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Numerical study on ergodic properties of triangular billiards
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We consider the motion of a point particle in right triangular billiards. By considering the global dynamics
(when acute angles are not rationally connecteg)tmr the discrete reduced dynamigehen acute angles are
rational multiples ofmr), we find numerical evidence for the conjecture that the motion is ergodic and weakly
mixing. These dynamical features are intimately related to nontrivial scaling properties of the spectrum of the
evolution operator, S1063-651X%97)12703-9

PACS numbd(s): 05.45+b

[. INTRODUCTION remarked above that we have a finite set & possible
angles: for each side this correspond&itpossible outgoing
We consider the motion of a point particle, with unity angles, and thus, by considerifgreplicas of the sides the
velocity, inside a right triangular billiard. This is equivalent mapping becomes one dimensional. Once we normalize by
[1] to the motion of two point particles on the unit interval, the total length
interacting only through elastic collisions, their mass ratio

inducing the anglex of the corresponding triangle via the >

relation «=arctanym, /m,. m0=§1 li(singi 1+ sing; o+ - - - +sind; ),
The way to look at the dynamics on these triangular bil-
liards depends essentially on whether or nofs rationally ~ where ¢; ., k=1, ... N, are the possible outgoing angles

connected tar. As a matter of fact we can associate a groupfrom theith side(whose length i$;), we obtain a map of the

to each triangle according to the following construction: de-unit interval into itself, characterized by remarkable proper-
note by o,,0,,05 the reflections about the lines,;,/,,/;  ties: in fact it is an(orientation reversinginterval exchang-
(factoring away translations by considering reflections ofing transformatior(see, for exampld,1] for more details on
points on a circlgdefined by the triangle’s sides; Thaw,  this feature, and further references are containg@,8]).

will be the subgroup generated Ky}, i=1,2,3. Whena is A few facts are rigorously known about ergodic properties
rationally connected tar, the subgroupw, is finite, and of triangle billiards(or, more generally, for motion in po-
coincides withDy, the dihedral group corresponding to the lygonal billiardg: we follow closely[2,3]: (i) The set of
angle w/N, where N is the least common multiple of ergodic triangles is a densg; (intersection of a countable
ny,n,,n; defined by vertex angles beingm;/n;. Thus, number of dense open sgis a suitable topology4]. (ii)
when « is rationally connected tar, the phase space is split The directional dynamics in a rational triangle is ergodic in
into invariant manifoldsR,,, 6<[0,7/N], individuated by the almost all directions with respect to the Lebesgue measure
initial angle (the finite 2N set of possible angles is connected [4]. (i) The directional dynamics in a rational triangle is not
to the initial one via operations db,). Thus rational tri- mixing for any direction[5]. We also quote fronj3]: “A
angles are obviously nonergodic: the interest is anyway cagtrevailing opinion in the mathematical community is that
into dynamical properties of the flow restricted to the invari- polygonal billiards are never mixing, but this has not been
ant surface®, (directional dynamics The topology of these established. On the other hand, it seems plausible that there
invariant surfaces is dictated by the nature of vertex angles: are weakly mixing polygons, but this also remains an open
can be showr(see, for instancd,2]) that the genus of the question.” As a matter of fact a theorem, which, however,
surface is given by does not directly apply to triangles, establishing that weak

5 mixing is a Gz generic property in a particular class of po-

N m; — lygonal billiards, has been proved [ii]. We recall(see, for

E 2 @ example,[1]) that a dynamical system is weakly mixing if
for any L? pair of observables,

where wm;/n; are indeed the vertex angles. We notice that

the invariant surfaces will be tori only when ali,=1: this lim = f dr

means that, in the present case, the only integrable cases too 0

correspond tax=m/4, ©/3, 7/6.

Together with the continuous time flow, it is possible to _J d (x)f(x)f de(X)g(x)
introduce the Birkhoff-Poincarenap, using the coordinates M K M mx)g
s,¢, where s is the position along the perimeter ang
e[—n/2, w/2] is the outgoing angle with respect to the nor- that is integrated correlation functions decay to zero, while
mal ins. When we consider flows in a rational triangle, we correlation functions themselves have the same property only

fMdM(X)f(TTX)Q(X)
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Correlation functions may also be defined for the Birkhoff-
Poincarediscrete dynamics: the invariant measure is in this
case proportional tds cos(¢)d¢. In the former section we
observed that the directional dynamics for rational cases
leads to a map of the unit interval into itséthe orientation
reversing interval exchange transformajiahwe denote the
normalized phase variable tzy and byJ the mapping the
correlation function we consider for this case will refer to
f(z)=sinm(z—1/2)]:

1
Cdd(n):jodzf(z)f(J”z). W)

In terms of the spectral resolution of the evolution operator,
Eqg. (4) may be rewritten as

C(t)= f d(EN)vylvy)e™ ™, 8

FIG. 1. A triangle billiard. and thus in principle the spectral measure may be recovered
. o . . . by the correlation series via Fourier inversion. In practice we
if the system is in effect mixing. Together with dynamic pave to be careful as we havefinite correlation sequence
properties, such as weak mixing, we also want to investigat(a'moreo\,er we have a discrete sampling of the continuous

numerically spectral properties. We denote by time): as motivated i18,9] the best approach seems to be to
perform the(approximated inversion of Eq.(8) by using a

Tt:f e?MINdE(N) (3)  triangular window[10]; this procedure guarantees also that

the finite approximations to the spectral measure will be

Hositive. Thus, each correlation sequence ouf tg, time
teps allows a reconstruction of the spectral measure down to
scale/ = (2Tt 1)t through

the spectral resolution of the evolution operator. Then, eac
feL?(M,u), orthogonal to 1, induces a spectral measure viad
(EMVf|f). There are connections between spectral and dyg
namical properties: for instandsee, for example]18]), if 1 Tmax

the set of measures just defined is absolutely continuous with = 2 WjC(tj)QZWitjm/(ZTmax+ by,
respect to the Lebesgue measure then the system has to be ~ * 2Tmaxt 1 =57

mixing. 9
where the wuse of the triangular window implies
Il. DYNAMICAL AND SPECTRAL W, =(Tmax—tj| )/ Tmax- A quantitative characterization of the
QUANTITIES OBSERVED scaling properties of the spectral measure is provided, for
We consider triangles such as the one in Figads the ~Instance, by the set of generalized dimensi¢dg] D,

acute angle formed with the horizontal axis. The units arévhich are defined in terms of the SU%(Q)IEE\lﬁlWﬁ,/k
chosen in such a way that the point particle has unit velocitythrough

and the horizontal side has length one. The observable whose

correlations we investigate is the horizontal component of D= lim 1 Inx(a@) 10
the velocityv, (which has zero average with respect to the ¢ . a-1 In/y

invariant measurd = (1/2rA)dx dy df, whereA denotes

the area of the triangle. So we denote B{t) the (phase whenq#1. Forq=1 we have

averagedl correlation function

Nk

. E VRIS
C(t)=J duvyT (vy), 4 T
=

k— o0

while the corresponding integrated correlation function is
These spectral exponents are related to dynamical properties:
1t > for instance,D,, the so-called correlation dimension, rules
Cind(t)= t J’OdT|C(T)| ' 5) the decay mode of the integrated correlation funcfiti2y 13

_+—D
We may also consider time-averaged correlation functions Cim(t)~t™ "2, (12

(which coincide with the former ones, when the system isthg information dimension is also related to growth proper-
ergodio ties in time of the moments of the probability distribution
1 (r [14-17. We describe how to get such moments for the dis-
Ciime(t) = lim — f de T2 (0, ) T3(vy). (6)  crete directional dynamics. Here we have a single phase vari-
7= T JO able z: its value at timen is determined byn and z, (the
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initial value). The dependence om, of a function of the 2
phase variable may be expressed through a Fourier repre-
sentation

o

fz(nz)= 2 c(me’mk 13 g

We can thus define the moments

o n-1

1
mA(m= 3 [k# = 2 JedDI? (14

1=0

sin(F)
-0.0

In particular we considered as phase function agé(z)
=sin m(z—1/2)]. As the mapping] is discontinuous, we are
forced to consider moments witB<<1, otherwise we get
diverging quantities. If moments grow algebraically,

-0.5

m#)(n)~n¢#), (15)
o o ZEAER L o ik it N DR o
then[14-16 D, is a lower bound tep(8)/B. This description .0 01 02 03 04 05 06 07 08 05 1.0
originated in a quantum mechanical context, where thes s

moments are connected to the spreading of an initially local-

ized wave packet on a larger and larger number of basis FIG. 2. Phase portrait of a single trajectory @f (/5 1)/4
elements. (discrete dynamigs the plot consists of 810* points, each ob-
tained after X1C° collisions from the former.

