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The dynamic and thermodynamic properties of delayed nonlinear reaction-diffusion equations describing
population growth with memory are analyzed. In the dynamic study we first apply the speed selection mecha-
nisms for wave fronts connecting two steady states obtaining, on one hand, a decrease in the lower bound
speed, and also an upper bound velocity; we also calculate an exact wave front solution. In the thermodynamic
study, we show an agreement between the stochastic description and extended irreversible thermodynamics in
the presence of a source of particlg81063-651X%97)10205-7

PACS numbdis): 05.70—a, 05.40:+j

I. INTRODUCTION Il. DELAYED NONLINEAR DIFFUSION EQUATIONS

In this section we provide some different frameworks for

Reaction-diffusion models have been used to describe OIIfélelayed reaction-diffusion equations in order to describe

ferent phenomena in fluid dynamics, dendritic growth, popus,q e realistic diffusivefor instance, migration animgand
lation growth, pulse propaganon in nerves, and o_ther b'OIOQ"generating particléfor instance, sexual reproductippro-

cal phenomena. The ensuing equations are derived from theysses in an unbounded one-dimensional space. First of all,
classical diffusion equation taking into account a source termye find the evolution equation from the correlated or persis-
of particles; the most commonly one used in the study Otent random walk with a nonlinear population source. The
population growth is the Fisher equation, in which the sourcgecong one is a phenomenological derivation, where the key
term is logistic[1—4]. Some authors have generalized thisis 5 delay of timer for the population flow after imposing
study by introducing diffusion coefficients depending on they,q population gradient. Finally, we obtain the delayed equa-

number density2,3], so that the problem becomes highly (o, in the framework of extended irreversible thermodynam-
nonlinear. However, no memory is considered in the lattef.q

models.

In the present paper we generalize the previous reaction-
diffusion models in biological populations by including A. Correlated random walk
memory effects. It is well known that an animal’s motion
during a small time period has a tendency to proceed in thf:n

?’;‘]F"e directior;] as it did .in the dilmtmediate period tt’ﬁi[(ﬂfl pendent, so there is a correlation between successive steps.
IS meémory has as an immediate consequence the delay ¥ moge| was developed initially by Goldstdi#] in 1951

the appearance of the population flux, a delay that has n%ttarting from a pioneering work by Taylor in 1929]. Fol-

been considered in previous models to our knowledge. Let uﬁ‘)wing this approach we now show how to construct a dif-

Eotlcel; on thg dolther hgntd, th?t dc?.lf?y?d transtp))lort eqﬁat'or}férence equation and its limiting partial hyperbolic differen-
ave been widely used 1o Solve dIfiusion probiems, Nyperg,, equation, which characterize the correlated random walk

bolic hegt conduction, and visc_ous transport _proce@@]as described. Let us assume that at initial tile0 many par-
These kinds of transport equations show an important feafcles (animals, viruses, bacterias, @tare atx=0. Let
ture: the propagation speed of the perturbations is finite, th (x,1) be the f,raction of’ particles tr’1at at tinteare at posi-

's, these equations are causal. tion x. Denoting byn,(x,t) and n_(x,t) the fraction of

meltr;lfdesc'. fl:otrf:]e tﬂivzﬁg;a“g: slfo((j:ﬁg\éﬁg fr?(;g;g;ii d'fﬁzﬁgt _articles that are arriving from the left and from the right,
) y P ' P espectively, then

enologically, and from the extended irreversible thermody-
namics(EIT) framework[6]. nx,t)=n, (x,t)+n_(x1). (1)
In Sec. lll we study the main dynamical features of the
delayed reaction-diffusion equations. Firstly, we revise the
recent problem of the speed selection mechanisms by apply-husn, (x,t) andn_(x,t) characterize right and left moving
ing to our model the classical linearization method and theparticles, respectively. Also lgt be the probability of jump-
recent method proposed by Benguria and DepaB4leBec- ing in the same direction as the previous jump, that is, the
ondly, we find an exact solution for stable heteroclinic waveprobability that the particle persists in its direction after com-
fronts connecting homogeneous steady states for the particpleting a step, whereas—=1—p denotes the probability for
lar case of a generalized logistic source term. jumping in the opposite direction. Note that in a classical
We compare in Sec. IV the thermodynamic functions ob-random walk, the probability of jumping to the right or to the
tained at the stochastic level of the description and the ondsft is 1/2, so there is no correlation between the speed di-
supplied by EIT, and end the paper with some underlyingection at successive jumps. With steps of lengitccurring
conclusions. in time intervals of lengthl, we immediately obtain

