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Phase transitions in a confined quasi-two-dimensional colloid suspension

Andrew H. Marcus and Stuart A. Rice
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 27 June 1996!

We have used digital video microscopy to study the equilibrium structure of quasi-two-dimensional suspen-
sions of sterically stabilized uncharged polymethylmethacrylate spheres. The spheres are confined between the
surfaces of a very thin glass cell. Our experiments reveal the existence of an equilibrium hexatic phase as well
as strongly first order liquid-to-hexatic and hexatic-to-solid phase transitions. These observations are in agree-
ment with the predictions of Bladon and Frenkel@Phys. Rev. Lett.74, 2519 ~1995!# for a confined colloid
suspension in which the pair interaction potential between particles has a hard core, and either a very short-
range attraction or a very short-range step repulsion.@S1063-651X~97!01901-6#

PACS number~s!: 82.70.2y
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I. INTRODUCTION

From the point of view of everyday experience, one of t
most commonly observed phase transitions is the meltin
a solid to form a liquid. In our three-dimensional world th
transition from the solid to the liquid phase is characteriz
by discontinuous changes in density, enthalpy, and entro
In the language of thermodynamics, the solid becomes
stable with respect to the liquid when the chemical poten
of the latter becomes more negative than that of the form
the melting temperature and pressure are determined by
condition that the chemical potentials of the two phases
equal when the phases coexist at equilibrium. It is very
portant to note that for a first order transition such as melt
this thermodynamic instability occurs before any mechan
instability of the solid arises, i.e., there is no mechani
response function of the solid whose frequency continuou
decreases with temperature, and which reaches zero a
melting point. On the other hand, in a continuous transit
between two crystalline forms of a solid, e.g., in the cub
to-tetragonal transition in SrTiO3, it is found that the tem-
perature and pressure at which the thermodynamic and
chanical instabilities occur do coincide.

More than 20 years ago it was suggested that the chara
of the melting transition in two dimensions is fundamenta
different from that of the melting transition in three dime
sions. Two-dimensional melting is of great theoretical int
est, because the type of order that distinguishes solid f
liquid phases is qualitatively different from that in three d
mensions@1#. In the three-dimensional case the densi
density correlation function of the ordered solid phase
cays, with increasing particle separation, to a nonz
constant value in the limit of infinite separation. This is t
characteristic feature of long-range positional order. In
two-dimensional case the density-density correlation fu
tion of the solid phase decays to zero algebraically in
limit of infinite separation, which is the characteristic featu
of quasi-long-range order. However, in the two-dimensio
system there exists a special kind of long-range order ca
bond orientational order. According to the Kosterlit
Thouless-Halperin-Nelson-Young~KTHNY ! theory @1–5#
two-dimensional solids melt via sequential continuous ph
transitions. The first transition is from the solid with qua
551063-651X/97/55~1!/637~20!/$10.00
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long-range positional order and long-range bond orienta
order to a phase with short-range positional order and qu
long-range bond orientational order, the so-called hex
phase. This transition is driven by the dissociation of bou
dislocation pairs in the solid. The second transition tra
forms the hexatic phase to a liquid phase in which both
sitional and bond orientational order have short ranges. T
transition is driven by the dissociation of individual disloc
tions to form disclinations. Although it is currently preferre
the transition sequence described is not the only poss
mechanism for two-dimensional melting. For example, it
in principle possible for the dislocation unbinding transitio
to be preempted by grain-boundary-induced melting, as
been suggested by Chui@6#. The most interesting recent de
velopment in the theory of two-dimensional melting is a r
port, by Bladon and Frenkel@7#, of the results of simulations
of a two-dimensional assembly of particles which intera
via a pairwise additive potential consisting of a hard co
repulsion and a very narrow square well attraction~or a very
narrow step repulsion!. When the width of the attractive wel
is less than 8% of the hard disc diameter, the system supp
two ordered solid phases with the same packing symme
The coexistence region of the first order solid-solid transit
line ends at a critical point, near which critical point dens
fluctuations render the solid phases unstable with respec
dislocation unbinding, and the system supports a hex
phase. For the case that the square well width is close to
limiting value for which the low density solid phase becom
unstable, the hexatic region can extend to the melting l
When this occurs the liquid-to-hexatic transition is predict
to be first order while the hexatic-to-solid transition may
either first or second order. The KTHNY theory has be
extended, by Chou and Nelson@8#, to account for the essen
tial features of the phase diagram found by Bladon and Fr
kel.

Given the striking nature of the KTHNY theory predic
tions, it is not surprising that both experimental and co
puter simulation studies of two-dimensional melting have
cused attention, almost exclusively, on the search
continuous transitions from the solid phase to the hex
phase and from the hexatic phase to the liquid phase@7–24#.
An early computer simulation study of two-dimension
melting in a system with Coulomb interactions@9,10# is con-
637 © 1997 The American Physical Society
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638 55ANDREW H. MARCUS AND STUART A. RICE
sistent with the predictions of the KTHNY theory, as is
more recent study of a two-dimensional colloid system w
Yukawa interactions@12#. The most recent and most exte
sive computer simulation of the melting of a two
dimensional system of particles which have an interpart
potential of ther212 form concludes that there are contin
ous transitions between the solid and hexatic phases an
hexatic and liquid phases, but that the density range in wh
the hexatic phase is stable is very small@13#. Earlier, less
definitive computer simulations of the two-dimensional ha
disc system~and of similar systems with short-range repu
sive interactions! lead to the conclusion that two-dimension
melting is a first order transition@14#.

The extent of experimental testing of the KTHNY predi
tions concerning the character of two-dimensional melt
has been limited by the difficulty of preparing systems wh
are acceptable representatives of the theoretical model@15#.
Typical representatives of two-dimensional systems
monolayers supported on a substrate. In order that a
system behave as if it were two-dimensional it is necess
but not sufficient for the range of in-plane correlations
greatly exceed the range of out-of-plane correlations@16#,
and that the interactions between the system and its sup
ing substrate furnish only a weak perturbation to the prop
ties of the system. Nelson and Halperin@3# and Young@4#
have shown that a weak incommensurate substrate pote
only slightly modifies the character of the solid-to-hexa
transition. Among the interesting changes induced by the
tential of an ordered substrate is long-ranged bond orie
tional order in the hexatic phase, and a washing out of
dislocation→disclination unbinding transition when the su
strate has sixfold symmetry. Also, if the two-dimension
solid monolayer has a preferred orientation with respec
the supporting substrate which is not along a substrate s
metry axis, the melting transition is expected to be Ising-li
corresponding to the two equivalent ways of orienting
two-dimensional solid with respect to a substrate symme
axis. Experimental studies of the melting of ordered el
trons supported on the surface of liquid He@14,17–19#, and
of the melting of an ordered array of charged polystyre
spheres between two plates@20–22#, are consistent with
many of the predictions of the KTHNY theory, but som
deviations are observed in individual studies@23#. A few
other experimental studies give results sometimes in ac
and sometimes not in accord with the KTHNY theory@24#.

This paper reports the results of studies of the structu
and phase transitions in a quasi-two-dimensional suspen
of uncharged colloidal spheres in a very thin cell. The p
ticular system we have studied consists of 0.928-mm-
diameter spheres of poly~methylmethacrylate! ~PMMA! in a
cell with wall spacing;1.2mm. The surface of each PMMA
particle was covered with a;300-Å oligomeric brush of
poly~12-hydroxystearic acid! that acts to stabilize it sterically
with respect to aggregation induced by van der Waals for
We find that the solid phase undergoes a first order trans
to a hexatic phase, which subsequently undergoes a firs
der transition to the liquid phase. These observations ar
agreement with the results of the simulations of Bladon a
Frenkel for an assembly of particles which interact via a p
wise additive potential consisting of a hard core repuls
and a very narrow square well attraction~or a very narrow
e
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step repulsion!. We argue in Sec. VI that in the system w
studied the interaction between the polymer brushes coa
the spherical colloid particles provides the necessary sh
range attraction in a small range of interparticle separa
where the brushes just begin to interpenetrate.

