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Renormalized field theory of the Gribov process with quenched disorder
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Using field theory, | show that the renormalization-group flow of the Gribov prodesggeon field theory
or directed percolationequipped with quenched randomness does not reach a stable fixed point, and has only
runaway solutions in the physical domain. This result supports recent findings of Moreira and Dickman from
Monte Carlo simulations of the two-dimensional contact process with random dilution, namely, logarithmic
critical spreading and no power law$1063-651X97)10804-3

PACS numbe(s): 64.60.Ak, 05.40+j, 64.60.Ht

The investigation of the formation and properties of ran-without impurities some time ad@]. Here the theory of the
dom structures has been an exciting topic in statistical physsribov process with impurities is developed using the tech-
ics for many years. When the formation of such structuresiique introduced by DeDominici§21] for the N-vector
obeys local rules, these processes can often be expressedmedel dynamics with random dilution.
the language of population growth. It is well known that the ~ The Gribov process is characterized by the following four
Gribov proces$1,2] (Reggeon field theor}3—5], stochastic ~ Principles: (1) Self-reproduction(*birth” ) and annihilation
Schiggl model[6]) is a stochastic multiparticle process that (“death™) of particles.(2) Interaction(*competition”) be-
describes the essential features of a vast number of growfieen the particles3) Diffusion (“motion™ ) of the particles
phenomena of populations near their extinction thresholdin @ d-dimensional spaceg4) The state where the particles
and without exploitation of the environment. The transitionare locally extinct is absorbing.
between survival and extinction of the population is a non- A continuum description in terms of a particle density
equilibrium continuous phase transition phenomenon and i8(r.t) typically arises from a coarse-graining procedure
characterized by universal scaling laws. The Gribov proces¥here a large number of microscopic degrees of freedom are
belongs to the universality class of local growth processe@veraged out. Their influence is simply modeled as Gaussian
with absorbing state§7,8] such as directed percolation noise terms in a Langevin equation that have to respect the
[9-11], the contact procegd2—14, and certain cellular au- absorbing state condition. Then the stochastic reaction-
tomata[15,16], and is relevant to a vast range of models indiffusion equation for the particle density(r,t) is con-
physics, chemistry, biology, and sociology. structed in accordance with the four principles given above:

Some time ago Noe$17,1§ studied the critical behavior
of disordered one- and two-dimensional stochastic automata (1, )=AV?n(r,t)+R(n(r,t)) n(r,t)+{(r,t). (1)
(belonging to the Gribov clagsand found critical exponents
that are qualitatively consistent with results of a field- Here the first term on the right-hand side models (tiéu-
theoretic study by Obukhoy19]. Recently Moreira and sive) motion, andR is the sum of the production and anni-
Dickman[20] reported Monte Carlo simulations of the two- hilation rates of the particles. The deterministic partg1f
dimensional contact process with random dilution. Theyare constructed proportional toin order to ensure the exis-
found logarithmic critical spreading and no power laws. Intence of an absorbing state. Expanding the Fate powers
this Brief Report | will show that the calculation of Obukhov Of n, one obtains, up to subleading terms,
is incorrect. The field theory of the disordered Gribov pro-
cess does not exhibit a stable fixed point for the renormal- R(n(r,t))=—\[7+¢+3g n(r,1)]. 2
ization flow of the coupling constants. Thus no scaling be-
havior in the usual sense is found. My results thereforelhe “temperature” variabler measures the mean difference
support the findings of Moreira and Dickman. of the rate of death and birth. Thus this parameter may be

The failure in Obukhov’s calculation is easily located. In positive ore negative. One considers the case whei@ (up
his paper he shows six one-loop diagrams which lead tdo fluctuation correctionsdefining the critical region. Under
renormalizations. But, unfortunately, two ladder-type dia-these conditions the population lives on the border of extinc-
grams are neglected. These diagrams with four external leg&n. The quenched randomnegss introduced by local de-
become relevant, because the double interaction with theiations from the mean death and birth rates, and has a
quenched impurity leads to a time-delocalized vertex. Thdaussian distribution
relevant part of this vertex function can be transformed into
an additional renormalization of the impurity interaction ver- (P(r)p(r"))y=3 to(r—r"), (©)
tex. The disregard of the ladder diagrams is understandable,
because the method of Obukhov is not quite straightforwardavith f>0. The Gaussian noisgr,t) must also respect the
for the disordered problem. | use the well-established methodbsorbing state condition, thus
of renormalized field theory22,23 of nonlinear stochastic
processe§24-27), which | presented for the Gribov process Z(r,H)Z(r't")y=xg’'n(r,t)S(r—r")5(t—t") (4)
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FIG. 1. Elements of the perturbation expansion. FIG. 2. One-loop self-energy and three-vertex diagrams.

up to subleading contributions. - _
In order to develop a renormalized field theory it is con-the number of amputated exterrsaénds legs, respectively,
venient to recast the Langevin equatith) as a dynamic and the vertex functions are considered as functions of the

functional[28,29 external momenta and frequencies. It is easily seen that the
primitive divergencies ofI',, result only from time-

g 5 separated parts of the diagrams. Therefore the model is
jlp['g,s]=f dt d{S [¢;+ N(7+y—V?) renormalizable by the scheme