When memory effects are taken into account, successive
ovements of the dispersive particles are not mutually inde-
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n,(X,t+T)=pn (x—4,t)+gn_(x—4,t),

n_(x,t+T)=pn_(x+5,t)+qgn,(x+5,t). (2

Define now y=p—q, the correlation coefficient between

two successive steps. In the linit—0, §—0, keeping the
ratio 5/T—v (the finite velocity of the particle the correla-
tion coefficienty— 1, and the probability of persistenge
tends to unity, whereas the probabiliyof reversal should

tend to zero. This means that we should have for sall

p=1—\T+0O(T?) andq=AT+O(T?) where\ is the rate
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whereF(n) is the generating particle source function. The
particle flux J(x,t) must take into account the relaxational
effect due to the delay of the particles in adopting one defi-
nite direction to propagate. Therefore, memory in the corre-
lation between steps may be understood macroscopically as a
delay in the flux of particles for a given concentration gradi-
ent. Then, from the classical transport Fick’s law,

an(x,t)
ax

J(x,t+7)=—-D 9)

of the reversal of direction. Introducing Taylor expansionsWith = a characteristic time. Note that expandihgp to the

for n, andn_ up to the first order i and § and taking into
account the expansion pfandq on T we find from the first
equation of(2) that

on, on,
at ox

=—-m, (3)

wherem=\(n, —n_) is the rate of creation or loss of par-

ticles. From the second equation @) we find analogously

on_ an_

at v W =m. (4)

By adding Eqgs(3) and(4) one obtains the particle conser-

vation equation

an+¢9J_0 .
E 5_ y ()

taking into account Eq.1), and subtracting Eq$3) and (4)
one finds for the particle flux defined ad(x,t)
=v(n,—n_), the following equation

L 6
Tat YT T Paxe ©

which adopts a Maxwell-Cattaneo form where 1/2\ is the
relaxation time and =uv?7 the diffusion coefficient.

first order in7, one has

dJ(x,t)
at

+J(x,t)= D&n(x’t)
x,0= ax

T (10

Combining Eqs(8) and(9) we find the transport equation

n(xt+7) 5 a%n(x,t)

at ENG (1D

+F[n(x,t+7)].

Expanding in Taylor series the functiongx,t+7) and
F(x,t+7) up to the first order inr we recover Eq(7), the
telegrapher equation. The physical difference between this
equation and the classical diffusion equat{ore refer to the
diffusion process without delay as classjcal that the first
one has a finite velocity of dispersier, whereas the classi-
cal one does noty(, must not be confused with the velocity
of a wave front of a diffusing population; , which we treat
later). In the limit t> 7 both equations give similar behavior
[11], but in the high-frequency limit {w>1) the telegra-
pher's equation gives a finite velocity of dispersion
v,=+D/7 while the classical Fick's law diverges in this
limit. Since no organism can spread or propagate with an
infinite speed, the telegrapher’'s equation is more realistic
than the classical diffusion equation when applied to animal
dispersal problems.

However, as we show in turn, the finite velocity is not
maintained if we consider the exact expression given in Eq.

If we consider that there exists a source of particleg11) instead of its first order approximatigi). Transform-

F(n)>0 the conservation equatidB) hasF(n) in its right-

ing in the Fourier spacea(,k) we find for Eq.(11) the fol-

hand side instead of 0. Combining this equation togethetowing dispersion relation:

with Eqg. (6) we find the nonlinear reaction-diffusion equa-

tion

52n+an D62n+F . JF(n)
T2 T gt Ppe TR T,

()

which is the central one in the present paper and will be
analyzed in the next section. This equation, without sourc
terms, has been widely studied analytically with different

boundary conditions in a one-dimensional medit@,11].

