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Simple hierarchical systems: Stability, self-organized criticality, and catastrophic behavior

E. M. Blanter and M. G. Shnirman
International Institute of Earthquakes Prediction Theory and Mathematical Geophysics, Varshavskoe sh. 79/2, Moscow 113556, Russia
(Received 5 November 1996

A description of various kinds of behavior for a hierarchical model of defect development, representing a
transition from stability to catastrophe, is suggested. It is shown that the self-organized criticality regarded as
a linear form of the magnitude-frequency relation on a wide area of parameter corresponds to different kinds
of system behavior. Examples of the systems representing self-organized criticality with stationary, periodic,
and chaotic relation between the density of defects and the level of hierarchy are suggested. A complex
behavior, when areas of self-organized criticality alternate with areas of catastrophe and/or stability, is ob-
served in the model. Examples considered in the paper perform basic kinds of possible behavior on the
transition interval from stability to catastrophe for a simple class of hierarchical systems.
[S1063-651%97)05404-4

PACS numbg(s): 64.60.Lx, 05.45+b, 05.40+]

I. INTRODUCTION dynamic hierarchical modgB,21]. In the present paper an
investigation of self-organized criticality appearing inside

din th deli t destructi . ¥he transition area between areas of stability and catastrophe
used in the modeling of destruction experimeiit], areas i, 5 gimple one-parametrical hierarchical model is suggested.

of sources of big earthquak¢S], areas of triple junctions A general description of the model is suggested in Secs.
[4], and global seismicity5—-10]. The defects in hierarchical ||_v/ " phase transition from stability to catastrophe in
systems are referred to as cracks for modeling of destructiogyrms of the model considered is described in Sec. VI. Hier-
experiments or as earthquakes in seismic models. The size gfchical systems presented in Sec. VIl have a transition in-
defects is related with a level of hierarchy and corresponds teerval of the self-organized criticality between the areas of
the size of cracks or source area of earthquakes. Hierarchicgiability and catastrophe. Examples of different kinds of re-
structure represents multiscale properties of real systems thiitionships between the density of defects and the corre-
are reflected in the power-law form of certain basic relationsponding level are suggested in this section. These examples
[11]. correspond to a linear form of the magnitude-frequency re-
The linear behavior of the magnitude-frequency relationlation for all values of the parameter inside the transition
in a log/log plot, observed for the world seismicfy2], has  interval. A more complicated behavior demonstrating the in-
been recently explained as self-organized criticalitytermittency of intervals of self-organized criticality with in-
[10,11,14,1& The self-organized criticality phenomenon tervals of catastrophe is suggested in Sec. VIII. The alterna-
was observed in several seismic models such as the avion of stability and self-organized criticality areas is
lanche modeld13,14,1Q, uniform Burridge and Knopoff described in Sec. IX. Results and possible analogies are dis-
model[17], and the model of Olan®t al. [18—2(. To gen-  cussed in Sec. X.
eralize different observations in real and model systems, the
Self-organizgd Crltlcallty may be L-JnderStOOd as a linear form 1l. GENERAL DESCRIPTION OF THE MODEL
of the magnitude-frequency relation on the log/log plot for a
large area of system parameters. In the present work we use We consider a hierarchical system withlevels and a
the notion of self-organized criticality in this sense. Recentlypranch numben (Fig. 1). The first level is the lowest in the
the self-organized criticality was demonstrated by varioussystem. Each element of the upper lelivell is composed of
hierarchical systems: hierarchical models with feedjéc®  n elements of the previous level Elements of level com-
and dynamic hierarchical models with pattern heal®g1]. posing one element of the upper leVel 1 are referred to as
A phase transition from stability to catastrophe was ob-a group. There are two possible states of elements of the
served in some hierarchical mod¢ls6] and applied to the system. One of them is referred to as a defect state. The state
description of the behavior of cracks in laboratory experi-of an element of the levéH-1 depends on the configuration
ments of sample destruction. In the phase of stability thef defects in the corresponding group of elements of the
number of cracks exponentially decreases when the size gfrevious level. Some configurations of defects in the group
the cracks grows. There is no sufficiently large cracks in thisare specified as critical configurations. If there is a critical
case. The catastrophic behavior is characterized by an irconfiguration of defects in a group of elements of lelel
crease of the density of cracks with linear size and the apthen the corresponding element of the upper lével is in
pearance of a global fracture that corresponds to the totdhe defect state. There are no defects without the correspond-
destruction of a sample. Thus there are three kinds of posng critical configuration below, except that of the first level
sible behavior observed in hierarchical systems: stabilitypf the system. Thus, the states of all elements of the system
self-organized criticality, and catastrophe. A phase transitiomre determined by the state of the first level. It is assumed
from stability to self-organized criticality was observed in athat all elements on each level are independent of one an-

