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Universality of random knotting
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Knotting probability[ Px(N)] is defined by the probability of aN-noded random polygon being topologi-
cally equivalent to a given kndf. For several nontrivial knots we numerically evaluate the knotting prob-
abilities for Gaussian and rod-bead models. We find that they are well approximated by the following formula:
Pr(N)=C(K)[N/N(K) ™K exg —N/N(K)] where N=N—N;,;(K), and that the fitting parameteB(K),

N(K), andN;,i(K) are model dependent, while(K) is not. We suggest that given a kni¢t the exponent
m(K) should be universal: it is independent of models of random polygon and is determined only by the knot
K. [S1063-651X97)09004-1

PACS numbsgps): 05.40:+j, 61.41+e, 36.20.Ey

Recently knotted ring polymers such as knotted DNAFor polynomial-valued invariants such as the Alexander
molecules are synthesized in various experiments in chemigolynomial (or Jones polynomidl23], etc), the size of the
try and biology[1—3]. In particular, the formation of knotted Mmemory necessary for computing them will grow exponen-
species on random ring closure of DNA was observed andally or very rapidly with respect tdN. For instance, if we

D! _ :
their fractions were measuréd,5]. In statistical mechanics, €valuate a tern folér)olél— 10° setting 2 tot, then we have a
the topological constraint that a ring polymer does notV€ry [arge number 275 Furthermore, for many link polyno-

change its topology under any thermal fluctuation leads to (ials such as Jones, HOMFLY, and Kauffman polynomials,

$he computation time will grow exponentially with respect to
great reduction in the available volume of the configurationN [22 245J g P Y P

space [6]. The topological constraint, or the self- ' pecently, new methods have been independently pro-
entanglement effect, is derived from the fact that any bongyosed for computing certain knot invariants in polynomial
between neighboring monomers in the ring polymer is notime [22,25. Thanks to these methods, we can practically
disconnected when the bonding energy is very large. determine the knot types of given large polygons. The pur-
In the 1960s Delbrek formulated a fundamental question pose of the paper is to show some universal properties of the
about the self-entanglement of a ring polymer: What fractiorknotting probability Px(N) regarded as a function of step
of permissible configurations of a chain of given length will numberN. We discuss them from computer simulations on
contain a kno{7,8]? The fraction of knotted ring polymers Px(N) of several nontrivial knots for different models of
has been studied from the following three approaches: nu-andom polygons. We apply to the data the formjulé]
merical experiments using certain knot invariah®s-18], ~ ~
mathematical discussion of the self-avoiding polyda8— Pk(N)=C(K)[N/N(K)]™®exf —N/N(K)], @)
21], and biological experiments using DNA4,5]. where the symboN denotesN=N—Nim(K), and C(K),
Let us assume that a model of BRnoded random poly-  m(K), N(K), and N;,;(K) are fitting parameters. We con-
gon describes a ring polymer with bonds. Given a knot _
K, we define knotting probabilit (N) to the model by the TABLE I. The values of the determinant of the krjdt(—1)| and that
fraction of those configurations of the random polygon thatcz)f thejth coefficients, (K) in the expansion of the Jones polynomial jo
. . . ) , 3, and 4. Symbols§+) and 3,(—) denote the mirror images of the
have the same knot tyge. The main questions in this paper trefoil knot. Symbolk, # K, denotes the producor the composite knpof
are how the knotting probabilitix(N) behaves as a func- K, andK,.
tion of step numbeN for each knotK, and how it depends
on models of a random polygon. Knot K [Ak(—1)| v5(K) v3(K) v4(K)
For the trivial knot K=0) we call the knotting probabil-

, \ - 34(+) 3 -12 60 -199
ity Po(N) the unknotting probability. It has been evaluatedgl(f) 3 12 36 55
for several different models of random polygons with differ- 4, 5 12 _12 31
ent lengthsN less than about 200®-14]. The exponential 5,(+) 5 _36 276 1365
decay ofPq(N) with respect t\ has been discussed for the 5 5 _36 —204 645
molecular dynamical model of ring polymers by Michels andg_ .\ 7 _o4 168 _758
Wiegel, and for the rod-bead model by Koniaris and Muthu-52(_) 7 _o4 —120 _326
kumar[11,14. _ L 3(+)#34(+) 9 —24 120 —254
For nontrivial knots, however, the knotting probabilities 3 (13 () 9 _oa 24 110
have been evaluated only for short polygons With:200, 3 (—)43,(-) 9 Y —72 34
where the graphs oPy(N) versusN can be approximated 3 (+)s4, 15 0 48 —312
by linear functions oN [9]. When we calculate knot invari- 3 (—)44, 15 0 —48 —168
ants for polygons with larg&l, there are two technical dif- 4,44, 25 24 —24 208

ficulties: memory-size and computation-time probldi@g).
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FIG. 1. (a) A diagram of prime knot 3 with 3 crossing points(b) A FIG. 3. Knotting probability of the Gaussian model for knots, 3
diagram of composite knot,% 3;. 3.#35, and 3#3,#3;.