I1l. NUMERICAL EXPERIMENTS L
the results for a=mv2/4, similar results hold fora

Irrational triangles =m(\/5—1)/4]. Theintegrated correlation functiof; (t)

The first task is to check ergodicity: it is rather hard to exhibits always a power-law decay to zes. Fig. 4), with
exhibit this feature by just looking, for instance, at the @n exponent that is slightly smaller that 1. By looking at Fig.
Birkhoff-Poincarereturn map, as there must be quite differ- 5, We stress that a mixing property is not ruled out, as the
ent time scales in the problem: this is essentially connecte@Orrelation function itself seems to vanish asymptotically,
to the possibility of recovering any anglmodulo horizontal ~ albeit in a noisy way.
and vertical reflectionsthrough « shifts. If we look at a As explained in the former section we can reconstruct
phase portrait for longer and longer time, we perceive som&0m the correlation sequence an approximation to the spec-
sort of “hierarchical” filling of holes, which is presumably
directly connected to number-theoretical propertiesr.ofve . . . ' '
give an example of the phase portrait for quite long time
sequences in Fig. 2, where our choice for the variables it
such that the invariant measure coincides with the Lebesgu
measure.

A check on ergodicity was also performed in the quanti-
ties we want to study in some detail: the results support the
expectation that motion in irrational triangles is ergodic. As
an example consider Fig. 3, in which we compare the behav _
ior of time averages and phase average for the autocorrelz
tion function of the horizontal component of the velocity.
Whenever we refer to phase averages we mean Monte Car
integration(see, for examplg,19]) over a set ofN, initial ©
conditions. The standard random number generator we use
based on a subtractive meth@de KnutH 20] for details: in
a variety of cases we checked that the use of a regular grid ¢
initial conditions leads to the same results.

The next step involves a simultaneous analysi<C6f)
and C;,(t), as decay to zero of the phase averaged correla
tion function would not rule out mixing, while weak mixing
(as amaximalproperty would require convergence to zero
of Ci(t), while the correlation function itself should not
have at—c limit. A weak mixing property is supported  FIG. 3. C(t) (full line) and Cyme(t), for a=m(y5—1)/4. Phase
numerically when we consider the vertex angleonnected average refers to>210° initial conditions, while the time sequence
to « through quadratic irrationafén Figs. 4 and 5 we report  giving Cyme(t) iS Tmax=1CF.
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FIG. 4. InC(t) vs Int for a=mv2/4. The phase average refers FIG. 6. Iny(2) vs I/ (upper symbols and 2g; (Ing;  vs
to 2x10 points; the dashed straight line has a slep@,=0.95. In/\ for the same case as Fig. B, and D, are the asymptotic
values of the respective slopes. The dashed lines are obtained

tral measure: in particular this allows for a calculatiorDof, ~ through a least square fit over the last seven values.

which, as remarked before, should coincide with the decay

exponent. In Fig. 6 we plot finite order estimatesDofand  theoretical properties af, as we can see from Fig. 7, where
D, for finer and finer scale$more and more correlation « is a poor irrational multiple ofr.

points. In Table | we compare decaying componepfsuch

asCi(t)~t~?] and D, [as reconstructed by Fourier inver- Rational triangles

sion of C(t)] for a number of irrational values a.

As regards the weak mixing conjecture, amaximaler-
godic property, the situation is not resolved by our investi- We noted in the Introduction that whenevers rationally
gations, in the sense that apparently also correlation funaonnected tar the motion of the point particle is surely not
tions tend to zerdand not only the integrated oneghis  ergodic(and the phase space is foliated Ry invariant sur-
phenomenon does not seem to be related to numbefaces determined by the initial value of the velocity vector
and the group properties induced by. Nevertheless, the
decaying properties of phase averagé&sicrocanonical”
averagepgare of some interest by themselves, even though it
is a priori clear that they will not be connected to any time
average. In particular, this point of view was originated some
years ago in7], where it was shown thain some “ge-
neric” sens¢ phase average@n the energy surfageorre-
lation functions for integrable systems are expected to decay
to their limit value asC(t) — C(x)~t1~N"2 whereN is the
number of degrees of freedom of the system. So we com-

Phase averages

LUSLISLNLIN NLJNLINL I B N N O I B NN A B L B N B B B R

-4

-6

In 1C(4)1
-8

TABLE I. v, D,, and D; for a number of irrational vertex
angles. The errors ory are determined by linear regression on
exponentially sampled points on the integrated correlation func-
tions. The errors on dimension come from linear regression over the
last five data in sequences as in Fig. 6.