Hierarchical systems of defects development are widel
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FIG. 1. Example of an hierarchical system with branch number 0.0 ] [ENS
3. A group of 3 elements of the previous level composes an ele- j \
ment of the next level. ] K
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other and have the same probability to be a defgctThen

densities of defectp, for all levels are determined by the (c)

density of defectp, of the first level. The density of defects

of the initial levelp=p; is the single parameter of the sys- FIG. 2. Hierarchical system representing a phase transition from

tem. stability to catastrophe. Branch number of the model is equal to 6.
The probability of a configuration containingdefects at  All configurations including more than 2 defects are critidal.

level | is equal top:‘(l— pl)n—k_ The density of all critical Transition functionF(x). The area of stability corresponds to the

configurations at level is expressed as follows: interval (0xo), the area of catastrophe corresponds to the interval
' (X0,1). Unstable fixed poink, is a point of the phase transition

from stability to catastrophgb) Densities of defects vs level of
F(p)=2, ApKa-p)" K (1)  hierarchy for different values of parameter (1): in the area of
k=1 stability p=0.347<xp; (2): in the point of phase transition
p=Xy~0.3471289;3): in the area of catastrophe=0.35>x,. (c)
whereA, is the number of critical configurations containing Magnitude-frequency relation for different values of parameter

k defects. The density of defects of the upper levell is  (1): in the area of stabilitp<x,; (2): in the point of phase transi-
equal to the density of critical configurations on the previousijon p=x,. A slope of the straight lin€2) is equal to unity.

level I; then,
All elements of the same level have the same size, which
Pr+2a=F(p)- 2) exponentially depends on the level. If the size of the ele-
ments of the first level is taken as unity then the size of the

The form of the transition functiof is independent of the .
elements of level is

level of the systenisee Eq.(1)]. The behavior of the densi-
ties of defecty, is determined by the properties of the tran-
sition function F on the interval (0,1) and the density of
defectsp on the first level of the system.

S(1)=n". (5)

In seismic investigations the magnitude of an earthquake
is assumed to be proportional to the logarithm of the size of
ll. MAGNITUDE-FREQUENCY RELATION the source area. Similarly the magnitude of the defect of

The magnitude-frequency relation is often applied to de- level| in the model is defined as follows:

scribe the behavior of complex systems of different nature. _ _
In the present work we use the magnitude-frequency relation M(1)=log1oS(1) =1 logi(n). ©)
to separate the main kinds of behavior of the system. Let us
define the magnitude-frequency relation for a given class o{
hierarchical systems. In the model described above the tot
number of elements of the levél exponentially decrease
when! grows:

The magnitude-frequency relation describes a relation be-
een the number of defectd; and the magnitudé(l).
rom Eqgs.(3)—(6) it follows that

log;oN; =L l0g19(n) —=M(1) +l0g1gp; +10g;C.  (7)
N(l)=Cn-"', ©)
IV. THE AREA OF STABILITY

wherelL is the total number of levels; is the total number
of elements on the highest level of the system. If the density L€t us consider the transition functidi(x) defined by
of defects on thédth level is equal top,, then the average Ed.(1) in the interval (0,1). If configurations containing only
number of defects of this level is as follows: one defect are not critic§lA; =0 in Eq.(1)], then the fixed