B. Phenomenological derivation

In this section we derive the transport equati@h but

from a macroscopic point of view. The balance equation for
the fraction of particle® in an one-dimensional problem is

ﬁn_ oJ

St= " ax TR, tS)

k?D = we'“". (12)

The phase velocity or the velocity of dispersion is
e 2Dw 13
" Rek) VI1tcosur (13

q’his velocity diverges when wr=*(2n+1)7 for

n=012,.... For or==2nm, v,=v5®¥y2 and for
7=+ (2n+1)7/2 both velocities coincide. The attenuation
distance reads

1 VD/w

4= 1m0 ~ sinwm2)’

which diverges forw 7= = 2nsr. Surprisingly, the exact de-
layed equation gives a divergent behavior but not its first
truncated equation.
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This problem, however, does not occur when one deducethe creation of particles; as usual in irreversible thermody-
the transport equation in the framework of extended irreversnamics, each one must be positive definite

ible thermodynamics. 3
Udif:_f TBO (20)

C. Extended irreversible thermodynamics

In EIT one assumes that the entropy density depends on The first inequality in Eq(20) requires the term inside

the classical variables and also the dissipative fliésin  prackets to depend on the flxin order to be positive defi-
this cases=s(n,J), with n the number density of particles pite. |n the simplest case, this relation is linear,
and J the particle flux. In differential form the entropy is

written as v a dd L3 21
_ M+ _ | = ,
Js Js nat
ds=|—|dn+|—]dJ, (14 ) . ,
an dJ with L a positive scalar quantity.
Defining the positive parameterst=a/nL and
where D=(dul/dn)/L as the relaxation time and the diffusion co-
1 efficient, we find for a one-dimensional environment at rest
as . Js __T al (15
anj o1 aa . n ' §+J——D(9—n 22
T T P

© being the chemical potential per particle anda scalar

function not depending od at the lowest order of approxi- as in Eqs(6) and(10).

mation. The generalized Gibbs equation up to the second

order inJ is then given by Ill. TRAVELING WAVE SOLUTIONS

a In this section we are interested in finding traveling wave
ds=d%q—T*15JdJ (16) solutions for our model. The motivation comes from the
widespread existence of wave phenomena in biology as well
as the vast mathematical literature on aspects of the wave
behavior where diffusion plays a crucial role.

In contrast to simple diffusion processes, when reaction
J2. (17) kinetics and diffusion are coupled there exist traveling waves
of the particle density. As is usual in the literature, a travel-
ing wave is taken to be a wave that travels without change of
the shape and with a constant speed of propagation, which

and integrating, one has for the generalized entropy
o
S=Sed” 2T

Combining Egs.(14) and (15) with the particle balance

uation o . ;
equatio we denote by ;. We treat in this section the same selection
on a3 mechanisms for these wave fronts, and also find and exact
o + i F(n) solution for the wave front in a particular case.

Let us find the equation governing the wave front. We
] . start from the nonlinear reaction-diffusion equatigfh de-
and the balance equation for the entrogy,VJ*=ogys, We  rived in three different ways in the previous sections. The
find for the entropy production of the system of particlesggyrce term is often written a&(n)=kf(n), wherek>0

(with J°= —pJ/T as usual and f(n) is usually a nonlinear polynomial. In the logistic
case, for instancé; (n) =kn(1—n). Our main objective is to
Ooys= — i \ b ﬁ _ E (18) find heteroclinic solutionsn(x,t)=n(x—v;t)=N(z) con-
y T noatj T necting two steady stateg=x—uv;t being the wave vari-

) ) _ able; thenn(x,t) is a traveling wave moving at constant
Let us now notice that the physical volume element containgpeed in the positiver direction. For further purposes it is
two subsystems; on one hand, the particles—which are thgynyenient to rescale E¢7) as follows:

center of our attention—and on the other, the medium gen-

erating new particles. What must be positive definite accord- t*=kt, x*=xyk/D. (23

ing to the second law of thermodynamics is the total entropy

production, namelyor= ot 0gen, 1.€., the sum of the So, the front velocity may be written as=c kD, thusc is
entropy productions of both subsystefasd not each term the dimensionless front wave speed. Defining the dimension-
separately. Thus we have less groupp=kr, Eq.(7) becomes, omitting the asterisks for

notational simplicity,
J

a dJ
n ot

MmF
— T t0ge0. (19) #n on  #*n af(n)

aW—FE:&—Xﬂ—f(n)—Fa o (24)

Expression(19) shows two contributions, one for each irre-
versible process present. The first term is related to diffusionThen, the steady spatially homogeneous stat¥ss const,
and the last two terms in the right-hand side are associated gatisfyf(N*)=0 (N* =0 sincen<0 has no physical mean-
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ing). Due to the fact that Eq(24) is invariant under the c[1—af'(N*)] 1

changex— —X, the front speed may be positive or negative. Ne= 2(ac?—1) i2(acz— 1)