II. EXPERIMENTAL METHODS AND CONSIDERATIONS

The procedure used to prepare monolayer colloidal s
pensions and to construct the experimental glass cells
described in our previous paper@25#. Details specific to the
work reported in this paper are given below. Monodispe
PMMA spheres were prepared according to the method
Antl et al. @26#. The diameter of the PMMA particles wa
determined to bes50.928mm by scanning electron micros
copy. These measurements also confirmed that the par
size distribution was monodisperse to within 1%. The s
face of each particle was covered with a;300-Å oligomeric
brush of poly~3-hydroxystearate! that acts to sterically stabi
lize it with respect to aggregation induced by van der Wa
forces. The PMMA particles were suspended in an aque
sucrose solution~10% by weight! to eliminate sedimentation
and confined between the walls of a thin glass cell. The
walls were coated with trihydroxyoctadecylsilane~Huls-
Petrarch!, which acts to prevent adsorption of PMMA pa
ticles to the walls. The spacing between the cell walls co
be varied and, for the experiments reported, was set to
proximately 1.2 particle diameters~;1.2mm!. This thin cell
configuration constrains the PMMA particle centers to
plane within a small fraction of a particle diameter; we d
termined by direct microscopic examination that the PMM
particle centers were coplanar to within the depth of focus
the objective~;0.1 mm!. When the wall separation wa
smaller than;1.2mm the particles were observed to be im
mobilized in the plane; when the wall separation was lar
than;1.2 mm the particles were observed to have out-
plane motion. No pathological effects were observed wh
the cell wall spacing was set to;1.2mm. The properties of
these geometrically confined suspensions were studied
the reduced two-dimensional density ranger*5rs250.01–
0.93.

The digital video microscopy~DVM ! measurements wer
made using an Olympus BH3 metallurgical microscope w
a 1003, numerical aperture 1.2, oil immersion objective. A
already noted, the objective’s depth of focus is a fraction
the PMMA sphere diameter, so that nonplanar particle c
figurations were easily detected. Images of the suspen
were captured using an Hitachi charge-coupled dev
~CCD! video camera mounted to the camera eyepiece.
frame frequency of the CCD camera was 30 Hz, while
shutter speed was one-one-hundreth of a second. The an
camera output was sent directly to the video port of a Silic
Graphics~SGI! Indy workstation. The SGI frame grabbe
supplied with the workstation was used to digitize sequen
of 3203240 ~and in some cases, 6403480! square pixel
frames. A typical run consisted of 100 frames in sequen
corresponding to roughly 25 Mbyte of data in the case
3203240 size images. All image processing procedures w
implemented using IDL~Research Systems, Inc.!, a pro-
gramming language optimized for visual data analysis. T
pixel length was calibrated by imaging a transmission el
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55 639PHASE TRANSITIONS IN A CONFINED QUASI-TWO- . . .
tron microscope~TEM! grid of known scale. The aspect rat
was determined to be 160.1 and the calibrated pixel dimen
sion was 1 pixel50.17460.0015mm for 3203240 size im-
ages and 1 pixel50.17760.0015mm for 6403480 size im-
ages.

A detailed description of the precision with which partic
position can be measured in these experiments can be f
in our previous paper. Briefly, the center-of-mass positio
were determined with 0.1 pixel precision; for the 3203240
square pixel images the precision of center-of-mass loca
was 17.4 nm, while for the 6403480 square pixel images
was 17.7 nm. This precision of the particle location is su
cient to calculate the mean particle density~using the number
of particles in the frame and the pixel-to-length calibratio!
and the spatial correlation functions with much greater ac
racy than is reported in any of our tables.

The observable in the DVM experiment is a complete
of two-dimensionalN particle trajectories, which can b
combined to define the time-dependent density

r~r ,t !5(
i51

N

d„r2r i~ t !…. ~2.1!

The process of transforming the information contained i
sequence of digitized images into the time-dependent den
profile described by Eq.~2.1! is discussed in our previou
paper@25#. A more detailed description is given in an artic
by Crocker and Grier@27#. Given the trajectory data it is a
straightforward, though numerically taxing, application
statistical mechanics to calculate either static or dyna
spatial correlation functions of interest. For the structu
studies presented in this work, only static quantities are
amined.

Two key elements in the study of two-dimensional me
ing are the establishment of equilibrium and the ability
measure spatial correlation functions of the appropriate o
parameters accurately. As noted by Bagchi, Anderson,
Swope@13#, in the vicinity of a phase boundary exceeding
large correlation lengths may influence the results of
analysis of any finite-size subsystem presumably in equ
rium with a much larger, although finite, total system. Sim
larly, long correlation times can lead to bottlenecks dur
the course of equilibration that cause the system to exis
long-lived metastable states.

The total area of our sample cell is a few square centim
ters. The method we have used to adjust the sample
thickness does not achieve uniform separation of the
walls over the entire cell, but the portion which is th
enough to constrain the colloid particles to one plane oc
pies the larger fraction of the total area of the cell. Indeed
the systems we studied it was possible to prepare monol
suspensions comprised of over 106 particles with a uniform
number density. As an example, Fig. 1 shows a wide an
view of an instantaneous configuration at the reduced den
r*50.83. In this sample configuration there are 9242 p
ticles in the field of view, while the total system size
effectively infinite. Each sample configuration constitutes
‘‘subblock’’ of the infinite system. Provided that the su
block size is large compared to the finite translational co
lation length, it is possible to measure the functional forms
the translational and bond orientational correlation functio
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accurately. On the other hand, if the length of the subbloc
small or comparable to the translational correlation leng
the measured correlation functions must scale with the s
block size. For all the densities we examined, it was fou
that the functional form of the correlation functions could
accurately determined from subblocks that contain appro
mately 2000 particles. In Fig. 2 we plot comparisons
bond-orientational and translational correlation functio
~defined in Sec. III! based on the;9000 particle~or 9K!
sample shown in Fig. 1 and subblocks made by dividing
field into four equal and equivalent quadrants~;2225 par-
ticles, or 2.2K!. In all cases, we used periodic boundary co
ditions for the calculations. The solid curves represent
calculated correlation functions of the 9K samples, while
circles indicate the values corresponding to the 2.
samples. The differences in subblock size have no effec
the computed correlation functions. Furthermore, the en
lope of the translational correlation function decays to un
within 10 mm; the translational correlation length is on th
order of a few particle diameters. Thus for our investigatio
the 2.2K samples are sufficiently large to accurately de
mine the structural properties of the system. We will discu
Figs. 1 and 2 further in Sec. III. However, it should be not
that for this sample density the translational correlation fu
tion is short ranged while the bond-orientational correlatio
decay algebraically, indicative that the phase observed
hexatic.

Our concerns about equilibration were addressed by
quiring that consistent, reproducible results be achie
while recording data over a 72–168-h period at each sam
density. Since the collision time in the highest density s
tems we studied is approximately 100 ms, this proced
allowed sufficient time for the system to reach equilibriu
Figure 3 shows Voronoi constructions for a sequence of
ages taken from a 9K particle field with after 72 h of equi
bration. Frames A and B are separated by 30 ms, while
and C are separated by 600 ms. Sixfold-coordinated sites
represented as white hexagons, while red and green poly

FIG. 1. Wide angle view of a sample quasi-two-dimension
particle configuration with reduced areal density,r*50.83. There
are 9248~;9 K! particles in the field of view; however, approx
mately 106 particles are confined to a single layer in the sample c
The frame dimension is 113385mm2. Note that the particle density
is uniform across the field of view, as it is across the major port
of the sample.
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640 55ANDREW H. MARCUS AND STUART A. RICE
indicate fivefold and sevenfold coordination, respectively
site that has a coordination number other than six is calle
disclination. In any instantaneous configuration, bound d
location pairs occur as quartets of alternating fivefold a
sevenfold disclinations. Each such configuration typica
also shows the presence of unbound ‘‘free’’ dislocatio
made up of individual tightly bound fivefold and sevenfo
disclinations. The slow algebraic decay of the bon
orientational order in the hexatic phase is due to the prese
of a small steady-state concentration of unbound dislo
tions. We observe that dislocations and clusters of dislo
tion defects appear and disappear on the time scale of
cessive video frames, and that their absolute locations
temporally uncorrelated. This can only be possible if bou
dislocations are thermally activated and destroyed on a t
scale much shorter than the experimental sampling time
terval ~30 ms!. Furthermore, since free dislocations are se
to appear and disappear between subsequent frames, the
ing, unpairing, and diffusion of free dislocations must occ
on time scales shorter than 30 ms. In Sec. IV we will anal
each of these processes in detail and estimate their assoc
energies. This is a crucial issue in establishing the appl
bility of the KTHNY theory to the behavior of our particula
system@28#.