point 0 [F(0)=0] is stable[Fig. 2(a)]. This means that if
(N)=N()p,. (4 p is close to zero, than the sequence of densities of defects
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p, tends to zero wheh grows [Fig. 2(b), curve (1)]. The F(x) p(1)
corresponding magnitude-frequency relation has a double 104 .
exponential downward ber{dFig. 2(c), curve(1)]. This kind 1 X7 1.0 1’/
of behavior is referred to as stability because there are no // 0.8 ﬂ\
defects on high levels of the system. 5 % X, 0.6 ﬂ 5

| oafl

V. THE AREA OF CATASTROPHE /% o7 E\ :
00 {o % 0.0 Gy 1
Hierarchical models described in previous wofk®] ex- ’

hibit a phase transition from stability to catastrophe in the (a) (b)
point p=p,. The parametrical arega> p. corresponds to a
catastrophic behavior of the system.pif>p., then the den- logio(Ny)
sitiesp, of defects of the level increase whet grows and 20.0
tend to unity for the highest levels of the systéRig. 2(b), 3\

curve (3)]. The unity value of densities of defects means a i \\
complete destruction of the corresponding levels of the sys- 0.0 o

tem. If the transition functior has a stable fixed point 1

[F(1)=1], then for all values of parametqr taken in a e y M(1)
neighborhood of unity, densities of defegstend to unity YO8 e
whenl grows. The conditior-(1)=1 obviously means that (c)

the coefficientA, in Eq. (1) is nonzero —A,>0. There is a

single configuration that includes defects in a group of FIG. 3. Hierarchical system representing a stable behavior in the

elements, soA,=1. The fixed pointF(1)=1 is stable, if area of self-organized criticality. Branch number of the model is

F(x) —x>0 whenx is c;lose to unityFig. 2@)]. If (1_X). IS ._equal to 6. All configurations containing 2, 5, or 6 defects are
close to zero, then using the second order of approX'mat'oQ:ritical. (a) Transition functionF(x). The area of stability corre-

we obtain the following condition for the coefficieAt, _;: sponds to the interval (8,), the area of self-organized criticality
corresponds to the intervak{,x;), the area of catastrophe corre-
An-1>n—1 (8) sponds to the intervalxg,1). (b) Densities of defects vs level of

. ' ) ) . i hierarchy for different values of parameferCurve(1) corresponds
There is onlyn configurations 'nCIUd'ng‘_:_L de_fECtS 'n & {o the area of stabilityp=0.1<x4; curves(2) and(3) correspond to
group ofn elements, so the catastrophe exists in a neighbokne grea of self-organized criticalitx,;<p<xs p=0.25: (2);

hood of unity ifA,_;=n. p=0.78: (3); curve (4) corresponds to the area of catastrophe
p=0.92>x,. (c) Magnitude-frequency relation for different values

VI. A PHASE TRANSITION FROM STABILITY of parametep. (1): in the area of stabilityp=0.1<x;; (2): in the

TO CATASTROPHE area of self-organized criticalitx;<p=0.4<x3. A slope of the

i ] ] ) straight line(2) is equal to unity.
Let us consider a hierarchical system with branch number o _ .
equal to 6. All configurations containing more than 2 defectsareas of stability and catastrophe in the neighborhood of zero

are critical. The transition functioR is as follows: and unity, respectively, the transition function has to have
0 and 1 as stable fixed points.
F(x)=20x3(1—x)3+ 15x*(1—x)%+6x>(1—x) + x5. Let us denote three other fixed points»as X,, and xs

(9) [Fig. 3@]. Pointsx; and x5 are unstable; intervals (0,
and (x3,0) correspond to areas of stability and catastrophe,
The plot of the transition function is performed in FigaR  respectively. In contrast to the previous case of phase transi-
The functionF(x) has 3 fixed points. Two points — 0 and tjon (see Sec. VJ| a whole interval X;,x;) exists between
1 — are stable; fixed point, is unstable. these two areas.

