phase sp
(N,Nz) we must construct the Jacobian matrix of the syste
The eigenvalues of this matrix are given by
.
ti-

if

f
-

-
-
s
t
he
d
r

n-
-
d

y

-
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le

e
.

l65
c@12a f8~N* !#

2~ac221!
6

1

2~ac221!

3Ac2@12a f8~N* !#214 f 8~N* !~ac221!. ~28!

The solutions forN have to be positive in order to be phys
cally meaningful, therefore the stable rootN* must be a
stable node. Consequently, the radicand in Eq.~28! must be
positive for the eigenvalues to be real numbers. Then one

c>
2Af 8~N* !

11a f8~N* !
[cL , ~29!

thus we find a lower limit for the possible wave speeds. N
that inequality ~29! only makes sense for solution
f 8(N* )>0, so that this is a necessary condition for stabili
Furthermore, forl6 to be negative as required by stability,
is necessary thatac2,1 and f 8(N* ),1/a. Notice that in-
equality ac2,1 provides an upper bound forc, namely
c̃[1/Aa.
Summarizing, stability conditions lead us to

cL<c, c̃, 0< f 8~N* !,
1

a
. ~30!

Let us stress that the lower boundcL given by Eq.~29! is
smaller than the one supplied in the absence of memory,
2Af 8(N* ), and the upper boundc̃ is independent of the
explicit form of the source termf (n).

As an illustrative example, we apply the previous analy
to the logistic growth. There exist stable traveling wa
fronts connecting the statesN*51 andN*50 with speeds
restricted to

2

11a
<c,

1

Aa
and a,1. ~31!

Then in the classical version~no memory! cL52, while in
our modelcL ranges from 2 ata→0 to 1 ata→1. The upper
bound velocityc̃ bears also an interesting physical meanin
It may be written, with its dimensions, asc̃5AD/t. This is
the maximum velocity of diffusive pulses@6#, that is without
reaction terms. Since the speed of fronts is always lower t
c̃ (c, c̃), one concludes that the inclusion of a source te
does not modify the maximum speed of propagation of
signal, andc̃ keeps being an upper bound to the speed of
signals with independence of a specific kinetic termf (n).

ac251. Now we analyze the stability of solutions, via lin
earization, for the case when the front speed coincides w
c̃, i.e., the maximum possible front velocity. In this case, t
nonlinear differential equation for the wave fronts reduces

cS a d fdN21DNz5 f ~N!. ~32!

Introducing a small perturbation«(z), N5N*1«, and ex-
panding up to first order in«, one has

«~z!5«0e
gz ~33!
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with

g5
1

c

f 8~N* !

a f8~N* !21
.

The stability conditiong,0 is fulfilled if and only if
0, f 8(N* ),1/a, as also found in Eq.~30!. Restricting to the
logistic case, this means that the stateN*51 is unstable and
N*50 is stable provided thata,1. Hence, ifa,1, there
exist stable traveling fronts connectingN*51 to N*50
propagating with the maximum possible velocityc̃51/Aa.

2. Benguria’s method

We apply now the method proposed recently by Bengu
and Depassier@4# to our model equation to find a bette
bound, if possible, for the speed of fronts. Starting from E
~25! we define the variablep(N)52Nz.0 such that
p(0)50 andp(1)50. Introducing this variable, multiplying
by g/p, and integrating, we obtain

E
0

1S ph~12ac2!1
g f

p DdN5cE
0

1

g~12a f8!dN, ~34!

whereh52g8.0. If g8(12ac2),0 then it is possible to
use the Swarzian inequality and write

ph~12ac2!1
g f

p
>2Ah~12ac2!g f .

So from Eq.~34! we find that

c>
2*0

1Af gh~12ac2!dN

*0
1g~12a f8!dN

, ~35!

where g is positive definite. For the logistic cas
f (N)5N(12N), taking the arbitrary function g(N)
5(12N)2, we find that the limit speed predicted by Be
guria’s method satisfies

c>
64

35

A2~12ac2!

22a
.

Then, there exists a lower bound forc given by

c>cL*[
64A2

A1225~22a!218192a
.

On the other hand, our choice forg(N) impliesg8,0, thus
the inequalityg8(12ac2),0 leads to an upper limit forc,
namely,c< c̃[1/Aa, which coincides with the one found b
means of the linearization method.

In summary, using Benguria’s method the selected fr
speeds range from

cL*<c, c̃

in this case without any additional restriction ona.
It is easy to prove thatcL*,cL for a,1.436 andcL*.cL

for a.1.436. In the range of validity of the linearizatio
method, that is fora,1, the lower bound predicted by Ben
guria’s method (cL* ) is always lower than that predicted b
a

.

t

the linearization method (cL). So, the linearization selectio
is stronger than the variational one. However, we ha
shown that from both methods the front speed has also
upper boundc̃, which does not exist in classical reactio
diffusion models.

B. Exact heteroclinic solutions

We focus on the special case whenac251. In this case
one finds the formal solution for Eq.~25!:

ez2z0 /c5 f ~N!ae2*dN/ f ~N!,

wherez0 is an integration constant. The problem is to inve
this expression. It admits an inversion at least for one s
cific case as we show in turn. For the generalized logis
growth f (N)5N(12Nr) this formal solution may be written
as

ez2z0 /c5Na21~12Nr !a11/r .

Choosingr52 anda51/4 the traveling stable wave front i
written as

N~z!5
1

2
~Ae4~z2z0!/3142e2~z2z0!/3!, ~36!

which propagates at speedc52 between the steady state
N50,1.

On the other hand, fora50 and r52, there exists an
analytical solution forc53/A2.2.12 given by@1#

N~z!5
1

11e~z2z0!/A2
. ~37!

