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Renormalized field theory of the Gribov process with quenched disorder
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Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, 40225 Düsseldorf, Germany

~Received 13 December 1996!

Using field theory, I show that the renormalization-group flow of the Gribov process~Reggeon field theory
or directed percolation! equipped with quenched randomness does not reach a stable fixed point, and has only
runaway solutions in the physical domain. This result supports recent findings of Moreira and Dickman from
Monte Carlo simulations of the two-dimensional contact process with random dilution, namely, logarithmic
critical spreading and no power laws.@S1063-651X~97!10804-2#

PACS number~s!: 64.60.Ak, 05.40.1j, 64.60.Ht
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The investigation of the formation and properties of ra
dom structures has been an exciting topic in statistical ph
ics for many years. When the formation of such structu
obeys local rules, these processes can often be express
the language of population growth. It is well known that t
Gribov process@1,2# ~Reggeon field theory@3–5#, stochastic
Schlögl model @6#! is a stochastic multiparticle process th
describes the essential features of a vast number of gro
phenomena of populations near their extinction thresh
and without exploitation of the environment. The transiti
between survival and extinction of the population is a no
equilibrium continuous phase transition phenomenon an
characterized by universal scaling laws. The Gribov proc
belongs to the universality class of local growth proces
with absorbing states@7,8# such as directed percolatio
@9–11#, the contact process@12–14#, and certain cellular au
tomata@15,16#, and is relevant to a vast range of models
physics, chemistry, biology, and sociology.

Some time ago Noest@17,18# studied the critical behavio
of disordered one- and two-dimensional stochastic autom
~belonging to the Gribov class!, and found critical exponent
that are qualitatively consistent with results of a fie
theoretic study by Obukhov@19#. Recently Moreira and
Dickman @20# reported Monte Carlo simulations of the two
dimensional contact process with random dilution. Th
found logarithmic critical spreading and no power laws.
this Brief Report I will show that the calculation of Obukho
is incorrect. The field theory of the disordered Gribov pr
cess does not exhibit a stable fixed point for the renorm
ization flow of the coupling constants. Thus no scaling b
havior in the usual sense is found. My results theref
support the findings of Moreira and Dickman.

The failure in Obukhov’s calculation is easily located.
his paper he shows six one-loop diagrams which lead
renormalizations. But, unfortunately, two ladder-type d
grams are neglected. These diagrams with four external
become relevant, because the double interaction with
quenched impurity leads to a time-delocalized vertex. T
relevant part of this vertex function can be transformed i
an additional renormalization of the impurity interaction ve
tex. The disregard of the ladder diagrams is understanda
because the method of Obukhov is not quite straightforw
for the disordered problem. I use the well-established met
of renormalized field theory@22,23# of nonlinear stochastic
processes@24–27#, which I presented for the Gribov proces
551063-651X/97/55~5!/6253~4!/$10.00
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without impurities some time ago@7#. Here the theory of the
Gribov process with impurities is developed using the te
nique introduced by DeDominicis@21# for the N-vector
model dynamics with random dilution.

The Gribov process is characterized by the following fo
principles: ~1! Self-reproduction~‘‘birth’’ ! and annihilation
~‘‘death’’ ! of particles.~2! Interaction~‘‘competition’’ ! be-
tween the particles.~3! Diffusion ~‘‘motion’’ ! of the particles
in a d-dimensional space.~4! The state where the particle
are locally extinct is absorbing.

A continuum description in terms of a particle dens
n(r ,t) typically arises from a coarse-graining procedu
where a large number of microscopic degrees of freedom
averaged out. Their influence is simply modeled as Gaus
noise terms in a Langevin equation that have to respect
absorbing state condition. Then the stochastic react
diffusion equation for the particle densityn(r ,t) is con-
structed in accordance with the four principles given abo

] tn~r ,t !5l¹2n~r ,t !1R„n~r ,t !… n~r ,t !1z~r ,t !. ~1!