The phase transition from stability to catastrophe occurs |n this section we investigate possible kinds of behavior
in the pointx, [Fig. 2(b)]. If the density of defects on the of the densities of defects, on the interval ;,x3), when
initial level p is less tharx, the system demonstrates stabil- the magnitude-frequency relation is linear on the log/log
ity; if the parameterp>x, [Fig. 2(b), curve (1)], then it  plot. The linearity of the magnitude-frequency relation for
demonstrates catastrophic behavieig. 2b), curve(3)]. the whole transition intervalx,x;) is referred to as the

The magnitude-frequency relation is linear in the pointself-organized criticality phenomenon.
p=Xq [Fig. 2(c), curve (2)] and has a double exponential
downward fall wherp<x, [Fig. 2(c), curve(1)]. The similar A. The case of stationary behavior
phase transition from stability to catastrophe was previously

observed in hierarchical modgs, 6.7, Let us consider a hierarchical system with branch number

equal to 6. All configurations containing 2, 5, and 6 defects

are critical. The transition functioR is as follows:
VIl. SELF-ORGANIZED CRITICALITY AREA
, , _ » F(x)=15x%(1—x)*+6x3(1—x) +x5. (10)
The hierarchical system described above has a transition
function F with 3 fixed points. The transition functions of The functionF is plotted on Fig. &). It has five fixed

systems considered below have 5 fixed points. To obtaipoints; three of them—O0x,, 1—are stable, and the other
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two—x4, Xg—are unstable. The interval Q) of values of
the parametep corresponds to the phase of stability. The
densities of defectp, fall to zero whenl grows|[Fig. 3(b),
curve(1)]; the corresponding magnitude-frequency curve has
a double exponential downward beffig. 3(c), curve(1)].
The interval k3,1) corresponds to the catastrophic behavior
of the systenjFig. 3(b), curve(3)]. If parametem is inside
the interval §;,x3) then the densities of defects tend to 0.0 ]
the constant valug, whenl grows[Fig. 3(b), curve(2)]. 0.4 43

It follows from Eq.(7) that the corresponding magnitude- (a) 1/ WA
frequency relation demonstrates a linear behavior in log/log 0.2 1o
plot with a slope equal to unityFig. 3(c), curve(2)], which logo(Ny) 0.0 - 1 |
is similar to the behavior observed in the critical point of the Y 10
phase transition from stability to catastrofjfég. 2(c), curve 15.0 \ (b)
2]

The linear form of the magnitude-frequency relation ex- 50
ists for all values of parametep inside the interval
(x1,X3), so the interval X,,x3) corresponds to the self- L
organized criticality behavior of the system. The densities of =25.0 b, M(D)
defects tend to a constant value, so this case is referred to as (c)
self-organized criticality with a stationary solution.
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FIG. 4. Hierarchical system representing a periodic behavior in
the area of self-organized criticality. Branch number of the model is

Let us consider a hierarchical system with branch numbegdual to 11. All configurations containing 2, 9, 10, or 11 defects are
11. All configurations containing 2, 9, 10, and 11 defects aréritical. (a) Transition functionF(x). The area of stability corre-

B. The case of periodic behavior

critical. Transition functiorE is as follows: sponds to the interval (8,), the area of self-organized criticality
corresponds to the intervak{,x;), the area of catastrophe corre-
F(x)=55x%(1—x)°+55x%(1—x)?+ 11x*%(1— x) + x**. sponds to the intervalxg,1). (b) Densities of defects vs level of