III. BOND ORIENTATIONAL
AND TRANSLATIONAL ORDER

Several excellent review articles describing the KTHN
melting theory have been published over the last dec
@24#; to place our findings into a proper context we brie
sketch the relevant features of that theory here. The KTH
theory is based on a description of the solid phase as a
formable elastic medium that is, by definition, characteriz

FIG. 2. Size dependence of the translational pair correla
function~A! and the bond orientational pair correlation function~B!
based on particle configurations similar to that shown in Fig
~r*50.83!. The solid curves are the results of calculations that u
the entire;9K particle field, while the circles correspond to a
analysis based on a field 25% this size~;2.25K particles!. The
dashed curves indicate that the translational pair correlation fu
tion is short ranged, and that the correlation in bond orientation
quasi-long-ranged, characteristic of hexatic order~see text, Sec. III!.
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by quasi-long-range positional order and long-range bo
orientational order. At any temperature greater than ze
such a solid in thermal equilibrium will necessarily have
nonzero density of tightly bound dislocation pairs@29#. The
quasi-long-range positional order of the solid phase is
stroyed by free dislocations which are generated by dislo
tion pair unbinding. The concentration of free dislocatio
increases with increasing temperature until the solid beco
mechanically unstable, at which point there is a continuo
transition to the hexatic phase; this transition occurs wh
the dimensionless combination of elastic constants,K, falls
below the numerical value

K5
4a0

2

kBT

m~m1l!

2m1l
516p, ~3.1!

wherem andl are the Lame´ elastic constants anda0 is the
lattice spacing. As a consequence of the Halperin-Nels
Young renormalization group analysis of the dislocation p
unbinding transition, the density-density correlation functi
in the ordered solid phase is predicted to decay algebraic

gG~r !5^rG~0!rG~r !&}r2h with 1
4<h< 1

3 . ~3.2!

G is a reciprocal-lattice vector of the solid, andrG(r ) are the
Fourier components of the singlet particle densities

rG~r !5(
i51

N

eiG•r id~r2r i !. ~3.3!

Equation~3.2! is valid at the first Bragg diffraction peak jus
below the dislocation pair unbinding transition. This pr
dicted behavior of the density-density correlation function
the solid phase is analogous to that for the Kosterl
Thouless vortex unbinding transition in two-dimensional s
perfluids, superconductors andXY systems@24#.

Before the dislocation→disclination unbinding transition
occurs, the hexatic phase is anisotropic and the bond or
tational correlation function is predicted to exhibit qua
long-range order,

g6~r !5
^c6* ~0!c6~r !&

^d~r i !d~r j2r !&
}r2h6 with 0<h6<

1
4 ~3.4!

and

c6~r i !5K 1N (
j
e6iu~r i j !L . ~3.5!

In Eq. ~3.5!, c6(r i) is the local bond orientational order pa
rameter, where the indexj counts thei th particle’s nearest
neighbors,u(r i j ) is the angle between the bond connecti
particlesi and j and an arbitrary fixed reference axis, andN
is the number ofi - j bonds. Similarly, in Eq.~3.4! the index
i runs over all particles, andj counts thei th particles neares
neighbors. Although the translational order is destroyed b
small population of free dislocations, these defects h
much less effect on the bond orientational order. Strandb
@24# pointed out that because the bond orientational corr
tion function of the hexatic phase decays to zero, alb
slowly, the static structure function should be isotropic in t

n
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55 641PHASE TRANSITIONS IN A CONFINED QUASI-TWO- . . .
FIG. 3. Voronoi constructions
for a sequence of particle configu
rations with N;9 K and
r*50.83. Frames A and B are
separated by 33 ms, while frame
A and C are separated by 660 m
The color coding is as follows.
Sixfold-coordinated sites are
white, fivefold sites are red, sev
enfold sites are filled green, four
fold sites are blue, and eightfold
sites are purple. Defects of a
morphologies appear and disap
pear on the same time scale a
successive video frames.
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TABLE I. Experimental samples. The frame areaA is 3203240 pix2 ~2219.5mm2!. The areal density is
measured in units of particle number per frame area normalized by the particle diameter (Ns2/A).

Number of particles
inside field of view

Scattering pattern
@as exhibited byS(k)# Thermodynamic state

28 0.011 isotropic dilute liquid
198 0.077 isotropic dilute liquid
622 0.241 isotropic dilute liquid
1300 0.504 isotropic liquid
1498 0.581 isotropic dense liquid
1775 0.689 ; liquid-hexatic coexistence
1785 0.693 ; liquid-hexatic coexistence
2142 0.831 sixfold modulation;

square-root Lorentzian
line shape

hexatic

2180 0.846 ; hexatic-solid coexistence
2208 0.857 ; hexatic-solid coexistence
2247 0.874 sixfold modulation;

Lorentzian line shape
solid

2376 0.926 sixfold modulation;
Lorentzian line shape
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thermodynamic limit for this phase. Nevertheless, finite-s
effects modify the observed form so that the sixfold mod
lations expected from a long-range ordered solid may stil
observed in the quasi-long-range ordered hexatic.
power-law exponenth6, given by Eq.~3.4!, is related to the
Frank constantKA ,

h65
18kBT

pKA
. ~3.6!

The Frank constant depends on the distortions in the b
angle field; its magnitude reflects the mechanical stab
~manifested as bond orientational order! of the hexatic phase
much as the elastic constantK determines the limit of me-
chanical stability of the solid. The quasi-long-range bo
orientational order of the hexatic phase is destroyed by
disclinations generated by a disclination unbinding. Only
very small concentration of disclinations is necessary to
duce the system to an isotropic fluid state. The KTHN
theory predicts that the disclination unbinding transition
also continuous, and that it occurs when the value of
Frank constant falls below (72/p)kBT. Near the disclination
unbinding transition,h6 is expected to approach the value
0.25.

The KTHNY theory does not preclude the possibility th
the solid may become thermodynamically unstable with
spect to the isotropic fluid phase at a point where it is s
mechanically stable with respect to dislocation pair unbi
ing ~i.e.,K.16p!. In this case the core energyEc associated
with the formation of a free dislocation must be less than
cutoff 2.84kBT, so that a spontaneous proliferation of gra
boundaries is the primary mechanism for reaching the li
of mechanical stability~which is taken to be the melting
point! @6,29#. For this reason, the free dislocation core e
ergy is an important predictor of the melting mechanism.

Chou and Nelson generalized the KTHNY theory to sh
how defect-mediated melting can be incorporated into
schematic phase diagram for particles with short-ranged
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teractions. Following the lead given by the simulations
Bladon and Frenkel, they analyzed the properties of a tw
dimensional model system in which there is coupling b
tween a first order isostructural solid-solid transition and
elastic deformations that these phases can support. The
notion is that, because the compressibility diverges at
isostructural transition critical point, near that critical poi
the bulk modulus must decrease, and thereby permit an
crease in the concentration of free dislocations. In turn,
increased concentration of free dislocations can induce
formation of a hexatic phase. They show that the criti
exponents of the ordered solid-to-hexatic phase transition
the same as inferred from the standard KTHNY theory.

Table I lists the different sample densities used in o
investigations and the thermodynamic states we have
signed to them. Figure 4 displays sample configurations
six of these densities:r*50.58, 0.69, 0.83, 0.86, 0.88, an
0.93. Proceeding from the lowest to the highest dens
these figures show the system in~A! the pure liquid state,~B!
a state with coexistence between liquid and hexatic pha
~C! the pure hexatic phase,~D! a state with coexistence be
tween hexatic and solid phases,~E! the solid close to the
hexatic-solid transition, and~F! a compressed solid.

The identities of the pure phases were established
computing the static correlation functions from statistical a
erages of the particle positions. For example, the static st
ture function was computed from

S~Q!5N21(
i

(
j

^exp@ iQ•~Ri2Rj !#&. ~3.7!

In Fig. 5 we show the two-dimensional structure functio
corresponding to the same~A! fluid, ~B! hexatic, and~C!
solid phase densities described in Fig. 4. Also shown
sample Voronoi constructions~D–F! where the patterns o
defects have been included in the color scheme. The con
tration of bound dislocation pairs in the pure solid pha
close to the solid-hexatic phase transition is small~,0.1%!
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FIG. 4. Sample particle configurations of th
quasi-two-dimensional assembly of PMMA
spheres with frame size 224341 mm2 and
N;2000 particles~see Table I!. Each frame rep-
resents an equilibrium state of the system:~A! the
pure liquid state,r*50.58;~B! a state with coex-
istence between liquid and hexatic phase
r*50.69; ~C! the pure hexatic phase,r*50.83;
~D! a state with coexistence between hexatic a
solid, r*50.86; ~E! the solid close to melting,
r*50.88; and~F! a compressed solid,r*50.93.
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so that the dislocation core energy must be larger than
2.84kBT cutoff predicted by Chui@6#. We thus conclude tha
this system falls within the regime where the KTHNY theo
should be valid. We return to a more careful consideration
the defect core energies in Sec. IV.

