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Migration control in two coupled Duffing oscillators
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In this paper we study the migration from one attractor to another coexisting attractor in two coupled Duffing
oscillators by an open-plus-closed-loop control method and adaptive control algorithm. Suppression of chaos
by these methods is also investigatE8l1063-651X97)06904-3

PACS numbds): 05.45+b

Even though chaos is a robust phenomenon exhibited bwhere the prime denotes differentiation with respegj tand
nonlinear systems, recent investigations clearly show tha®(t) is the switching functionS(t)=0 (t<0) and, for ex-
chaotic motion can be controlled or directed towards a deample,S(t)=1 (t>0). The timet=0 refers to the time at
sired regular orbit by means of preassigned and small pertuwhich control is activated. The matrik is a constant whose
bations, either to the system parameters or through the addtigenvalues all have negative real parts. For simplicity one
tion of weak external forces. The control methods can bean choose its elements ag=ad;; . The functiong(t) is a
broadly classified intdi) feedback{1-5] and (i) nonfeed- goal dynamics towards whick(t) would tend, that is, with
back[6—10] methods. The feedback methods mainly aim tothe control in the long time limit we have
stabilize the suitable unstable periodic orfiiPO embed-
ded in the chaotic attractor of the system. Very recently, lim [[X(t) = g(t)[=0. (4)
Jacksor{11] showed that directing the system from one at- toee
tractor to another coexisting attractor is possible by an open- ) . ]
plus-closed-loogfOPCL) control. This is called migration.  If 9(t) is an attractor of Eq(2) theng—F(g) in Eq. (3b)

In this paper we study the migration control in the two Vanishes and, consequently, the fadt(g) =dF/dg alone,

coupled Duffing oscillators is specifically related to the system.
The two coupled Duffing oscillators with OPCL control

$<=y, (1a are written as
. x=y+K,, 5
y=—dy+ a;x— Bx°— &xu?+ f cog wt), (1b) YT 53
. y=—dy+a;x— B;x3— oxu?+f cogwt) +K,, (5b)
u=v, (10
) u=v+ Ky, (50
v=—dv+ au— Bu3— Sux?+ f cog wt). (1d)
_ . v=—dv+au—Bu— suxt+fcodwt) +K,, (50
Equation(1) has been used to model Soretraed convec-
tion _[12], v_ibration of a stretched strinfl3], motions of  where K, Ky, Ky, andK, are the perturbations given
nonlinear circular platefl4], and so forth. by Eq. (3b), introduced for migration. When the external
In Eq. (1) coexistence of multiple attractors are found for periodic force is included, for small values of amplitutie
a range of values of the parameters. We illustrate the migraof the force two orbits with period=2m/w coexist. For
tion from one periodic orbit to another coexisting periodic example, a;=1, B;=1, a,=0.114, 8,=0.1, §=0.05,
orbit, and chaotic orbit to a coexisting periodic orbit. We »=1, d=0.4, andf=0.25 for two periodF orbits to coex-
study the migration control using OPCL and adaptive controjst. Figure 1 shows the transfer of the system dynamics from

algorithms. the limit cycleX, to X_, whereX=X(x,y,u,v).
For a system of the form As an interesting case we next consider the migra-
] tion from chaotic motion to a coexisting periodic motion.
X=F(X), (2 For a;=—1, B;=—4, a,=—1.1, B,=-3.9, d=0.4,
6=0.002,f=0.1147, andw=0.526 both chaotic and peri-
where X=(Xy,Xz, ... Xy) and F=(Fy,F,, ... Fy), the  odic attractors coexist. Suppose the system is in the chaotic
OPCL control is given by state. We select the goal dynamigét) as the coexisting
_ periodic orbit and fixa=—0.5. Figure 2 illustrates the mi-
X=F(X)+K(g,X,t), (3a) gration from chaotic motion to the chosen goal orbit. In
the absence of the control the system is integrated
with using a fourth-order Runge-Kutta method with time

_ step t=(27/w)/100 with the initial condition X(0)
K(g,X,t)=S(t){g—F(g)+[F'(g)+A]l(X—9g)}, (3b =(0,0.35,0,0.3). The system is allowed to evolve in a
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FIG. 1. Migration dynamics from the limit cycl¥, to X_ of 0.008 , ”\
the two coupled Duffing oscillators by the OPCL method. [ \
chaotic state. Control is switched on tat 80(27/w), with f’ |
S(t)=1. Figures 8a) and 3b) show the required perturba- 0.003 ~ !
tions. The perturbations are found to vanish once the migra- !
tion to g(t) is achieved. This is because the goal orbit is a /
particular solution of the uncontrolled system. 0.002 t
. R . . . . R OF T T T -
The system dynamics is studied with the switching func 350 380 370 380 290

tion

t)=1—exp —A\t), 6 - . .