(11 hierarchy for different values of parameferCurve(1) corresponds
to the area of stabilityp=0.02<x,; curves(2)—(4) correspond to
The transition functiorF has five fixed point§Fig. 4@].  the area of self-organized criticality; <p<xs;: p=0.05: (2);
There are two stable fixed point®, 1) and three unstable p=0.2:(3); p=0.85:(4); curve (5) corresponds to the area of ca-
fixed points &;, X,, andxz). In contrast to the previous case tastrophep=0.9>x3. (c) Magnitude-frequency relation for differ-
the absolute value of derivatid®' (x) in the fixed pointx, is ~ ent values of parametep. (1): in the area of stability
greater than unityF’(x,)>1. The interval (0;) of values P=0.02<x;; (2): in the area of self-organized criticality
of parameters corresponds to the phase of staHififgs. X1<P=0.2<Xxs. A slope of the straight lin€2) is equal to unity.
4(b), 4(c), curve(1)]. The interval k3,1) corresponds to the o i .
phase of catastropH&ig. 4b), curve(3)]. If parametgrp is inside the interval )(1,x.3) the rglat!on
If x,<p<xz andp#Xx, then the relation between densi- between densities of_ defeqtsand the Ie\{gl is chaotidFig.
ties of defectsp, and the corresponding levelis periodic ~ 2(a), curve(2)]. Possible values of densities of defeptdor
with period equal to ZFig. 4(b), curve(2)]. The magnitude- big va!ues of Ie\_/el are represented on Elg(.kﬁ. The.corre—
frequency relation corresponding to the intervaj &s) of sponding m'agnlf[ude-frequency relation is I|r_1ear with a slope
values of the parameteris linear with a slope equal to unity €dual to unity[Fig. 5(c), curve(2)], so this kind of system
[Fig. 4(c), curve (2)]. Thus this kind of behavior is referred behay|0r is referred to as self-organized criticality with a
to as self-organized criticality with a periodic solution. chaotic solution.

VIIl. THE ALTERNATION OF INTERVALS
OF SELF-ORGANIZED CRITICALITY

C. The case of chaotic behavior

Let us consider a hierarchical system with branch number AND CATASTROPHIC BEHAVIOR
equal to 11. All configurations containing 2, 3, 10, and 11 _ _ . _ ' '
defects are critical. The transition functi®nis expressed as  In hierarchical systems considered in the previous section
follows: the transition functior-(x) has 5 fixed points and for the

2 9 3 8 10 1 entire interval §,,X53) it satisfies to following condition
F(X)=55“(1—x)7+165°(1—X)®+ 11X (1—X) + X
(12 X <F(X)<Xs. (13

The transition functiorF is similar to the one considered in Let us consider a system in which the transition function
Sec. VII B[Fig. 4(a)]. But the absolute value of the deriva- has 5 fixed points but contradicts the conditids3).

tion F’(x) in the unstable fixed poimt, is greater than in In a hierarchical system with branch number equal to 11
previous case. Intervals ¢Q) and (x;,1) correspond to the all configurations that contain 2, 3, 4, 5, 8, 9, 10, and 11
phases of stability and catastrophe, respectiyeig. 5a), defects are critical. Transition functidh has the following
curves(1,3)]. form:
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FIG. 5. Hierarchical system representing a chaotic behavior in  FIG. 6. Hierarchical system representing an alternation of areas
the area of self-organized criticality. Branch number of the model isof the self-organized criticality and catastrophe. Branch number of
equal to 11. All configurations containing 2, 3, 10, or 11 defects arehe model is equal to 11. All configurations containing 2, 3, 4, 5,
critical. (a) Densities of defects vs level of hierarchy for different 8, 9, 10, or 11 defects are criticala) Transition functionF(x).
values of parametes. (1): in the area of stabilityp=0.02<x;; (2):  Interval (0x,) corresponds to the area of stability; intervals
in the area of self-organized criticalify=0.25,x; <p<Xs; (3): in (X11,X12) and (x3,1) correspond to the area of catastroglgDen-
the area of catastroplpe=0.98>x3. (b) Possible values of densities sities of defects vs level of hierarchy for different values of param-
p; for p=0.25, levels froml =4000 tol=5000. (c) Magnitude-  eterp. (1): in the interval of stabilityp=0.02<x,; (2): in the in-
frequency relation for different values of parameger(1): in the  terval of self-organized criticalip=0.2; (3): in the interval of
area of stabilityp=0.02<xy; (2): in the area of self-organized criti- catastrophe;;<p=0.3<x1,; (4): in the interval of self-organized
cality x; <p=0.25<x3. A slope of the straight lin€2) is equal to  criticality p=0.7;(5): in the interval of catastrophge=0.9>x5. ()
unity. Areas of catastrophéd) Areas of self-organized criticality.