The sixfold angular symmetry exhibited in Fig. 5B is
necessary but not sufficient condition to distinguish t
phase as hexatic. Our identification is further supported
the very good fit, shown in Fig. 6B, of the transverse angu
dependent line shape of the structure function to a squ
root Lorentzian~SRL!, S(u0)5$[u02x] 21k2%21/2 where
u0 is the angular position of the first peak in the static str
ture function,x is the in-plane angle that ranges from zero
2p, and k is the SRL angular width. The SRL functiona
form of the line shape has been established as a signatu
hexatic order@30#. Also shown in Fig. 6 are the line shape
of ~curveA! the isotropic fluid and~curveB! the dense solid
phase~which is well fit by a simple Lorentzian function!.

In Fig. 7 are shown the results of our analyses of
respective pair correlation functions; these results prov
conclusive evidence for the assignments we have mad
the character of the pure phases mentioned above. The t
lational correlation functions were obtained by computi
histograms of the measured distribution of particle sepa
tions from

g~r !5r22K (
i

(
jÞ i

d~r i !d~r j2r !L . ~3.8!

In an analogous fashion, the global bond orientational co
lation functions were computed from Eqs.~3.4! and ~3.5!.
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The positional order in the solid phase is seen to de
with increasing particle separation as;r21/3 @see the dotted
curve labeledA for g(r ) in Fig. 7#, while the angular order
does not decay at all. Thus, both the translational and b
orientational correlation functions for the solid phase beh
consistently within the KTHNY framework. The observe
value of the power law exponent,h51

3, suggests that~within
the context of the KTHNY theory! the solid is very close to
the dislocation unbinding transition. It will be shown in Se
V, however, that this density is in fact close to a first ord
solid-to-hexatic transition.

In the hexatic phase we find that the translational or
decays exponentially with increasing particle separation
;exp@2r /~1.8mm!#, while the angular order decays as the
observations are also in agreement with the predictions
KTHNY theory. The observed value for the bond orient
tional power law exponent,h65

1
4, suggests that~again,

within the context of the KTHNY theory! the system is very
close to a continuous disclination unbinding transition.
this case, however, we find that this density is far from
transition to the isotropic fluid and that the hexatic-to-liqu
transition is also strongly first order. In the fluid phase, bo
the positional order and the angular order decay expon
tially with increasing particle separation.

IV. DEFECT ANALYSIS

As mentioned in Secs. II and III, a necessary condition
the KTHNY theory to apply to the melting of any exper
mental quasi-two-dimensional system is that the ‘‘core’’ e
ergy associated with the unbinding of dislocations is lar
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FIG. 5. Computed two-dimensional structure functions corresponding to~A! the pure liquid state,r*50.58; ~B! the pure hexatic phase
r*50.83; and~C! a compressed solid,r*50.93. Also shown are the Voronoi constructions of sample configurations at the same den
~D! r*50.58, ~E! r*50.83, and~F! r*50.93. The color coding is the same as that described for Fig. 3. In panel~F!, a vacant particle
appears as a circular bound group of three dislocations.
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55 645PHASE TRANSITIONS IN A CONFINED QUASI-TWO- . . .
than Chui’s@6# predicted cutoff of 2.84kBT. In this section
we present a detailed self-consistent analysis of the de
topologies and energies as a function of particle density.

It is evident from examination of Fig. 3 that all visibl
defect species, namely, free dislocations, dislocation pairs
well as other defect topologies, appear and disappear on
time scale of successive video frames. It is also importan
note that their absolute locations are temporally uncorrela
From these observations alone, it is possible to conclude
the essential activated reversible processes, which inv
the formation and motion of these defects, occur on ti
scales shorter than the 30-ms sampling time interval.

It is useful to consider in some detail the mechanis
corresponding to the interconversion of these defect spe
under equilibrium conditions. Figure 8 depicts three reve
ible processes:~A! the nucleation or annihilation of a boun

FIG. 6. Angular dependences of the line shapes of the t
dimensional structure functions~evaluated at the wave vector co
responding to the first peak,ukmaxu! shown in Figs. 5A–5C. The
curves are displaced on the vertical scale for clarity. CurveA:
kmax55.2 mm21. There is no angular dependence for the isotro
fluid phase, while the hexatic line shape~curveB! kmax56.2mm21

agrees very well with a square-root Lorentzian„solid line, 0.483@~x
20.54 rad!21~0.056 rad!2#21/2; see text…. The solid phase~curveC!
kmax56.4mm21 is well fit to a simple Lorentzian function, 0.007@~x
20.54 rad!21~0.025 rad!2#21.

FIG. 7. Translational and bond orientational correlation fun
tions as a function of particle density. The curves have been sh
vertically for clarity. For both sets of curves, the three pure pha
are represented with the same densities as given in the prev
figures. The envelope ofg(r ) for the compressed solid~curveA!
decays algebraically~dotted curve,;r21/3!, while g6(r ) remains
constant. For the hexatic phase~curve B!, g(r ) decays exponen
tially $;exp@2r /~1.8 mm!#%, while g6(r ) decays algebraically
(;r21/4). In the fluid state~curveC!, both correlation functions
decay exponentially.
ct
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dislocation pair;~B! the unbinding or binding of the sam
species, and~C! the translation of a free dislocation. Th
Voronoi polyhedra are superimposed in heavy black lines
top of the triangulated particle configurations. Each th
mally activated process involves a change in configurat
that results from the motion of as few particles as one,
may involve the concerted motion of several particles. Su
particle motions are a consequence of thermal fluctuation
the system. In general, two particles that are not nea
neighbors can only form a new bond at the expense of bre
ing a bond already held between two other particles. T
relative particle motions associated with the making a
breaking of bonds are indicated with small arrows. Hence
nucleation of a dislocation pair~Fig. 8A! can be viewed as
the simultaneous formation of two sevenfold- and tw
fivefold-coordinated sites from four original sixfold
coordinated sites. The resulting distortion in the bond an
field is localized to the region containing the paired disloc
tion. Another important feature is that the lattice vector re
istry ~shown as heavy gray lines! is uninterrupted by the
formation of a tightly bound dislocation pair. However,
similar fluctuation may give rise to dislocation unbindin
~Fig. 8B! in which case the distortion of the bond angle fie
becomes delocalized and the lattice vector registry is in
rupted due to the appearance of two inserted lattice row e
each terminating at the fivefold-coordinated site of a fr
dislocation. Repetition of this process may lead to furth
separation of the free dislocations, and subsequently gre
distortion of the bond angle field~Fig. 8C!. The free energy
for a pair of dislocations increases as the logarithm of th
separation distanceR and is given in elasticity theory by

-

c

-
d
s
us

FIG. 8. Schematic depiction of dynamical reversible proces
that involve defect formation and motion.~A! Paired dislocation
formation or annihilation;~B! dislocation unbinding or binding; and
~C! dislocation glide.
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F

kBT
5KF lnS RacD2 1

2 cos
2~f!G12Ec , ~4.1!

whereK is the elastic constant defined in Eq.~3.1!, Ec is the
‘‘core’’ or internal energy associated with the formation of
free dislocation from the crystal,ac is the ‘‘core’’ radius of a
free dislocation, andf is the angle between the vector join
ing the dislocations and the Burger’s vector which depe
on the orientations of the dislocations.