St H ) © FIG. 3. Variation of the required perturbations in the controlled
where \ is a constant parameter. Desired migration istwo coupled Duffing oscillatorgs) for migration from chaotic mo-
achieved forn>0. The efficacy of the OPCL control has tion to a periodic motion. Ifa) continuous and dashed curves rep-
been studied by calculating the recovery tilRe= t(’)—to resent the perturbatiorts, andK, respectively. In(b) they repre-

. . R ’ sentK, andK,, respectively.
wheret, andt} are the times at which control is initiated and ‘ P Y

after which||X(t)—g(t)]| is always less than 10, respec-  adaptive control algorithm{ACA) [2,9]. The two coupled
tively. Ry is calculated for 200 initial conditions chosen on pyffing oscillators equation with the ACA is written as
the chaotic attractor and then its average value is obtained.

Figure 4 shows the dependence Bf on A. As \ is in- )'(:y, (78
creased from zerd?; decreases rapidly and approaches a
constant value for higher values &af Migration from one y=—dy+ a;x— B1x3— 8xu?+f cog wt) + p(t), (7b)
attractor to another attractor can also be achieved by the
u=v, (70)
0.4
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FIG. 2. Migration from chaotic motion to a coexisting periodic
orbit in Eq. (1). The controlled equation is E¢5). FIG. 4. Recovery timdR; vs \ for the OPCL method.
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FIG. 5. Migration from chaotic motion to a coexisting periodic FIG. 7. Recovery tim&r vs A for the ACA.

orbit by the ACA.

) to the coexisting limit cycle attractor is found to occur for
v=—dv+ au— Bu*— Sux?+ f cog wt), (7d € values in the interva(—0.0035,—0.0018 and (0.00023,
0.004. Figure 7 shows the dependence of recovery time on

p=e[(Xx+y—u—v)—(X+ty—u—v)] e. We add that the recovery time shows a different charac-
_ teristic behavior in the ACAFig. 7) compared to the OPCL
=eG(X—X), (7e)  (Fig. 4 method. In the two coupled Duffing oscillators, in-

] ) o stead ofp, any other parameters can also be chosen for mi-
where p(t) is the perturbation added for migration, gration control.
X=(x,y,u,v) is the desired orbit is the stiffness parameter  |n summary, we studied the transfer from one attractor to
of the control, andS is a function proportional toX—X).  another coexisting attractor in the two coupled Duffing os-
The functionG can be linear or nonlinear. Here we considercillators. Interestingly, migration from chaos to periodic mo-
the linear form ofG. To illustrate the migration from chaotic tjon is possible by both OPCL and ACA methods. Thus, the
dynamics to a coexisting periodic motion we choosesimultaneous presence of periodic orbits in a chaotic system
a;=—1, p1=-4, a=-11 B,=-39, d=04, sofgreat use for bringing the system from chaos to order. In
6=0.002, »=0.526, andf=0.11474. Figure 5 shows the the OPCL and ACA methods the required perturbation van-
migration from chaotic attractor to the coexisting limit cycle jshes once the desired goal orbit is reached. The other exist-
for e=0.002. The variation of the perturbatiq{t) is plot- ing feedback methodd.,2,4,9 are primarily designed to sta-

ted in Fig. 6. The control is switched on &-80(2m/w).  pjjize the unstable periodic orbits embedded in the chaotic
The parametep(t) evolves according to E¢7¢) and adjusts attractor, where, as to implement the OPCL, the desired at-

its value until the desired state is reached. Once the desire[ ctor need not be embedded in the chaotic attractor. As
migration is achievegb(t) vanishes and the control can be shown in the two coupled Duffing oscillator the actual dy-
switched off if the conditiorX=X IS re.ahzed.. , namics can be directed towards a goal orbit which is far
In general, the control mec_hanlsm is sensitive to the vaIu%Way from the actual orbit. In the OPCL method migration
of € and the form of the functio®. In Eq. (7) stable control from one attractor to a desired coexisting attractor is always
guaranteed. In the case of ACA and other feedback methods
0.008 b (1) [2,4,5 stable control is possible only for certain range of
values of the stiffness parameter and it has to be deter-
mined either by linear stability analysis or experimentally
before implementing the specific control algorithm. Further,
in contrast to the linear feedback methods, where control

0.003 function must be on forever, the migratory contr¢8PCL
and ACA) require control actions for only a limited time.
That is, the control can be switched off once the system
t trajectory reaches the basin of attraction of the goal dynam-
—0.002 T T ics.
350 400 450 500
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