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Dispersive optical bistability in one-dimensional doped photonic band gap structures

Rongzhou Wang,1 Jinming Dong,1 and D. Y. Xing2
1National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, People’s Republic of China

and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing 210093, People’s Republic of Ch
2Department of Physics, Nanjing University, Nanjing 210008, People’s Republic of China

~Received 30 July 1996; revised manuscript received 31 October 1996!

We introduce a Kerr-type nonlinear defect layer in the center of one-dimensional photonic band gap struc-
ture. For linear parts, we use transfer matrix technique, and for the nonlinear layer, we solve the Maxwell
equation numerically. When incident light intensity varies, a typicalS-shape curve of the transmitted light
intensity is obtained. In this case, an optical bistability is produced by dynamic shifting of the defect mode
frequency, not dynamic shifting of the band edge, which is different from the case of periodic nonlinear
superlattices. It is also found that when the linear defect mode frequency moves from the center of the gap to
the edge of the gap, the threshold intensity needed for the bistability increases rapidly.
@S1063-651X~97!05204-5#

PACS number~s!: 42.25.Bs, 78.66.2w, 42.65.Pc
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Recently, there has been increasing interest in photo
band gap~PBG! structures@1#, which have forbidden band
prohibiting a certain range of frequencies of light wav
from propagating through them. Many theoretical and
perimental studies focus on the linear case. When nonlin
ity is introduced, it can cause many amusing phenomena
example, optical limiting and switching@2#, optical diodes
@3#, and optical bistability@4#. The above nonlinear phenom
ena are caused by the dynamic shifting of the band edge,
the incident light frequency is tuned to near the band ed
and when the incident light intensity changes, it cause
change of effective refractive index, and hence a chang
the band edge too. However, this kind of single distribu
feedback~DFB! structure needs a large number of periods
obtain a sharp and strong resonance. He and Cada@5# pro-
posed a combined structure which is composed of a D
structure and a phase-matching layer placed in a Fabry-P´rot
~FP! cavity. They developed a nonlinear matrix trans
method to study optical bistability in the combined DFB-F
structure at frequencies near the band edge, and found th
can have a much lower threshold value for the bistabi
than a single DFB structure with a comparable total thi
ness.

When a defect is introduced in the PBG structure, it c
create a donor or an acceptor mode in the forbidden band@6#,
which is similar to the case of a semiconductor. The def
mode frequency depends on the refractive index and volu
of the defect. In the one-dimensional~1D! case@7#, the donor
mode frequency decreases when the refractive index of
defect layer increases. It has been found that when the d
layer has the lowest refractive index, the electric field in it
the largest, and nearly 20 times larger than the incident fi
Thus if the defect has nonlinearity such a structure can
hance the nonlinear effect greatly.

For a PBG structure doped with linear dielectric mate
als, if a light wave is tuned at the defect mode frequency
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can pass through it with almost no reflection. If the lig
frequencyv is tuned in the gap~not at the defect mode
frequency!, the field will decrease exponentially in the stru
ture. With a Kerr-type nonlinearity existing in the defe
layer, the defect mode frequency will now change with t
local light intensity, and hence the incident light intensi
This means if we tunev near to the defect mode frequenc
the doped structure can produce a positive or negative~de-
pending on the sign of nonlinearity and whetherv is bigger
or smaller than the defect mode frequency! feedback on the
incident light. We have known that a bistability can appear
an optical system with a positive feedback@8#, and optical
bistability systems have many applications. For examp
they can be used as optical logic elements, memory
ments, or optical transistors@8,9#. Therefore it is very inter-
esting to investigate the bistability in the doped 1D PB
structure.