The mechanism discussed above for the motion of a
dislocation will only allow the defect to translate in a dire
tion orthogonal to its axis~or Burger’s vector!. This type of
motion is known as ‘‘glide.’’ Translation of a free disloca
tion in a direction parallel to its axis is called ‘‘climb’’ and
since this type of motion must implicitly involve many pa
n
o
es
he

th

he
p

s

e

ticle displacements, the glide mechanism is expected to
the dominant process of defect diffusion. An important co
sequence of the mechanisms described above is that free
locations cannot spontaneously disappear, since this w
involve the disappearance of an entire semi-infinite row e
A free dislocation can only be destroyed through bindi
with another free dislocation and subsequent annihilation

Since the interconversion of defect species occurs un
equilibrium conditions in our system, it is possible to dete
mine the changes in free energy, enthalpy, and entropy a
ciated with each of the processes illustrated in Fig. 8
statistically sampling the particle configurations. We w
make use of the fact that for any given defect transformat
there is a conservation of topology. It is then possible
notate each process in general as an equilibrium expres
dislocation
formation or annihilation ~4.2!

dislocation
unbinding or binding ~4.3!

disclination
unbinding or binding ~4.4!
en-

that
be

ion

les

r of
Equations~4.2!, ~4.3!, and ~4.4! can be combined to obtai
expressions for the direct formation of free dislocations
free disclinations from the undistorted crystal. The expr
sion for free dislocation formation is given by adding t
first two equations: Eq.~4.2!1Eq. ~4.3!. The expression for
free disclination formation is given by@Eq. ~4.2!1Eq. ~4.3!#
123@Eq. ~4.4!#.

The change in free energy is determined according to
formula

DG52kBT ln@Keq#, ~4.5!

whereKeq is the equilibrium constant corresponding to t
process under consideration. For the case of dislocation
formation @Eq. ~4.2!#, Keq5@paired dislocations#/@sixfold
sites#4; for dislocation unbinding@Eq. ~4.3!#, Keq5@free
r
-

e

air

dislocations#2/@paired dislocations#; for disclination unbind-
ing @Eq. ~4.5!#, Keq5@fivefold sites#@sevenfold sites#/@free
dislocations#. The terms in the square brackets are conc
trations expressed as number fractions. Equation~4.5! may
be used to calculate the free energy from data such as
shown in Fig. 3, provided a good statistical sampling can
achieved.

We estimate the change in entropy using the express

DS52kBlnF ^Af
def&

^nAf
62 f&G ~4.6!

where^Af
def& is the average free area available to the partic

inside a given defect at a certain bulk density, and^nA f
62 f&

is the average free area available to the same numbe
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TABLE II. Defect statistics from particle trajectory data.^n& is the average number of defects per fram
in a hundred frame sequence,^Af

def& is the average free defect area expressed in units of pix2 @~0.17mm!/pix#
defined in the text, and is the defect number fraction. The total number of particles in the field of v
given in Table I.

Defect type

r*50.83 r*50.88 r*50.93

^n& ^Af
def& ^n& ^Af

def& ^n& ^Af
def&

Free
dislocations

5.8
62.2

22.0
61.6

0.0036
0.0010

3.3
60.4

23.0
62.4

0.0026
0.0006

1.4
60.8

18.5
62.3

0.00066
0.0003

Dislocation
pairs

15.1
63.4

43.5
62.9

0.0076
0.0016

9.9
62.4

44.6
62.8

0.0046
0.0011

1.1
60.8

45.4
65.8

0.00056
0.0003

5-8-5
dislocations

4.5
62.0

39.6
65.9

0.0026
0.0009

0.95
60.9

38.8
66.0

0.00046
0.0002

0.5
60.6

36.8
66.2

0.00026
0.0002

fivefold
disclinations

6.2
62.1

8.8
60.9

0.0036
0.0010

2.8
61.3

9.4
61.3

0.0016
0.0005

0.8
61.0

8.1
62.7

0.00036
0.0001

sevenfold
disclinations

5.0
61.4

13.6
61.9

0.0036
0.0012

2.2
60.6

11.9
61.8

0.00046
0.0003

0.6
61.2

10.1
63.0

0.00036
0.0001

site
vacancies

1.9
60.8

; 0.0016
0.0012

0.4
60.6

; 0.00026
0.0002

0.3
60.5

; 0.00016
0.0003

nondefect
sites

2,116 8.7 0.9892 2,274 9.1 0.9949 2,375 7.8 0.9991
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are
particles confined to sixfold-coordinated sites at the sa
bulk density. The average free areas described in Eq.~4.6!
were evaluated from the particle coordinates by numeric
computing the areas of the Wigner-Seitz cells associa
with individual defects or sixfold-coordinated sites a
subtracting the cross-sectional area of the partic
(Ap5ps2/4).

Once the changes in free energy and entropy are kno
the change in enthalpy can be calculated from the differen

DH5DG1TDS. ~4.7!

The change in enthalpy for a process that occurs at cons
pressure is analogous to the change in internal energy f
constant volume process. Since our experimental syste
held at constant pressure and chemical potential, the cha
in enthalpies associated with defect transformations are
more relevant quantities.

Table II lists the different defect species considered in
analysis, the average number of observed occurrences
configuration during a 100-frame sequence, the average
area associated with a particular defect,^Af

def&, and the num-
ber fractions. Also tabulated are the root mean square~rms!
areas and rms number of occurrences. The analysis was
ried out for three particle densities:r*50.83, 0.88, and 0.93
corresponding to the hexatic phase, the solid phase clos
the melting transition, and a high-density solid phase. T
sizes of the frames examined were such that, for each fr
sequence, approximately 2000 particles were in the field
view. This information was used to calculate the equilibriu
constants associated with Eqs.~4.2!–~4.4!. Table III lists the
changes in free energies, entropies, and enthalpies assoc
with each defect transformation. In general, the magnitu
of all three quantities increase with increasing particle d
sity. It is also seen that dislocation unbinding@Eq. ~4.3!#
requires;2kBT more energy~or enthalpy! than paired dis-
e

ly
d

s

n,
e,

nt
a
is
es
he

r
per
ee

ar-

to
e
e

of

ted
s
-

location formation@Eq. ~4.2!# while disclination unbinding
requires only;1kBT more in energy. The linear combina
tions corresponding to free dislocation formation and fr
disclination formation are also tabulated. From these val
we obtain the ‘‘core’’ energies, entropies, and ethalpies
sociated with free dislocation and disclination formation. I
terestingly, the magnitudes of the core quantities appea
be very similar for both dislocation and disclination form
tion at all three particle densities. Since the core enthalp
far above the 2.84kBT cutoff, we conclude that our system
does meet the necessary criterion for the KTHNY theory
apply to the system we have studied.

V. COEXISTENCE AND FIRST ORDER TRANSITIONS

It was stated previously that we have observed stron
first order solid-to-hexatic and hexatic-to-solid phase tran
tions. This assertion is qualitatively supported by our obs
vation that the dynamical behavior of our system is u
formly distributed at the particle densities we identified
pure phases~see Sec. III! while there are distinct dynamica
heterogeneities at the densities we now identify as coex
ence regions. In Fig. 9 are plotted trajectory maps of part
displacements corresponding to the particle densities sh
in Fig. 4. Each map consists of 20 sequentially linked p
ticle positions so that the full time duration is 600 ms. A
though the behavior seen in Figs. 9B and 9D is suggestiv
two-phase coexistence, bimodal distributions~e.g., in the ve-
locity autocorrelation function! by themselves do not neces
sarily imply this situation. It is instead necessary to demo
strate statistical correlations between local quantities suc
dynamical variables and stationary order parameters; s
joint particle distributions may be used to distinguish b
tween different coexisting phases at a single bulk density

Our conclusions are based on an analysis of two lo
static variables and one local dynamical variable. These
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TABLE III. Defect-free energies, entropies and enthalpies of formation. Energies and enthalpie
expressed in units ofkBT. Entropies are in units ofkB.

Transformation

r*50.83 r*50.88 r*50.93

DG DS DH DG DS DH DG DS DH

Eq. ~4.2!
paired dislocation
formation

4.90
60.2

0.22 5.12
60.2

5.43
60.2

0.20 5.63
60.2

7.60
60.2

0.38 7.98
60.2

Eq. ~4.3!
free dislocation
unbinding

6.88
60.2

0.46 7.34
60.2

7.55
60.2

0.46 8.01
60.2

7.24
60.5

0.35 7.59
60.5

Eq. ~4.2!1Eq. ~4.3!
free dislocation
formation

11.79
60.3

0.68 12.46
60.3

12.98
60.4

0.66 13.64
60.4

14.84
60.5

0.73 15.57
60.5

‘‘core’’ quantities
per free dislocation

5.90 0.34 6.23 6.49 0.33 6.82 7.42 0.36 7.78

Eq. ~4.4!
free disclination
unbinding

5.77
60.2

0.44 6.21
60.2

6.79
60.2

0.28 7.07
60.2

8.80
60.7

20.12 8.68
60.7

@Eq. ~4.2!1Eq. ~4.3!#
123Eq. ~4.4!
free disclination
formation

23.33
60.2

1.56 24.89
60.2

26.56
60.4

1.22 27.78
60.4

32.44
60.9

0.49 32.93
60.9

‘‘core’’ quantities
per free disclination

5.83 0.39 6.22 6.64 0.30 6.94 8.11 0.12 8.23
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the local bond orientational order parameter,c6(r i), defined
by Eq. ~3.5!, the local areal density, which we define as

r~r i !5
1

Ai
, ~5.1!

and the local characteristic time required for a particle
diffuse a distance equal to its diameter,

t~r i !5
s2

Ds~r i !
, ~5.2!

with

Ds~r i !5 lim
t→`

1

4

d^@r i~ t !2r i~0!#2&
dt

. ~5.3!