Here the first term on the right-hand side models the~diffu-
sive! motion, andR is the sum of the production and ann
hilation rates of the particles. The deterministic parts of~1!
are constructed proportional ton in order to ensure the exis
tence of an absorbing state. Expanding the rateR in powers
of n, one obtains, up to subleading terms,

R„n~r ,t !…52l@t1c1 1
2g n~r ,t !#. ~2!

The ‘‘temperature’’ variablet measures the mean differenc
of the rate of death and birth. Thus this parameter may
positive ore negative. One considers the case wheret'0 ~up
to fluctuation corrections!, defining the critical region. Unde
these conditions the population lives on the border of exti
tion. The quenched randomnessc is introduced by local de-
viations from the mean death and birth rates, and ha
Gaussian distribution

^c~r !c~r 8!&5 1
2 fd~r2r 8!, ~3!

with f.0. The Gaussian noisez(r ,t) must also respect the
absorbing state condition, thus

^z~r ,t !z~r 8,t8!&5lg8n~r ,t !d~r2r 8!d~ t2t8! ~4!
6253 © 1997 The American Physical Society



n

h
ld

io

t t

al
ct

als

al

ra

no
pp

e
ri

te

the
the

l is

ini-

de-

If

of

a-

ela-

re
ed

6254 55BRIEF REPORTS
up to subleading contributions.
In order to develop a renormalized field theory it is co

venient to recast the Langevin equation~1! as a dynamic
functional @28,29#

Jc@ s̃,s#5E dt ddr $s̃ @] t1l~t1c2¹2!

1 1
2lg~s2 s̃!#s%, ~5!

wheres(r ,t);n(r ,t) is the rescaled particle density whic
ensure thatg85g.0. The s̃(r ,t) denotes the response fie
~the Martin-Siggia-Rose@30# auxiliary variable!. Correlation
and response functions can now be expressed as funct
averages~path integrals! of monomials of s and s̃ with
weight exp$2Jc%. The responses are defined with respec
an additional local particle sourceh̃(r ,t)>0 in the equation
of motion ~1!. By this source a further term2h̃s̃ is added to
the integrand of the dynamic functionalJc . The so-called
prepoint discretization that sets the step functionu(t) equal
to zero fort50 is used in the interpretation of the function
integrals. As a consequence there is no normalization fa
in these integrals, and the weight exp$2Jc% can be easily
averaged over the quenched randomnessc. One obtains the
dynamical functional for the calculation of the path integr
averaged over the randomness,

J@ s̃,s#5E ddr H E dt s̃ F] t1l~t2¹2!1
1

2
lg~s2 s̃!Gs

2
1

2
l2f F E dt s̃sG2J . ~6!

The usual scaling by the convenient length and time sc
m21 and (lm2)21, respectively, showss̃;s;md/2 and
g2; f;m«, where«542d which signalsdc54 to be the
upper critical dimension. The expansion of the path integ
about the Gaussian part ofJ generates the~diagrammatic!
perturbation series, which has to be regularized and re
malized because the series are UV divergent at the u
critical dimension. The propagator isG(q,t)5
u(t)exp(2l(t1q2)t), and the vertices are given byW5lg
andV5l2f ~Fig. 1!. A look at the naive dimensions of th
generated diagrams shows that primitive divergencies a
only in the one-particle irreducible vertex functionsG1,1,
G1,252G2,1, andG2,2. Here the first and last indices deno

FIG. 1. Elements of the perturbation expansion.
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the number of amputated externals̃ ands legs, respectively,
and the vertex functions are considered as functions of
external momenta and frequencies. It is easily seen that
primitive divergencies ofG2,2 result only from time-
separated parts of the diagrams. Therefore the mode
renormalizable by the scheme

s→s°5Zs
1/2s, s̃→ s̃°5Zs

1/2s̃,

l→l°5Zs
21Zll, t→t°5Zl

21Ztt, ~7!

f→ f°5A«m«Zl
22Zvv, g2→g° 25A«m«Zl

22Zs
21Zuu.