In Fig. 1, we compare both solutions. One observes t
the delayed curve is steeper than the classical one.

FIG. 1. Entropy production for the front wave solution obtain
in the text. The solid line represents the entropy production supp
by EIT, sEIT ; the dashed line shows the entropy production in
stochastic description.
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IV. NONEQUILIBRIUM THERMODYNAMICS

One can perform a comparison between the thermo
namic functions coming from the statistic description giv
in Sec. II A and the ones appearing in extended irrevers
thermodynamics. Such a comparison has been done by
macho and Zakari for the case when there is no sourc
particles@7#.

At the statistic level, the entropy density is written as

s~x,t !52kB~n2lnn21n1lnn1!

52
kB
2 F S n1

J

v D ln12S n1
J

v D
1S n2

J

v D ln12S n2
J

v D G ~38!

and the entropy flux as

Js~x,t !5kBv~n2lnn22n1lnn1!

5
kB
2 F S n2

J

v D ln12S n2
J

v D2S n1
J

v D ln12S n1
J

v D G .
~39!

Up to orderJ2 both functions coincide with the ones su
plied by EIT, as seen in@7#. The entropy production, on th
other hand, differs if a generation of particles is prese
Therefore, it seems reasonable to wonder if this entropy p
duction obtained from the statistic description coincides
the lowest orders, with the one proposed by EIT. The b
ance equation for the entropy, using Eqs.~38! and ~39! and
the mass balance equation~8!, yields

ssyst5
ds

dt
1¹Js52

kB
2vF J̇1v2

]n

]xG lnS nv1J

nv2JD
2
kB
2
F~n!lnFn22J2

2
12G . ~40!

Expanding the logarithm and keeping up to the low
order inJ, one obtains a term of the type of the first one
Eq. ~18!, namely,

sdif.2
kB
nv2

JF J̇1v2
]n

]xG5
kB
nD

J2, ~41!

as already seen in@7#. The new term is the second one in E
~40! that, for consistency with EIT, should be recast as
second term in Eq.~19!. Let us see that this is so by calcu
lating the chemical potentialmT21 from Eq. ~38!,

mT2152
]s

]n UJ5kB
2
lnFn22J2

2
12G .

Therefore, we obtain a full agreement between the stocha
description and EIT when one includes a source term.

To end this section, we compare the values of the ex
expression forsdif as given by Eq.~40! and the approximate
one, Eq.~41!, supplied by EIT, for the wave front profile
obtained in Sec. III B. For convenience, we wri
y-

le
a-
of

t.
o-
t
l-

t

e

tic

ct

sdif* [sdif /kkB and J*[J/v and omit asterisks. One ha
with the help of the transport equation~6!,

sdif5
J

2a
lnFn1J

n2JG ~42!

and

sEIT.
J2

an
~43!

for J!n ~EIT!.
Then to evaluate these expressions for the entropy

ductionsdif we need an expression forJ(z). By the dimen-
sionless particle balance equation~8! and taking into accoun
thatD5v2t, one easily finds

J~z!5AaS cn~z!1E f ~z!dzD , ~44!

which, combined with the exact solution~36!, yields after
tedious calculations

J~z!5
1

4
e2z/32

1

8
e4z/3A41e4z/31

1

8
e2z, ~45!

wherez050. With this expression forJ(z) and Eq.~36! for
N(z) we may calculate the entropy density, the entropy p
duction density, etc. In Fig. 2 we plot the entropy producti
due to diffusion given in the EIT formalism, expression~43!,
versus the entropy production provided by the statistical
scription ~42!. One concludes that the differences are qu
small and the entropy production has the form of a solit
Since diffusion only occurs at the transient region—outs
it the concentration is uniform—the entropy production on
differs from zero in this region.

FIG. 2. Wave fronts for a logistic source termf (N)
5N(12N2) in the delayed case (a52,c52, solid line!, and the
classical case (a50,c53/A2.2.12, dashed line!.



m
no
Th
er

c
o
ic
n
u
ol
ty
e
n
th
i
e
e

m
th

the
per
of
We
the
ion
tic

ee-
om
—
the
roof
re a

ve
ial

ce
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V. CONCLUSIONS

We have proposed in this paper a population dyna
model that includes memory effects, a feature that is
present in other models discussed in the literature.
model presented is based in the inclusion of a relaxation t
in the equation governing the flux of particles~or members
of a species!. We have showed three contexts in which su
an equation would arise: a stochastic description, a phen
enological one, and extended irreversible thermodynam
The combination with the balance of particles—which co
tains a source term describing, for instance, sex
reproduction—supplies a model equation of the hyperb
type, having the key property of providing a finite veloci
for the speed of a signal, in contrast to the previous mod
which are parabolic, and lead to an infinite speed, what is
physically sensible. Let us mention, on the other hand,
the present paper is also of interest for people working
EIT, since it deals with a case where there exists a nonlin
source term, a situation that, as far as we know, has not b
faced in the past.

We have performed a dynamical analysis and a ther
dynamical one. In the first point, we have shown that
ic
t
e
m

h
m-
s.
-
al
ic

ls,
ot
at
n
ar
en

o-
e

inclusion of memory decreases the lowest bound for
wave front velocities, and also that there exists an up
bound for it, which coincides with the maximum speed
diffusive pulses, i.e., in the absence of source terms.
have also found that Benguria’s method for calculating
lowest speed limit is less restrictive than the linearizat
method. An exact solution for the front shape in the logis
case has also been calculated.

Finally, we have shown that there is a complete agr
ment between the thermodynamic functions obtained fr
the stochastic description exposed in Sec. II A
corresponding to a persistent random walk—and EIT in
presence of a source of particles. This extends the p
given by Camacho and Zakari for two-layer systems, whe
source term was not considered.
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