sider two types of random polygon models, the Gaussia§@ll |Ak(—1)| the determinant of the knot. We can calculate
model[10] and the rod-bead modél2]. For the rod-bead the Alexander polynomial in polynomial time with respect to
model we change the bead radiushich describes the self- the numberS of the double points of a given link diagram,
avoiding effect. since the invariant is defined as a determinant ofSanS

Let us explain our method for evaluating the knotting matrix[27]. In the previous numerical wor9-14], all the
probability [16,22. We first construct many configurations authors employed the Alexander polynomial evaluated at
of an N-noded random polygon, for examplé, configura- ~ Special values of, in particular, the determinant of the knot.
tions. For each one of the configurations we calculate boti seems that the determinant of the knag (—1)| was the
Vassiliev-type knot invariants of order less than 4 and theonly known invariant practically useful for search of the knot
Alexander polynomial evaluated at=—1, and then we types of large polygons.
practically enumerate the numbdr; of those configurations ~ Vassiliev-type(or finite-typg invariants are topological
that have the same knot type for a given Configuration invariants of knots and links defined by some recurrence re-
C we search such a knét, that has the same set of values lations[28,29. It is known that the coefficients of the qua-
of the invariants with that o€, and we assume that the knot Siclassical expansion of the link polynomials associated with
type K of C is given by the knoK,. We evaluate the knot- the quantum groups give Vassiliev-type invariaj8]. Let
ting probability P (N) by the ratioM /M. Vk(q) denote the Jones polynomial of a krit[23]. Its

The Alexander polynomia(t) is a topological invari- guasiclassical expansion is given by the expansion around
ant (isotopy invariant of knots and links, which is given by d=1,

a Laurent polynomial of variable[27]. For the knotK, we 5 3 4
VK(q):1+02(K)E +U3(K)E +U4(K)€ + .., (2)

Gaussian and Rod-bead models Rod-bead model r=0.05
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FIG. 2. Semilogarithmic plot of the unknotting probability versus step Step Number N
numberN (the number of nodel) for the Gaussian model and the rod-bead FIG. 4. Knotting probability in the case of the rod-bead model with
models withr =0.05, 0.10, 0.15, and 0.20. r=0.05, for knots 3, 3,434, and 3#3,#3;.
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FIG. 6. Knotting probability in the case of the rod-bead model with

FIG. 5. Knotting probability in the case of the rod-bead model with
r=0.15, for knots 3, 3;#3,, and 3#3,4#3;.

r=0.10, for knots 3, 3;#3,, and 3 #3,#3;.

wheree=q—1. The coefficients ,(K), v3(K), anduv 4(K) pansion of quantum link invarianfd6,22. The method has
give Vassiliev-type invariants of order 2, 3, and 4, respecthe following advantagesi) we can calculate the invariants
tively. in polynomial time with respect tbl, and(ii) we can calcu-
Utilizing oriented state sum models we can calculate thdate them without using a large memory area. We note that
Vassiliev-type invariants derived from the quasiclassical exthere are other methods for polynomial-time computation of

TABLE II. The estimates oin(K), C(K), N(K), Ni,i(K), and they? values of the fitting curves to the data of
P«(N) for the Gaussian model and the rod-bead models with.05, 0.10, 0.15, and 0.20. For the rod-bead model with
r=0.20 the order of the values ®(K) and N;,;(K) is given by 18. For the other models it is given by 40e.g.,
N(0)=340x4 for the Gaussian model. The parameters of the fitting curves in Figs. 2—6 are given here.

Knot K m(K) C(K) N(K)x 102 Nini (K)x 1072 x°
Gaussian random polygdi22 data points
0 —0.0051-0.0190 1.05+ 0.87 3.40:0.04 —0.01£2.84 37
3; 0.888+0.024 0.6310.004 3.56:0.04 0.19-0.02 24
4, 0.91+0.05 0.136:0.002 3.49%0.09 0.28-0.04 30
343, 1.85+0.05 0.198:0.005 3.51+0.05 0.24-0.04 16
3,44, 1.90+0.07 0.0780.003 3.4%0.08 0.270.06 26
3.#3,#3; 2.80+0.11 0.042-0.005 3.54-0.09 0.23:0.12 20
Rod-bead model witlh=0.05 (21 data points
0 0.00+0.10 1.0:51.0 2.7%0.2 0.0+136.0 16
3; 0.98+0.09 0.6G-0.02 2.#0.1 0.1£0.1 16
4, 1.1+0.2 0.12:£0.01 2.5£0.2 0.2:0.1 14
3.#3; 1.9+0.2 0.19:0.02 2.8£0.2 0.2:0.1 13
3,44, 2.1+0.3 0.070:0.015 2.7+0.3 0.0£0.2 14
3.#3,#3; 2.4+04 0.065-0.019 3.%0.3 0.6-0.3 13
Rod-bead model witlh=0.10 (20 data points
0 —0.08+0.26 1.1+1.6 4.2+0.4 —-0.1+6.2 32
3; 0.91+0.10 0.67-0.02 4.250.2 0.2£0.1 14
4, 0.8£0.2 0.12:0.01 4.4-0.4 0.3:0.1 17
3,43, 1.8+0.2 0.26+0.02 4.4-0.3 0.3:0.1 16
3144, 1.8+0.2 0.094:0.011 4.40.4 0.3:0.2 18
3.#3,#3; 2.6+0.3 0.079-0.023 4.4:0.5 0.6-0.3 12
Rod-bead model witlh=0.15 (20 data points
0 —0.01£0.10 0.9:2.2 8.2:0.5 —0.1+£19.3 27
3; 0.90+0.11 0.76-0.03 8.5-0.5 0.2£0.3 23
4, 0.9£0.2 0.10:0.01 8.50.9 0.3:0.5 6
3,43, 2.0+0.2 0.30-0.04 8.3-0.6 -0.1+0.4 10
3,44, 1.9+0.3 0.082£0.017 8510 0.1+0.7 18
3.#3,#3; 2.7+0.5 0.110.05 8.3-1.1 1.4+1.0 14
Rod-bead model witln=0.20 (20 data points
Knot K m(K) C(K) N(K)x 1073 Nini(K)x 1073 X2
0 0.01£0.35 1.0:6.5 2.2:0.6 —-0.1+131 15
3 0.9£0.2 0.84:0.04 2.3:0.5 0.0:0.1 8