We use a quarter-wavelength stack as our 1D PBG st
ture, which is a multilayer stack of dielectric materials
which alternating layers have a lower refractive indexn1
~denoted asA), and a higher refractive indexn2 ~denoted as
B). Thicknesses for the two kinds of layers are such t
d15l0 /4n1 and d25l0 /4n2, with l0 as the free-space
wavelength. This kind of structure can create a band
with center frequency 2pc/l0. We now replace the cente
layer A by another nonlinear layerC ~here,C may have
different thickness fromA). The doped structure has th
form . . .ABABCBABA. . . ,which can be considered to b
composed of three parts linked together by two near
neighborB layers of the nonlinearC layer. These three part
are the left and the right linear parts . . .ABABA. . . , and
the nonlinear layerC. The left linear part is supposed to li
in the coordinate space,z1,z,zN11. Electric field in the
structure can be expressed byE(z,t)5E(z)e2 ivt with
6301 © 1997 The American Physical Society
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E~z!5H sexp~ ik0z!1gexp~2 ik0z! if z,z1

f jexp@ ik j~z2zj !#1bjexp@2 ik j~z2zj11!# if zj,z,zj11

texp@ iks~z2zN11!#1rexp@2 iks~z2zN11!# if z.zN11 ,
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where j51,2,3,. . . , N is the layer index, the wave vecto
kj52pnj /l0 with l0 as the wavelength of incident light i
free space, andzj is the position of thej th interface. Both
f j andbj are the coefficients in thej th layer to be determined
by the boundary conditions that the tangential component
E(z) and its derivative overz should be continuous at th
boundary. Therefore we have the recurrence relations

F f j21

bj21
G5Fa11j a12

j

a21
j a22

j GF f jbj G , ~1!

in Eq. ~1!, for 1< j<N,

a11
j 5

1

2
exp~2 ik j21dj21!S 11

nj
nj21

D ,
a12
j 5

1

2
exp~2 ik j21dj21!S 12

nj
nj21

D ,
a21
j 5

1

2
exp~ ik j21dj21!S 12

nj
nj21

D ,
a22
j 5

1

2
exp~ ik j21dj21!S 11

nj
nj21

D , ~2!

with dj5zj112zj as the thickness of thej th layer. For
j51, we havef 05s, b05g, d05z1, andn0 as the refractive
index in the semi-infinite spacez<z1. Finally when
j5N11, we havef N115t, bN115r for the left linear part,
andnN11 is the refractive index in the spacez.zN11.

Considering correspondence between the 1D Maxw
and Schro¨dinger equations, we can define the total trans
matrix for N layer films @10#,

MN5H )
j51

N11 Fa11j a12
j

a21
j a22

j G J , ~3!

which links electric fields outside the structure,

F sgG5FM11 M12

M21 M22
GF tr G . ~4!

The same procedure can be done for the right linear
except that there exists no reflected wave in the right out
of it, i.e., ther50 in Eq. ~4! right now. The details can be
found in Ref.@11#.

Now, we consider the nonlinear layerC. For a Kerr-type
nonlinearity, the effective index of refraction is

n25n0
21x3uE~z!u2, ~5!
of
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with x3 as a small nonlinear coefficient. Assuming the ele
tromagnetic field has the formE(z)e2 ivt, the Maxwell equa-
tion becomes

d2E~z!

dz2
52

v

c2
@n0

21x3uE~z!u2#E~z!. ~6!

Here c is the light velocity in free space. Introducing th
dimensionless coordinatej5z/l0, with l0 as the light wave-
length in free space, we can rewrite Eq.~6! as follows:

d2E~j!

dj2
524p2@n0

21x3uE~j!u2#E~j!. ~7!

Discretizing Eq.~7!, we get

E~j2dj!52E~j!2E~j1dj!

1dj2$24p2@n0
21x3uE~j!u2#E~j!%

1O~dj3!. ~8!

Using the boundary conditions, we can link the left a
right linear parts and the nonlinear layer together. Fo
given transmitted field, using Eq.~4!, we can first obtain the
field transmitted through and reflected on the right bound
of the nonlinear layer. Then using Eqs.~4! and ~8!, we can
finally obtain the field incident on the doped structure.