In Eq. ~5.1!, Ai is the area of the Voronoi polyhedron a
signed to particlei . The Voronoi polyhedron is a generaliza
tion of the Wigner-Seitz cell which is the simplest possib
unit cell for a two-dimensional system. In Eq.~5.3!, Ds(r i) is
the asymptotic temporal limit of a locally defined se
diffusion coefficient. We have previously shown@31# that,
for our system,Ds(r i) reaches its asymptotic value within 2
experimental sampling time intervals~600 ms!.

The stationary order parameters,c6(r i) and r(r i), both
have magnitudes that are largest in the ordered solid ph
their values are considerably smaller at liquid densities
the system exists as a pure phase, fluctuations in both o
parameters are expected to occur randomly and to be un
related with one another. On the other hand, if two pha
coexist at the same bulk density the constituent particle
the two phases will separately contribute to different peak
o

se;
If
er
or-
s
of
in

the joint probability distributionP„c6(r i),r(r i)…. That is, the
fluctuations in the two order parameters will appear to
correlated.

Unfortunately, because our observation window conta
a finite number of particles (N;2000), fluctuations of the
order parameter values~which go asN21/2! will cause sig-
nificant overlap between closely spaced peaks that appe
the distributions ofc6(r i) and r(r i). For this reason we
consider slightly different local correlation functions, ea
defined as the absolute value of the projection of the or
parameter onto a local average of the same function o
nearest neighbors, namely,

mc6
~r i !5F uc6~r i !u

1

n (
j

uc6~r j !uG1/2 ~5.4!

and

mr~r i !5Fr~r i !
1

n (
j

r~r j !G1/2, ~5.5!

where the indexj counts thei th particlesn nearest neigh-
bors. The values of the nearest-neighbor correlation fu
tions defined by Eqs.~5.4! and~5.5! are expected to be mor
sensitive to the environments of particles which are not cl
to a phase boundary than the local order parameters th
selves, because the local correlation functions are maxim
for particles that are both well ordered~or dense! and have
nearest neighbors that are also well ordered~or dense!. In a
similar spirit to that used in the definitions given by Eq
~5.4! and~5.5!, we also define a nearest-neighbor correlat
function for the characteristic time
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FIG. 9. Particle trajectories as a function o
density. Line segments connect the particle po
tions between successive video frames. The du
tions of these sequences are for 20 frames or 6
ms. The densities are the same as those give
Fig. 4. The self-displacements of the ensemble
particles are seen to be uniform for the cases
the pure phases~frames A, C, E, and F!, while
they are inhomogeneous for the densities th
represent coexistence~frames B and D!.
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t j G1/2. ~5.6!

It has been shown by Larsen and Grier@32# that the joint
distributionP(uc6u,mc6

) is clearly bimodal in systems tha
exhibit solid-liquid coexistence. They classify a particle l
cated at positioni as belonging to the solid phase if th
conditionmc6

(r i)1uc6(r i)u.C is satisfied, whereC is an
empirically determined constant that bounds the two dis
butions in themc6

-uc6u plane. If the above-stated conditio
is not satisfied, the particle located at positioni is assigned to
the fluid phase.

For the data sets with particle densities in the ran
r*50.58–0.93, we have calculated the joint distributio
P(r,mr), P(uc6u,mc6

), andP(t,mt). In Fig. 10 are shown
two-dimensional scatter plots of these distributions tak
from a single-particle configuration at two particle densit
we identified as lying in the fluid and hexatic regions of t
phase diagram~r*50.58 and 0.83, respectively!. For both
densities, it can be seen that all three curves are well re
sented as single distributions. A similar behavior was
served for the distributions at densities characteristic of
pure solid phase. Clearly, these distributions are very dif
ent from the bimodal distributions seen at bulk densities c
responding to coexistence regions. For example, in Fig.
we show joint distributions for particle densitiesr*50.69
i-

e
s

n
s

e-
-
e
r-
r-
1

and 0.85 which lie, respectively, within the fluid-hexatic a
hexatic-solid coexistence regions. The dotted lines indic
the values of the cutoffC we have chosen to distinguis
between the two peaks. Note that the peak widths and p
tions corresponding to the hexatic components are, wit
statistical error, the same as that for the distributions cha
teristic of the pure hexatic phase, shown in Fig. 10.

To demonstrate that the bimodal fluctuations are co
lated between the different order parameters, we identify
particles that contribute to the separate peaks in the bim
distributions. Figure 12 shows a comparison of the parti
assignments we have made according to the analysis
scribed above using Voronoi constructions of the parti
configurations. Figures 12A, 12B, and 12C correspond t
particle density that lies in the pure fluid region of the pha
diagram ~r*50.58!, while Figs. 12C, 12D, and 12E
~r*50.83! correspond to the hexatic phase region. Similar
Figs. 13A, 13B, and 13C display results of the analysis
the fluid-hexatic coexistence region~r*50.69!, while Figs.
13C, 13D, and 13E~r*50.85! correspond to the hexatic
solid coexistence region. The gray scale shading indica
the partitioning of the particles between pure phases;
fluid phase is labeled white, the hexatic phase is labeled l
gray, and the solid phase is labeled dark gray. In Figs.
13A, and 13D, the assignment of particles to phases
made according to an analysis of the local densities@i.e.,
P(r,mr)#, while in Figs. 12, 13B, and 13E, the assignme



ant

650 55ANDREW H. MARCUS AND STUART A. RICE
FIG. 10. Two-dimensional scatter plots of the three local order parameters used in our analysis,r(r i), c6(r i), and t(r i), vs their
nearest-neighbor averagesmr i

, mc6i
, andmt i

for the pure liquid~r*50.58, plots A, B, and C! and hexatic~r*50.83, plots D, E, and F!
phases. In all cases, the density of points is well described as a single distribution. The dashed lines indicate the value of the constC used
to distinguish between possible coexisting phases in the systems. They are~A! 1.4, ~B! 1.4, ~C! 5.2, ~D! 1.8, ~E! 1.4, and~F! 65.
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was entirely based on an analysis of the local bond orie
tional order parameters@P(uc6u,mc6

)#; in Figs. 12, 13C, and
13F, the assignments are based on an analysis of the
correlation times [P(t,mt)]. For both pure phases shown
Fig. 12, the three order parameter analyses are unique, w
for the coexistence bulk densities~Fig. 13!, the three analy-
ses give nearly the same results. Thus, at the coexist
densities, the partitioning of the distributions in the thr
order parameters do not occur randomly with respect to
another. We therefore conclude that two phases, each
their own distinct average properties, coexist under equi
rium conditions at these particle densities.

We illustrate the cumulative results of our analysis
computing the intersection of all three joint distribution
P(uc6u,mc6

)ùP(r,mr)ùP(t,mt). In Fig. 14 are shown
Voronoi constructions of the particle configurations d
played in Fig. 4. The color scheme indicates the assignm
of particles to phases as described in Figs. 12 and 13
though the assignments are now made according to the i
section described above.