-10

o
' a 4 D, Dy
. 1 m(5-1)/4 0.90:0.07  0.9G-0.05  0.97:0.02
g ] 24 0.95:0.02  0.95:0.02  0.98:0.01
S ) es8 0.97t0.01 095002  0.98:0.01
nt I8 097:0.01 097002  0.92:0.01
m3l4 097:0.01 092001  0.990.005

FIG. 5. INC(t)| vs Int for the same case as Fig. 4.
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FIG. 7. INC(t)| vs Int for a=7?/8. The phase average refers to  FIG. 9. IfC(t)| vs Int for the same case as Fig. 8; the dashed
2x10’ points. straight line has a slope %

puted microcanonical correlation functions for the integrableprocedure give® ,=~0.90. We noted the Introduction that for
casea=7/3: with our choice of observablé€3(«)=0 and the  generic rational values af the system is not integrable, as
results are plotted in Figs. 8 and 9. Though the correlatiorinvariant surfaces are topologically distinct from tgand
function C(t) has a quite complex behavior, which we did possess higher genusve have preliminary indications that
not analyze in detail, it seems to possess an envelope satisicrocanonical averages in this case are qualitatively differ-
fying the law suggested ifi7] (which for the present case ent from the integrable situations, and in particular a decay-
predicts a 1{t decay. In Fig. 8 we plot the behavior of the ing upper envelope fo€(t) is no longer observed.

integrated correlation function, which again exhibits a

power-law decay to zero, with an exponept0.89+0.01. Directional dynamics

Again this cqincides approximately Wim?. calculated Vi_a . Here we leave the global phase space and investigate the
inverse Fourier transform of the correlation sequence: th|§notion on invariant surface®,, individuated by the fraction

connectinga to 7, and a choice of a direction in the full
R e R E o e phase spacésee the first sectionAs a specific example we
investigated the case=n/16 (where the invariant surfaces
have the topology of a sphere with four handldiing as
phase space angig=1.873 817 640 780 35. In this case we
analyzed the dynamics in terms of the one-dimensional
Birkhoff-Poincafemap, and thus comput€gy(n) and the
corresponding integrated counterpart

-2

-3

<

1 n-1
Cagin(M =1 2 |Caa(K)I*. (16)

In IC ()]
int
-5

The results are here fully consistent with weak mixing as

maximal ergodic property, a£4(n) is not converging to

zero in our numerical simulation, whil€ygqi,(n) vanishes

according to a power lawsee Figs. 10 and )1Again the

decay exponent is consistent with the correlation dimension

(we havey=0.79+0.05, whileD,=0.8). Here we may also
analyze the growth rate of moments, according to @§).

| T T T T T T T T T T T N T T T T O A O W T O T B A AN | . . . . .

2 4 00 1 2 3 4 s An example is provided in Fig. 12, where we consider

Int _ m3)(n), which grows algebraically, with an exponent
¢©(1/3)/(1/3)=0.885 (the information dimension—which
FIG. 8. InCi(t) vs Int for a=m/3. Phase average refers to’10 bounds the normalized growth rate from below—is in this
initial conditions. caseD,=0.88.
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FIG. 10. IrCygin(n) vs Imn for a=7/16, and the value of FIG. 12. Im™3)(n) vs In for the same case as Figs. 10 and 11.
reported in the text. We considered®Zollisions, and averaged The dashed line was obtained by using a Fourier basis-oél2-
over 10 initial conditions; the dashed straight line has a slopements while the full line was obtained with a basis 5% @lements.
—Dy=-08. The dotted straight line has a slopg/3=0.89/3.

As a last remark we present an investigationaeam/10,  pased on remarkable mathematical analysis, are susceptible
where different ¢, are considered. From the behavior tg pe scrutinized by direct investigations. We have found
of Cyqine(n) (see Fig. 1B it is clear that dynamicaland  evidences of ergodic and weakly mixing behavior for the
thus spectral properties are highly sensitive to the choice gjohal dynamics of “irrational” triangles, where, however, a
of . mixing property is not ruled out. In the case of reduced dis-

crete dynamics we have instead clear evidence of weak mix-
IV. CONCLUSIONS ing as a maximal ergodic property.

. L L In both cases weak mixing decay rates well as mo-
We have performed a series of numerical investigations

on right triangular billiards. Our purpose was to check

whether the conjecturg®r generic-nonconstructive resylts SRR LR
o
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0.0 1 2 3 4 5 P FIG. 13. ICygin(n) Vs Inn for a==/10: the full line refers to
Inn ] 6,=1.873 817 640 780, the dashed line 4g=v2, and the dotted

line to 6,=e/3. Each curve is obtained by considerirg &ollisions,
FIG. 11. IfCgyq(n)| vs Inn for the same case as Fig. 10. and a phase average over fitial conditions.
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