We taken151.5, n252.0, n351.0983,d3 ~the thickness
of defect layer! 53.1d1, v50.236 ~in units of 2pc/n1d1),
x350.01, and the number of total layers is 41~for the linear
part,N519). The numerical calculation result for the rel
tion between the incident (I in) and transmitted intensity
(I out) is shown in Fig. 1, from which anS-shape response o
the doped 1D structure can be seen clearly. WhenI in in-
creases slowly from zero,I out first increases slowly, and
when I in reaches a threshold valueI 1 ~about 4.7),I out will
jump to a higher value. Then, it increases slowly again w
increasing ofI in . When I in decreases slowly from a valu
higher thanI 1, I out decreases slowly from the high valu
When I in reachesI 1, I out will not jump back to the lower
value, but continues to decrease slowly untilI in reaches an-
other thresholdI 2 ~about 0.17), at whichI out jumps back to a
lower value. Then, it decreases slowly with decreasing
I in . Thus it is obvious that the doped 1D stack can produ
an optical bistability.

In the beginning, evenv is tuned to near the linear defec
mode frequencyV0 @determined only by then0 in Eq. ~5!#;
the transmission coefficient is still smaller sinceI in is lower.
With increasing ofI in , the nonlinear effect that happened
the doped layer changes the defect mode frequencyV, and
makes it move tov ~positive feedback!, which increases the
transmission coefficient slowly. OnceI in reachesI 1, the non-
linear effect makesV almost equal tov, and so the trans-
mission coefficient has a steplike increase. After that, furt
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increasing ofI in will causeV to slowly move away from
v. This negative feedback will holdV in the vicinity of v.
So theI out will increase slowly with increasing of theI in . In
this region of I in , the doped structure works as an optic
limiter. Oppositely, whenI in decreases from a value high
than I 1, since the structure has a higher transmission coe
cient now, the field in the nonlinear layer is also high, a
the nonlinear effect keepsV in the vicinity of v until I in
decreases to another threshold valueI 2, which is lower than
I 1. At this time, the nonlinear effect cannot holdV in the
vicinity of v any more, so the transmission coefficient dro
to a lower value.

FIG. 2. The normalized light intensity in the nonlinear layer f
the case of increasing the normalized incident light intensityI in .
Solid and dashed lines correspond toI in,I 1 and I in.I 1, respec-
tively. Difference of incident light intensities in both cases
nI in'0.004 72.

FIG. 1. The normalized transmitted light intensity varies w
the normalized incident light intensity.
l

fi-

s

To explain our discussion above more clearly, we plot
light intensity in the nonlinear layerC in Fig. 2. The solid
~dashed! line represents the light intensity in the nonline
layer whenI in is close to, but smaller~larger! than I 1. The
difference (DI in) of the two incident light intensities corre
sponding to the case of solid and dashed lines is very sm
DI in'0.00472. From Fig. 2, we can see that the light inte
sity in the nonlinear layer has a bigger increase whenI in
increases aDI in , and so the effective refractive indices
Eq. ~5! are much different from each other. TheV is still far
from v for the solid line case, but it is almost equal tov for
the dashed line case, which means the doped structure
different states, high or small transmission state.

Now, we investigate variation of the threshold valueI 1
andI 2 with v. In Fig. 3~a!, we seeI 1 increases rapidly when
v is tuned away fromV0, while I 2 remains almost un-
changed, which can be naturally explained as follows. Le

FIG. 3. The normalized threshold values vary with the incide
light frequency~in units of 2pc/n1d1). The circles and triangles
represent the threshold valuesI 1 and I 2, respectively.~a! For the
doped structure;~b! for the single DFB structure.
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first look at the variation ofI 1. WhenI in increases from zero
to I 1, because the transmission coefficient is smaller,
electric field intensityuE(j)u2 in the nonlinear layer is smal
too, and the nonlinear effect due to Eq.~5! cannot become
stronger. Thus ifv deviates much fromV0 a larger I in ,
according to Eq.~5!, should be needed to produce a nonl
ear effect that is stronger enough to makeV move to near
v. That, of course, means a largerI 1 is needed. However, th
situation is completely different forI 2 because in this case