F(X) =55x2(1—x)%+ 165¢3(1— x) 8+ 330k4(1— x)® IX. THE ALTERNATION OF INTERVALS OF STABILITY
AND SELF-ORGANIZED CRITICALITY BEHAVIOR
+462%°5(1—x)%+ 165¢8(1—x)3+ 55x%(1—x)?
In this section we propose an example of a system with
+1M(1—x) + XM, (14)  alternating intervals of stability and self-organized criticality
behavior. Let us consider a hierarchical system with branch
Maximal value of the functionF(x) for the interval number 15. All configurations containing 2, 14, and 15 de-
(X1,%2) is greater thax; [Fig. 6@]. If parametemp is cho-  fects are critical. The transition functidf(x) is as follows:
sen inside the intervalxg,x,), so thatF(p)>xs, then the
densities of defectp, tend to unity wheri grows[Fig. 6(b), F(x)=105¢*(1—x) 13+ 15x4(1—x) + x*5. (16)
curve (3)]. Thus the system demonstrates the catastrophic
behavior not only for the intervalxg,1) but also for the The minimum value of functionF(x) on the interval
infinite sequence of intervaldx;. For each intervalAx; (X5,X3) is approximately equal to 225610 3, which is less
there is an integer numbérsuch that the compositioR?  thanx,;~1.1x 10 2 [Figs. 7a), 7(b)]. Then there are areas of
applied to the intervahx; maps the interval into the interval stability inside the intervalX,,x3) that alternate with areas
(x3,1). IntervalsAx; may be constructed as a set of imagesof self-organized criticality behavior.

of the intervalAx; = (X;1,X;,) for the compositiorF ~'. The This alternation is similar to that described in Sec. VIII. If
initial interval (x;1,X1,) is defined as follows: parametemp of the system is inside an area of stability, the
densities of defectp, tend to zero when the levélgrows
X1<X11<X12<Xo, F(X11)=F(X12)=X3. (15  [Fig. 7(c), curves(1) and (3)]. If parameterp is inside an

area of self-organized criticality, then the densitiesend to

If parameterp is chosen inside the intervak{,x3) but a periodic solution with period equal to[#ig. 7(c), curves
outside intervals\x; then the densities of defecps tend to  (2) and (4)]. If parameterp is greater tharx;, than the den-
the constant valug,. Thus, the set of intervals additional to sities tend to unity, which corresponds to catastrophic behav-
the intervals Ax; correspond to self-organized criticality ior [Fig. 7(b), curve(5)].
[Fig. 6(b), curves(2) and(4)]. The areas of catastrophic and It is possible to obtain a more complicated behavior in-
self-organized criticality behavior are represented in Figscluding the alternation of intervals of stability, self-organized
6(c) and &d), respectively. criticality, and catastrophe inside the interwal,x;. The
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F(x) of self-organized criticality coincides with the transition in-
Y P terval if the transition functiorf satisfies to the following
oA P conditions:
\;/:\ .
I ‘L/ : min F(X)=X,, (19
Xif -1 A== = (X1,X3)
g Xz X Xz sz o
(b) max F(X)<Xj. (20
(X1,X3)

p(l)

('J; fﬁ"* If the transition function contradicts to the conditi¢ib),

06 ‘4 \ then the alternation of areas of self-organized criticality with
0.4 23\ areas of stability appears inside the transition interval
0.7 jN\Q\/\/\/\/\ (x1,x3). If the transition functiorF contradicts the condition
0.0 P}Y—W%l (20), then the alternation of areas of self-organized criticality
N . ‘ with areas of catastrophe appears. The alternation of areas of
(c) all possible kinds of system behavior — stability, self-