+3\g(s—S)]s}, (5

wheres(r,t)~n(r,t) is the rescaled particle density which

S 8= Zsl/ZS, 38= ZSM\S',

ensure thag’ =g>0. Thes(r,t) denotes the response field °o_ 5 -1 °_ -1

(the Martin?Sigggia-Ros§30](au>)<iliary variablg. Coprrelation NoA=Z DN, ToT=2y T ™
and response functions can now be expressed as functional

averages(path integrals of monomials ofs and’s with fﬁ?:ASMszxﬁzvv, 92H§2=ASMSZ[ZZ;12uU-
weight exg—J,}. The responses are defined with respect to

an additional local particle sourdgr,t)=0 in the equation A, =(4m) %I (1+¢/2)" ! is a suitable constant. THe fac-

of motion (1). By this source a further term 1S is added 0 tors are determined by dimensional regularization and mini-
the integrand of the dynamic functiongl,. The so-called mal renormalization.

prepoint discretization that sets the step functégt) equal The associated renormalization-group functions are de-
to zero fort=0 is used in the interpretation of the functional fined by
integrals. As a consequence there is no normalization factor

in these integrals, and the weight ¢x{37,} can be easily

averaged over the quenched randomngs®ne obtains the Y= pdllnZ;, i=s A Tu, ®
dynamical functional for the calculation of the path integrals
averaged over the randomness, and
~ 1 - = =[— _
j[’g,s]:f ddr [fdt 3 (3’t+)\(T—V2)+§)\g(S—S) s Bu Mfmou [—e+2y\+ vs— vulu, (9a)
1 2f[J gt }2] ( ) BU:M&M|0U:[_8+2'}’)\_7U]U1 (gb)
—-\ t’Ss 6

where 7|, means a derivative at fixed bare variables. If
The usual scaling by the convenient length and time scalethere exists a physical infrared-stable fixed paigt,v, of
wt and \u?) !, respectively, shows~s~u% and B,.8,. the critical exponents can be expressed in terms of
g°~f~pu®, wheree=4—d which signalsd,=4 to be the values v, of the functions (8) by using familiar
upper critical dimension. The expansion of the path integralsenormalization-group arguments. In particular the anoma-
about the Gaussian part ¢f generates thédiagrammatiz  lous scaling exponent of the fields would be=ys, , the
perturbation series, which has to be regularized and renodynamic exponenz=2+ vy, —¥,+ , and the correlation
malized because the series are UV divergent at the uppégngth exponenv=(2+v,, — y,4) * (in directed percola-
critical dimension. The propagator isG(q,t)= tion one often uses the transversal and longitudinal correla-
6(t)exp(—\(m+gdt), and the vertices are given by=\g tion length exponents, = » and v=2v,).
andV=\2f (Fig. 1). A look at the naive dimensions of the =~ To one-loop order the primitively divergent diagrams are
generated diagrams shows that primitive divergencies arisghown in Figs. 2 and 3. The calculation of the renormalized
only in the one-particle irreducible vertex functiohy ;, vertex functions and their expansion in momentgmand
I'y,=—T',4, andl',,. Here the first and last indices denote frequencyw up to the relevant order leads to
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Thus to one-loop order minimal renormalization yields

the Z factors

=1 1 2 Z =1 1y 2 11
=itz Z=lvgz e (1a
1 u
Z,=1+ —[2u=12], Z\=1+g-, (11b

1
Z,=1+ _[u-8u], (110
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FIG. 3. One-loop time-delocalized four-vertex diagrams.
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If one neglects the ladder diagrams, Fig6) and 3j) the
numerical factor 8 before in the bracket after the pole in
Eqg. (100 changes to 4. As a consequence also the factor 8 in
(110 and(13b) is replaced by 4. Then a stable physical fixed
point exists, and eventually one finds the critical exponents
given by Obukho\19].

Summarily | have shown that the large distance and long-
time behavior of the Gribov process are crucially disturbed
by the quenched randomness. In the space of the renormal-

and the one-loop renormalization-group functions follow asized coupling constants the behavior with respect to these

_s _5 u . u
Ys= <&V 4 Yr=4¢U 2 A= §'
(12)
vo=12v—2u, vy,=8v—u
and
3
Bu= —8+§U—1Q}>U, (13a
3
B,= —8+ZU—81) v. (13b

Now it is easily seen that the flow equatio(®a) and (9b)
have only runaway solutions far— 0 in the physical region
u>0,

u,=—4el9, v,=—¢ The stable fixed point
u, =0, v, =— 1, but this one is nonphysical also.

v>0. The fixed point of the pure system
u, =2¢/3, v, =0 is unstable just as the nonphysical one

scales is characterized by runaway solutions, making a direct
perturbation theory useless, and, perhaps, producing more
complicated critical behavior than simple power laws. The
simulations of Moreira and Dickmdr20] indeed show loga-
rithmic critical spreading instead of power laws. Their results
are therefore in agreement with my findings. | have shown
that a study found in the literature that leads to scaling laws
is incorrect because it neglects the ladder diagrams. This may
provide a hint to find a better solution of the problem: the
instability induced by the ladder diagrams can be ascribed to
bound states between the particles. Indeed, if the mean pro-
duction rate of particles is zero, a long-lived density greater
than zero is possible in localized regions with a positive rate.
The particles seem to be bound together. Thus one has to
find the correct order parameter and dynamic functional to
describe this phenomenon. But this is not the concern of this
Brief Report.
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