To be specific we shall assume the positive values. Substi-

tuting the traveling wave form wit* =x* —ct* and omit- X e [1—af’ (N*)]?+4f'(N*)(ac®—1). (28)

ting the asterisk irg, N(z) satisfies
The solutions folN have to be positive in order to be physi-
(1—ac?®)N,,+c[1—af’ (N)JN,+f(N)=0, (25 cally meaningful, therefore the stable rodt must be a
stable node. Consequently, the radicand in 8) must be
where’=d/dN; in the limit a— 0 one recovers the classical positive for the eigenvalues to be real numbers. Then one has
equation[1,4]. As is usual in this context, this equation may
be written in the form of a damped oscillator 2 (N*)

= Traf(ne) L (29

dE(z)
dz

=—c[1—af’(N)]N? 26
[1=af (N)IN; (26) thus we find a lower limit for the possible wave speeds. Note

that inequality (290 only makes sense for solutions
for f'<1/a, where E(z)=3(1—ac®)N2+V(N) and f'(N*)=0, so that this is a necessary condition for stability.
V(N)=[f(N)dN. The kinetic energy term is lower than in Furthermore, foh . to be negative as required by stability, it
the classical case but the dissipative term is also lower ifs necessary thaac?<1 andf’(N*)<1/a. Notice that in-
f’>0 or, on the contrary, higher if’ <O. equali}x ac’<1 provides an upper bound far, namely
ct=1/\a.

A. Speed selection mechanisms for fronts Summarizing, stability conditions lead us to

In this subsection we study two main mechanisms of _ 1
speed selection for the velocity of propagation of front solu- c =c<c, O=f ’(N*)<5. (30
tions connecting two homogeneous regions, let, say0

andn=M. It is observed both numerically and experimen- . .
tally that, despite the fact that the system can typically ac—l‘et us stress that the lower boukd given by Eq.(29) is

smaller than the one supplied in the absence of memory, i.e.,

commodate families of fronts, the global nonlinear dynamics’ e
rapidly selects a unique solution. The physically relevamzvf_(_N*)’ and the upper bound s independent of the
plicit form of the source termi(n).

question is at what speed does the front move towards th&X i . | v th . vsi
unstable region. This speed will be referred to as selected AS an lllustrative example, we apply the previous analysis

speed[The asymptotic speed will be the lowest speed fori0 the logistic growth. There exist stable traveling wave

which Eq.(24) has a front joining both statdsThe oldest TONtS connecting the staté¢" =1 andN* =0 with speeds
studied mechanism was supplied by Kolmogoenal.[12], ~ estricted to

who obtained the limit front speed from stability consider-

ations on the linearized equation. Since this work, the atten- 2 _ 1

tion has been focused in applying more restrictive mecha- m\c<ﬁ and a<l. (31)
nisms of selection and giving lower bounds to that obtained

by linearizing. We subsequently apply to our Eg4) the
linearized method and another one recently proposed b
Benguria and Depassier based in a variational analgsis

Then in the classical versigno memory ¢, =2, while in
Bur modelc, ranges from 2 aa—0 to 1 ata— 1. The upper
bound velocityC bears also an interesting physical meaning.
It may be written, with its dimensions, &= \D/r. This is
the maximum velocity of diffusive pulsé§], that is without

In this subsection we apply the linearization method proreaction terms. Since the speed of fronts is always lower than
posed by Kolmogoroet al. [12]. This method takes advan- ¢ (c<T), one concludes that the inclusion of a source term
tage of the fact that the front profilé(z) can be represented does not modify the maximum speed of propagation of the
in a phase space\(N,) as a trajectory joining the homog- signal, anc keeps being an upper bound to the speed of the
enous steady stateN*=0 and N*=M. The trajectory signals with independence of a specific kinetic tefifn).
leaves from the unstable solution and finishes in the stable ac?=1. Now we analyze the stability of solutions, via lin-

one; the stability analysis is performed around this stablearization, for the case when the front speed coincides with

1. Linearization method

point. _ . C, i.e., the maximum possible front velocity. In this case, the
ac’#1. We rewrite Eq.(25) as the dynamical system nonlinear differential equation for the wave fronts reduces to
c(1—af’) f df
N=y, Yo=—Qez—1 Yt a@—1 (27 ol ag—1|N=F(N). (32

The fixed points are the roots 6{N), namely,N*. To ana- Introducing a small perturbatioa(z), N=N* +¢, and ex-
lyze the stability of these fixed points in the phase spacganding up to first order is, one has

(N,N,) we must construct the Jacobian matrix of the system.