Our conclusion that the particle densities examined in F
13 are examples of coexisting phases, hence of first o
transitions between the coexisting phases, is further s
ported by the consistency of our results with the lever r
@33#. The relative amounts of the two phases in the coex
ence region of a first order transition are expected to sat
the simple relation

na

nb
5
l b
l a
. ~5.7!
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In Eq. ~5.7!, na is the number of particles assigned to pha
a, nb is the number of particles assigned to phaseb, l a
5ur*2ra* u, and l b5ur*2rb* u. The transition densitiesra*
and rb* are found by examining separately the previou
determined binary components of the local density distri
tions. In Fig. 15 we show histograms of the local order p
rameter,r(r i), at particle densitiesr*50.689~Fig. 15A! and
0.846 ~Fig. 15B!. Each figure displays the total density di
tribution and the binary component distributions. The so
curves associated with the component data sets are li
least square fits of Gaussian functions to the distributio
while the solid curves passing through the total density d
tributions are the sums of the component Gaussian fits.
peak positions~indicated with dashed lines! indicate the tran-
sition densities, while the area under each Gaussian func
is proportional to the amount of the respective phase. In F
15C and 15D we show the results of a similar analysis us
the bond orientational order parameter. See Table IV for
values of all parameters.

Table IV displays the peak positions and widths det
mined from our analysis as a function of particle densi
The values corresponding to the component peaks of
distributions exhibiting coexistence are also given. In Ta
V the ratiosl a/ l b and nb/na , estimated from the analysis
are shown. The quantitiesna and nb are determined by
evaluation of the integrated areasA1 andA2 of the Gaussian
fits to the binary component peaks. The coexisting liquid a
hexatic phase densities were determined to be 0.68 and 0
respectively, while the corresponding coexisting hexatic a
solid phase densities are 0.83 and 0.87, respectively. At
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FIG. 11. Two-dimensional scatter plots similar to those shown in Fig. 10, evaluated at the densities corresponding to liquid
~r*50.69, plots A, B, and C! and hexatic-solid~r*50.86, plots D, E, and F! coexistence. In all cases, the data are well represente
bimodal distributions. The dashed lines indicate the value of the constantC used to distinguish between possible coexisting phases in
systems. They are~A! 1.4, ~B! 1.0, ~C! 12, ~D! 1.8, ~E! 1.2, and~F! 35.
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same particle densities, the coexisting values of the b
orientational order parameter are 0.28 and 0.61 for the liq
and hexatic phases, respectively, and 0.63 and 0.75 for
hexatic and solid phases, respectively. The analogous c
istence values of the characteristic times are 4.27 and 4.
for the fluid-hexatic region, and 11.42 and 11.62 for t
hexatic-solid region. When the cited values of the transit
densities are substituted into Eq.~5.7!, the lever rule is found
to hold with a best accuracy of 1.7% and a worst accurac
14%.

VI. DISCUSSION

The experiments described in the preceding section
this paper establish the existence of first order solid
hexatic and hexatic-to-liquid phase transitions in a pseu
two-dimensional system of sterically stabilized PMMA co
loidal particles. Bladon and Frenkel have shown, fro
Monte Carlo simulations, that the behavior we observed i
be expected for particles which have an interaction poten
which supports an isostructural solid-to-solid phase tra
tion. Our findings are also in agreement with the results
the analytical studies of Chou and Nelson@8#, who examined
the consequences of modifying the conventional KTHN
theory of two-dimensional melting to include coupling b
tween an isostructural solid-to-solid phase transition and
strain fields in those solid phases. Because of the difficul
associated with establishing equilibrium in two-dimensio
systems, and the difficulties associated with establishing
nature of the thermodynamic limit from examination of fini
d
id
he
x-
s

n

of

of
-
o-

to
al
i-
f

e
s
l
e

samples, we now examine some issues associated with
interpretation of our experimental data.

A key element in our analysis is the identification of de
sities for which there is two-phase coexistence. Assignm
of a local region of the system to a particular phase depe
on the definition of a suitable descriptor for that phase. If t
descriptor, say the local density, has a bimodal distributi
it is plausible that the system examined does exhibit ph
coexistence. However, the existence of a bimodal distri
tion of the local density in a finite sample is not, by itse
conclusive evidence of two-phase coexistence. In princi
to establish that a bimodal distribution of any single descr
tor of phase identity is definitive evidence of two-phase c
existence it is necessary to show that the bimodal distribu
persists in the thermodynamic limit, i.e., to study, at const
density, the system size dependence of the distribution.
evidence for the existence of two-phase coexistence at a
ticular density in a finite sample can be strengthened by
use of multiple descriptors and a coincidence analysis.
identifications of the densities at which there is coexiste
between the solid and hexatic phases and between
hexatic and liquid phases have utilized a triple coinciden
analysis. We have shown that for a particular overall sam
density, the local density, the local bond orientational or
parameter, and the local diffusion coefficient are related
one-to-one maps; that is, they simultaneously locate the s
regions in the images of the two-dimensional colloid syste
We have identified those regions with the relevant phases
contrast, the same triple coincidence analysis shows
there is no correlation between these descriptors in the p
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FIG. 12. Voronoi constructions of particle
configurations corresponding to the liqui
~r*50.58, plots A, B, and C! and hexatic
~r*50.83, plots D, E, and F! phases. The gray
scale scheme indicates the partitioning of the p
ticles between phases; the fluid phase is labe
white, the hexatic phase is labeled light gray, a
solid phase is labeled dark gray. Plots A and
correspond to the analysis of the joint distrib
tions in local density, plots B and E correspond
the analysis of the local bond orientational ord
parameter, and plots C and F correspond to
analysis of the local correlation times.
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liquid phase. We believe that the results of the triple coin
dence analysis provide very strong support for the inferen
we have drawn concerning the occurrence of first or
phase transitions in the system studied.

As to the influence of finite sample size on the observ
behavior, we have shown, in Sec. II, that the translatio
and bond orientation correlation functions are independen
subdivision of the video image of the sample system i
subblocks, and that the correlation length for translatio
order is small compared to the size of the sample video
age.

We have noted that on the time scale of successive v
images of our system dislocations appear and disappear
thus we inferred that our system is at equilibrium. That co
clusion is supported by the observation that the effec
diffusion coefficient of a dislocation is very large, since t
appearance and disappearance of dislocations at uncorre
positions in successive video frames implies an effective
placement per frame separation of the order of the size of
video image. Therefore, during a typical 72-h run a dislo
tion can sample the entire area of a video image, and
move a very large distance relative to the typical size o
one-phase region when there is hexatic-phase–solid-p
coexistence. In the worst case, in which equilibrium must
established by particle displacements, we note that the d
sion coefficient of a colloid particle in, say, the hexa
i-
es
r

d
al
of
o
l
-

o
nd
-
e

ted
s-
e
-
an
a
se
e
u-

phase, is large enough~D;0.33mm2/s! that a particle can
move a distance equal to 585 particle diameters in a typ
72-h run. This distance is also greater than the typical siz
a one-phase region when there is hexatic-phase–solid-p
coexistence.

In our experiments, each cell has a unique density, he
the density dependence of the properties of the system
studied by assembling the data for a large number of ce
As stated in Sec. II, although the method we used to ad
the sample cell thickness does not achieve uniform sep
tion of the cell walls over the entire cell, the portion which
thin enough to constrain the colloid particles to one pla
occupies the larger fraction of the total area of the cell.
fact, in our system the fraction of the sample which is qua
two-dimensional is large enough to be considered the re
voir for the part of the sample that is thicker. Put anoth
way, it is the chemical potential of the quasi-two
dimensional portion of the colloid sample that determines
state of the remainder, and not the reverse. We conclude
it is appropriate to interpret our results in terms of equil
rium at constant density.

One class of pair potentials that supports an isostruct
solid-to-solid transition consists of a strongly repulsive co
and a very short-ranged attractive well~or repulsive step!.
Simulations of two- and three-dimensional systems with
pair interaction of this type show that the isostructural tra



tic

.
the
he
2.

55 653PHASE TRANSITIONS IN A CONFINED QUASI-TWO- . . .
FIG. 13. Voronoi constructions of particle
configurations corresponding to the liquid-hexa
~r*50.69, plots A, B, and C! and hexatic
~r*50.86, plots D, E, and F! coexistence regions
As in Fig. 12, the gray scale scheme indicates
partitioning of the particles between phases. T
plot ordering is the same as that shown in Fig. 1
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sition disappears from the phase diagram when the rati
the width of the attractive well~or the repulsive step! to the
repulsive core diameter exceeds a small critical value, wh
is about 0.08 for the two-dimensional hard disk plus squ
well interaction. We now examine the extent to which t
effective interaction between the particles in the system
have studied satisfies the conditions under which one
reasonably expect the simulations of Bladon and Frenke
be applicable.