A« 5(4p)d/2G(11«/2)21 is a suitable constant. TheZ fac-
tors are determined by dimensional regularization and m
mal renormalization.

The associated renormalization-group functions are
fined by

g i5m]mu0lnZi , i5s,l,t,u,v, ~8!

and

bu5m]mu0u5@2«12gl1gs2gu#u, ~9a!

bv5m]mu0v5@2«12gl2gv#v, ~9b!

where ]mu0 means a derivative at fixed bare variables.
there exists a physical infrared-stable fixed pointu* ,v* of
bu ,bv , the critical exponents can be expressed in terms
values g i* of the functions ~8! by using familiar
renormalization-group arguments. In particular the anom
lous scaling exponent of the fields would beh5gs* , the
dynamic exponentz521gs*2gl* , and the correlation
length exponentn5(21gt*2gl* )

21 ~in directed percola-
tion one often uses the transversal and longitudinal corr
tion length exponentsn'5n andn i5zn').

To one-loop order the primitively divergent diagrams a
shown in Figs. 2 and 3. The calculation of the renormaliz
vertex functions and their expansion in momentumq and
frequencyv up to the relevant order leads to

FIG. 2. One-loop self-energy and three-vertex diagrams.
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G1,15 iv HZ2
1

« Fu422v G S m2

t D «/2J
1lt HZt2

1

« Fu222v G S m2

t D «/2J
1lq2 HZl2

u

8« S m2

t D «/2J , ~10a!

~G1,2!
25~lg!2 HZu2 1

«
@2u212v#S m2

t D «/2J , ~10b!

G2,25l2f HZv2 1

«
@u28v#S m2

t D «/2J . ~10c!

Thus to one-loop order minimal renormalization yiel
theZ factors

Zs511
1

« Fu422v G , Zt511
1

« Fu222vG , ~11a!

Zu511
1

«
@2u212v#, Zl511

u

8«
, ~11b!

Zv511
1

«
@u28v#, ~11c!

and the one-loop renormalization-group functions follow

gs52v2
u

4
, gt52v2

u

2
, gl52

u

8
,

~12!
gu512v22u, gv58v2u

and

bu5S 2«1
3

2
u210v Du, ~13a!

bv5S 2«1
3

4
u28v D v. ~13b!

Now it is easily seen that the flow equations~9a! and ~9b!
have only runaway solutions form→0 in the physical region
u.0, v.0. The fixed point of the pure system
u*52«/3, v*50 is unstable just as the nonphysical o
u*524«/9, v*52 1

6. The stable fixed point is
u 50, v 52 1

8, but this one is nonphysical also.
* *
If one neglects the ladder diagrams, Figs. 3~i! and 3~j! the
numerical factor 8 beforev in the bracket after the« pole in
Eq. ~10c! changes to 4. As a consequence also the factor
~11c! and~13b! is replaced by 4. Then a stable physical fix
point exists, and eventually one finds the critical expone
given by Obukhov@19#.

Summarily I have shown that the large distance and lo
time behavior of the Gribov process are crucially disturb
by the quenched randomness. In the space of the renor
ized coupling constants the behavior with respect to th
scales is characterized by runaway solutions, making a di
perturbation theory useless, and, perhaps, producing m
complicated critical behavior than simple power laws. T
simulations of Moreira and Dickman@20# indeed show loga-
rithmic critical spreading instead of power laws. Their resu
are therefore in agreement with my findings. I have sho
that a study found in the literature that leads to scaling la
is incorrect because it neglects the ladder diagrams. This
provide a hint to find a better solution of the problem: t
instability induced by the ladder diagrams can be ascribe
bound states between the particles. Indeed, if the mean
duction rate of particles is zero, a long-lived density grea
than zero is possible in localized regions with a positive ra
The particles seem to be bound together. Thus one ha
find the correct order parameter and dynamic functiona
describe this phenomenon. But this is not the concern of
Brief Report.
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FIG. 3. One-loop time-delocalized four-vertex diagrams.
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