The eigenvalues of this matrix are given by e(z)=¢gye” (33
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with 1.0
1 f/(N¥)
c

Y S N -
af'(N*)—-1 o8k .

The stability conditiony<<0 is fulfilled if and only if g
0<f’(N*)<1/a, as also found in Eq30). Restricting to the

logistic case, this means that the stiife=1 is unstable and 0.6 [
N* =0 is stable provided thaa<1. Hence, ifa<1, there ~:
exist stable traveling fronts connecting* =1 to N*=0 = f
propagating with the maximum possible velodity: 1/\/a. o4k

2. Benguria’s method

We apply now the method proposed recently by Benguria oo kb
and Depassief4] to our model equation to find a better .
bound, if possible, for the speed of fronts. Starting from Eq.
(25 we define the variablep(N)=—N,>0 such that

0.0:1||\!||\|I|\||Ix|||

p(0)=0 andp(1)=0. Introducing this variable, multiplying 10 -8 -5 -3

0
by g/p, and integrating, we obtain z
1
fo in the text. The solid line represents the entropy production supplied
by EIT, og;1; the dashed line shows the entropy production in the

whereh=—g’>0. If g'(1—ac?)<O0 then it is possible to stochastic description.
use the Swarzian inequality and write

FIG. 1. Entropy production for the front wave solution obtained

f 1
ph(l—acz)+% dN:cj g(1—af’)dN, (34
0

the linearization methodc(). So, the linearization selection

. of 5 is stronger than the variational one. However, we have
ph(1—ac®)+ Fzz\m(l—ac )gf. shown that from both methods the front speed has also an
upper boundc, which does not exist in classical reaction-
So from Eq.(34) we find that diffusion models.

B. Exact heteroclinic solutions

2/Jfgh(1—ac?)dN
c=

1 7 ) (35)
Jog(1—af’)dN We focus on the special case whao?=1. In this case

where g is positive definite. For the logistic case one finds the formal solution for E¢25):

f(N)=N(1—N), taking the arbitrary function g(N) e? %/c=f(N)2g [ANTN)
=(1—N)?, we find that the limit speed predicted by Ben-
guria’s method satisfies wherez, is an integration constant. The problem is to invert
this expression. It admits an inversion at least for one spe-
_b4 v2(1-ac?) cific case as we show in turn. For the generalized logistic
c= 35 2-a growth f(N)=N(1—N") this formal solution may be written
as

Then, there exists a lower bound forgiven by

6442

J12252—-a)2+8192A

ezfzolc: Naf 1(1_ Nr)a+1/r'

c=cy Choosingr =2 anda=1/4 the traveling stable wave front is

written as

On the other hand, our choice fg{N) impliesg’ <0, thus 1
the inequalityg’ (1—ac?)<0 leads to an upper limit foc, N(z)= z(\/e4(2*20)’3+4—eZ(Z*ZO)B), (36)
namely,c<C€=1/\/a, which coincides with the one found by
means of the linearization method. ;
In summary, using Benguria’s method the selected fronil\lvrlt(:)hlpropagates at speed=2 between the steady states

speeds range from On the other hand, foa=0 andr=2, there exists an

cr=c<T analytical solution forc=3/y2=2.12 given by{1]
in this case without any additional restriction an N(z)= 37
It is easy to prove that;" <c_ for a<1.436 andc] >c_ T 14ez 22

for a>1.436. In the range of validity of the linearization
method, that is foa<<1, the lower bound predicted by Ben-  In Fig. 1, we compare both solutions. One observes that
guria’s method €[) is always lower than that predicted by the delayed curve is steeper than the classical one.
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IV. NONEQUILIBRIUM THERMODYNAMICS 0.08 [rrrrrrrrrrr e T
One can perform a comparison between the thermody: :
namic functions coming from the statistic description given i
in Sec. Il A and the ones appearing in extended irreversible N
thermodynamics. Such a comparison has been done by Ci %% [
macho and Zakari for the case when there is no source o A
particles[7]. C
At the statistic level, the entropy density is written as o _
0.04
s(x,t)=—kg(n_Inn_+n,Inn,)
kg JV 1 J ’
=——1|n+—|In5| n+ — 8
2 v 2 0.02 L
J1 J ;
+|ln——|Ing|n—— (38
v/ 2 v
0.00 bt b b b e T ]
and the entropy flux as 100 -7.5 -50 -25 00 25 50 75 100
v/
J3(x,t)=kgv(n_Inn_—n_Inn,)
K 1 J 1 J FIG. 2. Wave fronts for a logistic source termi(N)
-8B (n__)m_(n_ _) —|n+= In—(n+ —11. =N(1—N?) in the delayed caseaE2,c=2, solid ling, and the
2 v/ 2 v v/ 2 v classical casea=0,c=3/\2=2.12, dashed line