The quasi-two-dimensional system we have studied c
sists of sterically stabilized PMMA spheres. The steric sta
lization is achieved by grafting long chain molecules to t
surface of each sphere; in our sample these chains cre
brush with height about 300 Å. The effective interaction b
tween a pair of sterically stabilized PMMA spheres then h
a hard core with a diameter of about 1mm and a softer
interaction with a range of about 0.06mm. The softer inter-
action, which is generated by the compression of the lo
chain brushes grafted to the surface of the PMMA particle
repulsive over most or all of its range. If the long chains
not interpenetrate when the brushes begin to overlap,
interaction generated by the compression of the brush
positive everywhere because of the loss of chain config
tional entropy which accompanies the brush compressio
the long chains do interpenetrate when the brushes beg
overlap, the interaction can be either repulsive or attract
of

h
e
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to

n-
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-
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he
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If
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The former case is usually the only one considered; it alw
arises when there is no difference between the energie
chain element-chain element interaction and chain elem
solvent interaction~the so-called athermal limit!. The latter
case can in principle occur over a small range of brush
terpenetration near the onset of brush-brush contact, if
chain-element–chain-element interactions are more fa
able than chain-element–solvent interactions.

Calculations of the interaction between interpenetrat
brushes in the athermal limit have been reported by Ma
and Wang@34#. They show that the segment density profi
along the normal to the surface is sensibly unaffected
brush-brush interpenetration in the limit of very large cha
length, and is increasingly affected as the chain length
creases. In particular, for chains of about the same lengt
used in the stabilization of our PMMA particles, overlap
the tails of the segment density profile creates a weak re
sion before the main parts of the brushes overlap; the re
sive force grows rapidly after the main parts of the brush
overlap. For our system the chain-element–chain-elemen
teractions are expected to be more favorable than ch
element–solvent interactions, so we expect that the ove
of the tails of the segment density distribution will create
weak attraction before the main parts of the brushes over
Accepting this expectation, the effective particle-particle
teraction in our system will have a weak and narrow attr
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FIG. 14. Results of triple coincidence analys
using Voronoi constructions of particle configu
rations as a function of particle density. The gra
scale scheme is determined by the intersect
between the three joint probability distribution
P(uc6u,mc6

), P(r,mr), andP(t,mt). The den-
sities corresponding to A–F are the same as
Figs. 4A–4F.

FIG. 15. Decomposition of local density~plots A and B! and bond orientation~plots C and D! distributions according to the analys
described in the text. An example of both liquid-hexatic~r*50.693, plots A and C! and hexatic-solid~r*50.857, plots B and D! densities
are shown. The solid curves are best-fit Gaussian functions to the component distributions. Their peak positions~verticle dashed lines! and
integrated areas give the values of the coexisting pure phase densities and the relative number of particles that occupy each
complete results of our analysis are listed in Tables IV and V.
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tive well located at about 1.06 particle diameters, a rapi
increasing repulsive interaction between 1.00 and, say, 1.
1.05 particle diameters, and a hard core repulsion at 1
particle diameters. A cartoon representation of such a
potential is shown in Fig. 16. A potential of this form has t
qualitative features, and a range relative to the hard c
repulsion, to support an isostructural solid-to-solid transiti

FIG. 16. Schematic representation of the pair potential con
tured to support a two-dimensional isostructural solid-solid ph
transition. The attractive contribution occurs between 1.04s and
1.06s, and is due to a favorable enthalpic interaction between
segments of the brush polymers that coat the colloidal particles
shorter interparticle separations, the polymer chains collapse, c
sponding to a loss of configurational entropy and a rapid increas
the pair potential.
y
–
0
ir

re
,

if the parameters that define the potential have appropr
values. We conjecture that there is an as yet unobse
isostructural solid phase to solid phase in our system,
that the conditions under which our experiments have b
conducted place the system in the domain where crit
point fluctuations associated with the isostructural solid-
solid phase transition drive the formation of the hexa
phase. Note, however, that the values of the parameters
cific to our case are not known and no simulations wh
verify our conjecture have been carried out to date.

It is worth noting that in our experiments the medium
which the PMMA particles are suspended in an aqueous
crose solution. We have considered the possibility that
solubility of the sucrose in the brush plus solvent imme
ately adjacent to the PMMA particle is different from that

c-
e

e
t
re-
of

TABLE V. Lever rule analysis@see Eq.~5.7!# is the areal den-
sity; theAi are the integrated areas of the Gaussian fits to the s
rate peaks in the local density distributions; thel i5u2 i u as de-
scribed in the text. The subscript numbers indicate the pe
corresponding to the phases as identified in Table IV.

A1 A2 l 1 l 2 n2/n1 l 1/ l 2 % error

0.6887 11.961 4.510 0.0067 0.0153 0.377 0.438 14
0.6926 11.550 4.850 0.0096 0.0044 0.420 0.458 8
0.8459 12.630 7.610 0.0119 0.0201 0.602 0.592 1.
0.8567 6.520 13.680 0.0037 0.0083 0.477 0.446 6.
es are
r

TABLE IV. Average values and standard deviations of order parameter distributions. The densiti
those described in Table I.r is the local areal density@Eq. ~3.5!#, c6 is the local bond orientational orde
parameter@Eq. ~5.1!#, andt is the local correlation time given in units of sec@Eq. ~5.2!#.

Thermodynamic
state ^r& rms r ^c6& rmsc6 ^t& rms t

0.011 dilute liquid ; ; ; ; 1.0 1.6
0.077 dilute liquid 0.176 0.076 0.285 0.192 3.0 2.1
0.241 dilute liquid 0.239 0.075 0.293 0.186 10.4 6.3
0.504 liquid 0.508 0.071 0.342 0.206 2.0 1.2
0.581 dense liquid 0.590 0.067 0.351 0.224 1.0 0.7
0.689 liquid-hexatic

coexistence
0.692 0.066 0.420 0.306 4.31 2.1

peak 1 0.682 0.068 0.277 0.240 4.24 1.98
peak 2 0.704 0.059 0.608 0.123 4.47 2.30

0.693 liquid-hexatic
coexistence

0.694 0.081 0.501 0.329 4.26 2.08

peak 1 0.683 0.061 0.321 0.189 4.29 1.99
peak 2 0.697 0.049 0.710 0.178 4.50 2.27

0.831 hexatic 0.833 0.071 0.62 0.316 5.21 3.1
0.846 hexatic-solid

coexistence
0.850 0.064 0.665 0.201 11.44 5.4

peak 1 0.834 0.067 0.630 0.193 11.39 6.1
peak 2 0.866 0.052 0.753 0.188 11.58 5.2

0.857 hexatic-solid
coexistence

0.859 0.068 0.688 0.225 11.61 5.8

peak 1 0.853 0.076 0.635 0.218 11.44 6.2
peak 2 0.865 0.058 0.751 0.222 11.65 5.5

0.874 solid 0.878 0.053 0.63 0.12 19.6 9.66
0.926 solid 0.932 0.042 0.65 0.23 95.7 31.9
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656 55ANDREW H. MARCUS AND STUART A. RICE
the bulk medium, but have been unable to devise a sch
whereby this differential solubility, if it existed, would gen
erate a free energy as a function of particle separation
resembles the functional form needed.

A comparison of the experiments that verify the pred
tions of the original KTHNY theory and the experimen
reported in this paper, the simulations of Bladon and Fren
and the analytic theory of Chou and Nelson, suggest an
parent richness of pathways associated with the melting t
sition in two dimensions. Although there are several kno
isostructural solid-solid phase transitions in thre
dimensional systems, the melting transitions in those syst
are not qualitatively different from melting in any othe
three-dimensional system. Indeed, the experimental evide
is that the melting transitions in all three-dimensional s
tems are first order, no matter what the potential energy fu
tion. In contrast, the pathway associated with tw
dimensional melting does exhibit a dependence on
character of the intermolecular potential, as demonstrate
the difference between our results and those, for differ
systems, in which melting involves sequential continuo
transitions. This apparent dependence of the melting p
way on the intermolecular potential in a two-dimension
tt.
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ett
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system might be a signal of the nonuniversality of the tw
dimensional melting transition, or it might result from re
strictions on the regions of the thermodynamic parame
space available for realizable systems. The latter view is c
sistent with the results of Fisher and co-workers@35#, who
showed that a two-dimensional assembly of polarizable i
with allowed ion pairing has an insulating-to-conductin
phase transition which is first order below a tricritical poin
and of continuous Kosterlitz-Thouless type for temperatu
above, and densities below, that tricritical point.
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