3:43; 2.1+0.4 0.38:0.14 2.2£0.7 0.0:0.1 36
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certain knot invariant§25,24. formula (1) fit well to the numerical data.

We should note that the fact that two knots have the same Table Il gives the least-squares estimates of the param-
value of a certain computable knot invariant does not implyeters C(K), m(K), N(K), and N;,;(K) together with the
that they are topologically equivalent. If we combine severaly? values of the fitting curves. The? values are consistent
independent knot invariants together, then we can determingith the above observation that the fitting curves are good.
the knot type of a given polygon more exactly. For instanceThe error estimates in Table Il correspond to 68.3% confi-
the determinant of the knot has the same value 5 for knotdence intervals. For the trivial knot the errors ©f0) and
4, and 5, while the Vassiliev-type invariant,(K) gives  N;,;(0) do not make sense sino®0)=0; we consider only
different values for thengsee Table | and Fig.)1 those ofN(0) andm(0), which are not too large.

Let us discuss the numerical results. For a given step From the estimates dfi(K) in Table Il we see that for
numberN we have constructed ®olygons for the Gauss- each of the models the parameté(K) of any knotK is
ian model M =10°), and 10 polygons for each of the rod- almost equal to that of the trivial knpN(0)] with respect to
bead modelsNI = 10%). For the Gaussian polygon we make the confidence intervals, whel(0) gives different values
use of the conditional probability distribution of thth step  to the different models. From Table Il we also find that the
(1=<j=N) [10Q]. For the rod-bead models, we first constructparameterm(K) of any knot K does not change for the
2M chains with step numbeN/2 by the dimerization Gaussian model or the rod-bead models with the different
method, and then maké polygons withN (or N+1) nodes bead radii, with respect to the error bars.
by the concatenating procedUrE?]. The fitting variableN;,;(K) is important wherN is small

In Fig. 2, the unknotting probabilities for the Gaussian[i.e., for N<N(0)] [4]. WhenN is large, however, it seems
model and the rod-bead models with four different values othatN;,,;(K) does not change the fitting curves very much. In
the bead radius=0.05, 0.10, 0.15, and 0.20 are shown. Thefact, the fitting curves in this paper are consistent with those
error bars denote the standard deviations. For the Gaussiafithe previous work16—1§ that were given by formulél)
model the errors are estimated by applying the binomial diswith N;,;(K)=0.
tribution to the numbeM ¢ of polygons of knotk. For the From all the numerical results, we suggest that formula
rod-bead models we estimate the varianc®pfN) of knot (1) of the knotting probabilityP«(N) can be applied to any
K by the sum of the contribution due to the fluctuation of model of a random polygon withNl(K)=N(0) for any knot
My and that of the weights in the concatenating procedureK where N(0), N;,;(K), and C(K) are model dependent,
From Fig. 2 we confirm the exponential decayRy(N) for  and that given a kndk, the exponenm(K) should be uni-
the rod-bead model shown by Koniaris and Muthukumarversal: for any random polygon modekK) is given by the
[14]. same value and is determined only by the kKotThe ex-

We now consider the case of nontrivial knots. For knotsponent m(K) should be important to the topological en-
3;, 3:#3;, and 3#3,#3;, the data of the knotting prob- tanglement effect on the entropy of the ring polymer.
abilities P« (N) are plotted against the step numiéfor the
Gaussian polygon and the three rod-beam models with
r=0.05, 0.10, and 0.15 in Figs. 3, 4, 5, and 6, respectively. The authors would like to thank Professor M. Wadati for
From Figs. 3—6 we find that the theoretical curves given byhis keen interest in this work.
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