(39
. o . ogi=0oqif/kkg and J*=J/v and omit asterisks. One has,
Up to orderJ? both functions coincide with the ones sup- with the help of the transport equati®),
plied by EIT, as seen ifi7]. The entropy production, on the

other hand, differs if a generation of particles is present. J [n+J
Therefore, it seems reasonable to wonder if this entropy pro- Udif=£|n P (42)
duction obtained from the statistic description coincides, at
the lowest orders, with the one proposed by EIT. The bal—and
ance equation for the entropy, using E(38) and (39) and
the mass balance equati®), yields 72

ds+VJS kg i+ ,Nn In(nv +J 78T an “3

Osyst— 17 =75 v —
"t 2v x| \nv—J for J<n (EIT).
kg n2—J2 Then to evaluate these expressions for the entropy pro-
— 5 F(nin——+2/. (400 duction o4 we need an expression fd(z). By the dimen-

sionless particle balance equati@) and taking into account
Expanding the logarithm and keeping up to the lowesthatD=v?7, one easily finds

order inJ, one obtains a term of the type of the first one in

Eq. (18), namely, J(2)=+/a

cn(z)+j f(z)dz), (44)
. an
Trot o

_ Ks 2 . . . . .
= (41 which, combined with the exact solutiai36), yields after
tedious calculations

B
ogir=— —>J
dif n02

as already seen {IY]. The new term is the second one in Eq. 1 1 .
(40) that, for consistency with EIT, should be recast as the _ T ou3 T _aw3 [ AR, T 27
second term in Eq19). Let us see that this is so by calcu- I2)= 4e 8e Atem 8e ' (45)
lating the chemical potentiat T~ * from Eq.(38),
wherezy=0. With this expression foi(z) and Eq.(36) for
N(z) we may calculate the entropy density, the entropy pro-
duction density, etc. In Fig. 2 we plot the entropy production
due to diffusion given in the EIT formalism, expressi@®),
Therefore, we obtain a full agreement between the stochastiersus the entropy production provided by the statistical de-
description and EIT when one includes a source term. scription (42). One concludes that the differences are quite
To end this section, we compare the values of the exactmall and the entropy production has the form of a soliton.
expression fo g as given by Eq(40) and the approximate Since diffusion only occurs at the transient region—outside
one, Eq.(41), supplied by EIT, for the wave front profile it the concentration is uniform—the entropy production only
obtained in Sec. IlIB. For convenience, we write differs from zero in this region.

nZ_JZ
2

+2
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V. CONCLUSIONS inclusion of memory decreases the lowest bound for the

.wave front velocities, and also that there exists an upper

mo\tljv; ?f?z;/teinpcrlz %Zze?ntlar;nf)hrls epf?ggrs aaP]%F;L:LargO?hgty ?Sargécgound for it, which coincides with the maximum speed of
y ' iffusive pulses, i.e., in the absence of source terms. We

: P . : . Towest speed limit is less restrictive than the linearization
in the equation governing the flux of particle members

X . . method. An exact solution for the front shape in the logistic
of a species We have showed three contexts in which suchCase has also been calculated.

an equation would arise: a stochastic description, a phenom- Finally, we have shown that there is a complete agree-

enological'on'e, anq extended irreversiblg thermod'ynamic%ent between the thermodynamic functions obtained from
The combination with the balance of particles—which con- he stochastic description exposed in Sec. Il A—

tains - a source te_rm describing, fpr Instance, Sexua orresponding to a persistent random walk—and EIT in the
reproduction—supplies a model equation of the hyperbolic

tvoe. having the kev property of providing a finite velocity PrESENce of a source of particles. This extends the proof
ype, 9 y property of p 9 X ysqiven by Camacho and Zakari for two-layer systems, where a
for the speed of a signal, in contrast to the previous model

which are parabolic, and lead to an infinite speed, what is no%ource term was not considered.
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