_ ) ] i organized criticality, and catastrophe — appears inside the
FIG. 7. Hierarchical system representing an alternation of areagansition interval X1.X3), when the transition functiof
of (sjtzalbjlity ancf tsel{-é)rg/jﬂrizedf. critictglity. Bratngh nurznbi;f of tq(:_) satisfies both conditlié)nQéL’?) and (18).
modet 1S equal fo 15. All conligurations containing 2, 14, or The alternation of areas of self-organized criticality with
defects are critical(@) Transition functionF(x) : _Inte_rvals (0xy) areas of catastrophe and/or stability is a new interesting fea-
iggre()s(;lagr):ézs) tgotrrzzsgfer;dotfoc:Ezs?r:)ep?mf}ﬁteazlrl:g}g':;qeéﬁ% ture of the described class of hierarchical systems. The size
for 0<F(x)<0.1.(c) Densities of defects vs level of hierarchy for of alternattljr_lg a;gaz ten.dsri tof Ztﬁro tm a '?elgr}borrzpod of the
different values of parametgs. (1): in the interval of stability fgiggs‘&%;‘ ;?lg E{D(;)e] I?%Zar?s thgt {:‘Tﬁ'e'?]neiglﬁ:)%'rf;(g()j of
p=0.01<x;; (2): in the interval of self-organized criticality At : >
p=0.3;(3): in the interval of stability;;<p=0.5<x,,; (4): inthe  this point the observed behavior became unst_able and a small
interval of self-organized criticalitp=0.8; (5): in the interval of Chatnge t?fhsygtemﬂp])arameter .|iaqt5 to mtt)ﬂtlpl? Cr?anQ?S of
catastrophe=0.991> Xs. system behavior. There is an infinite number of phase tran-
sitions from self-organized criticality to catastrophe in the
neighborhood of the fixed point; [Figs. 6c) and &d)].
transition functionF(x) which determines this kind of alter- There is some similarity With a cascade of phase transitions
nation inside the intervat, x5, satisfies the following con- observed in the theory of spin glasg§eg].

ditions: The heterogeneity of space distribution of earthquakes
may be connected with an alternation of self-organized criti-

min F(X) <X, (17) cality and stability areas. If small variations of parameter, as

(X1.X3) we obtained in the model, lead to the change of observed

behavior then the small spatial variations of the stress in

()T"’X‘:)F(X)>X3' (18 jithosphere will naturally lead to the spatial heterogeneity of

seismicity.
We do not consider examp|es of this kind of System be- The Self-Organized Cr|t|CaI|ty CorreSpondS to different

havior because it is a composition of simple behaviors conkinds of relations between the densities of defegtsand
sidered above. level |. The behavior of densities of defects may be stable,

periodic, and chaotic. It depends on the derivation of the
transition functionF in the fixed pointx,. The magnitude-
frequency relation in all cases remains linear with small de-
We investigated the basic kinds of transition behaviorviations from the main trend. Some deviations of the
from stability to catastrophe for a simple hierarchical systemmagnitude-frequency relation from the linearity in seismic
of defect development. The transition functibrdetermines observations may be connected with a chaotic dependence of
the behavior of the system. Hierarchical systems with thre¢he number of earthquakes on their sizes, exhibiting the tran-
fixed points of the transition functiof demonstrate a phase sition area of self-organized criticality.
transition from stability to catastrophe when fixed points We did not investigate all kinds of possible transition be-
F(0)=0 andF(1)=1 are stable. It is claimed that if the havior from stability to catastrophe. To obtain more compli-
transition functionF has five fixed points, then instead of a cated behavior in a similar construction it is possible to take
phase transition point, a transition interval appears betweea larger branch number and construct a transition function
the areas of stability and catastrophe. The behavior of th&(x) with more fixed points or stronger nonmonotone be-
system inside the transition intervak,(xs;) was investi- havior.
gated. The suggested hierarchical constructions reflect general
It is observed that an area of the self-organized criticalityproperties of the self-organized criticality phenomenon and
always exists inside the transition interval, (x;). The area  cannot be applied for a more detailed analysis of a particular
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