FIG. 4. The normalized threshold intensity needed for switch
varies with the linear defect mode frequencyV0 ~in units of
2pc/n1d1).
er

er
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the nonlinear effect is larger, and only a smallerI in is needed
to keepV almost equal tov. This phenomenon is indepen
dent of how far awayv deviates fromV0. So, I 2 stays
smaller and is almost invariable with changing ofv.

For comparison, we have also investigated the optical
stability in a single DFB structure with a total of 40 laye
having alternate linear (n1) and nonlinear (n2) refractive
indices. In our calculation, we have takenn151.5,
n2
25(2.0)210.01uEu2, and the numerical result is shown i
Fig. 3~b!. It is found that the threshold values of the bistab
ity at different frequencies now become much higher th
that of the doped structure.

It is interesting to study dependence of the bistability
the variation ofV0. It is found that the threshold value in
creases withV0 moving from the center of the gap to th
edge of the gap~Fig. 4!, which is obviously related to the
lower field enhancement in the case ofV0 moving.

We have studied the nonlinear effect in a doped 1D P
structure. We found that when a Kerr-type nonlinearity e
ists, the doped structure will exhibit a bistability. In this cas
the optical bistability is caused by the dynamic shifting
V, not the conventional dynamic shifting of the band ed
From a comparison between the band edge resonance
our defect mode, it is known that there is no essential diff
ence between these two methods of realizing the optica
stability. The threshold value of the bistability for the dop
structure is much lower than that for the single DFB stru
ture, but compatible with that for the combined DFB-F
structure proposed by He and Cada@5#. In our calculation,
we use the Kerr-type nonlinearity with positive sign. For
Kerr-type nonlinearity with negative sign, we just need
tune the incident light frequency at the other side ofV0.

g

K.

d

pt.
@1# E. Yablonovitch, Phys. Rev. Lett.58, 2059~1987!; K. M. Le-
ung and Y. F. Liu,ibid. 65, 2646 ~1990!; Z. Zhang and S.
Satpathy,ibid. 65, 2650~1990!; K. M. Ho, C. T. Chan, and C.
M. Soukoulis,ibid. 65, 3152~1990!.

@2# M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloem
Phys. Rev. Lett.73, 1368~1994!.

@3# M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloem
J. Appl. Phys.76, 2023 ~1994!; M. D. Tocci, M. J. Bloemer,
M. Scalora, and J. P. Dowling, Appl. Phys. Lett.66, 2324
~1995!.

@4# J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and
Reinisch, Phys. Rev. B44, 8214~1991!; V. M. Agranovich, S.
A. Kiselev, and D. L. Mills,ibid. 44, 10 917~1991!; J. He and
M. Cada, IEEE J. Quantum Electron.27, 1182~1991!.
,

,

.

@5# J. He and M. Cada, Appl. Phys. Lett.61, 2150~1991!.
@6# E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe,

D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett.67,
3380~1991!; R. D. Meade, K. D. Brommer, A. M. Rappe, an
J. D. Joannopoulos Phys. Rev. B44, 13 772~1991!.

@7# R. Wang, J. Dong, and D. Xing~unpublished!.
@8# See, for example, H. M. Gibbs,Optical Bistability: Control-

ling Light with Light ~Academic, New York, 1985!.
@9# See, for example, E. Wolf,Progress in Optics~North-Holland

Physics Publishing, Amsterdam, 1984!, Vol. 21.
@10# D. Huang, G. Gumbs, and M. Kola´r, Phys. Rev. B46, 11 479

~1992!.
@11# Y. Zhao, D. Huang, C. Wu, and R. Shen, J. Nonlinear O

Phys. Mater.4, 1 ~1995!.


