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Migration control in two coupled Duffing oscillators
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In this paper we study the migration from one attractor to another coexisting attractor in two coupled Duffing
oscillators by an open-plus-closed-loop control method and adaptive control algorithm. Suppression of chaos
by these methods is also investigated.@S1063-651X~97!06904-3#

PACS number~s!: 05.45.1b
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Even though chaos is a robust phenomenon exhibited
nonlinear systems, recent investigations clearly show
chaotic motion can be controlled or directed towards a
sired regular orbit by means of preassigned and small pe
bations, either to the system parameters or through the a
tion of weak external forces. The control methods can
broadly classified into~i! feedback@1–5# and ~ii ! nonfeed-
back @6–10# methods. The feedback methods mainly aim
stabilize the suitable unstable periodic orbit~UPO! embed-
ded in the chaotic attractor of the system. Very recen
Jackson@11# showed that directing the system from one
tractor to another coexisting attractor is possible by an op
plus-closed-loop~OPCL! control. This is called migration.

In this paper we study the migration control in the tw
coupled Duffing oscillators

ẋ5y, ~1a!

ẏ52dy1a1x2b1x
32dxu21 f cos~vt !, ~1b!

u̇5v, ~1c!

v̇52dv1a2u2b2u
32dux21 f cos~vt !. ~1d!

Equation~1! has been used to model Soret-Be´nard convec-
tion @12#, vibration of a stretched string@13#, motions of
nonlinear circular plates@14#, and so forth.

In Eq. ~1! coexistence of multiple attractors are found f
a range of values of the parameters. We illustrate the mi
tion from one periodic orbit to another coexisting period
orbit, and chaotic orbit to a coexisting periodic orbit. W
study the migration control using OPCL and adaptive con
algorithms.

For a system of the form

Ẋ5F~X!, ~2!

where X5(x1 ,x2 , . . . ,xN) and F5(F1 ,F2 , . . . ,FN), the
OPCL control is given by

Ẋ5F~X!1K~g,X,t !, ~3a!

with

K~g,X,t !5S~ t !$ġ2F~g!1@F8~g!1A#~X2g!%, ~3b!
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where the prime denotes differentiation with respect tog and
S(t) is the switching function,S(t)50 (t,0) and, for ex-
ample,S(t)51 (t.0). The timet50 refers to the time at
which control is activated. The matrixA is a constant whose
eigenvalues all have negative real parts. For simplicity o
can choose its elements asai j5ad i j . The functiong(t) is a
goal dynamics towards whichX(t) would tend, that is, with
the control in the long time limit we have

lim
t→`

iX~ t !2g~ t !i50. ~4!

If g(t) is an attractor of Eq.~2! then ġ2F(g) in Eq. ~3b!
vanishes and, consequently, the factorF8(g)5dF/dg alone,
is specifically related to the system.

The two coupled Duffing oscillators with OPCL contro
are written as

ẋ5y1Kx , ~5a!

ẏ52dy1a1x2b1x
32dxu21 f cos~vt !1Ky , ~5b!

u̇5v1Ku , ~5c!

v̇52dv1a2u2b2u
32dux21 f cos~vt !1Kv , ~5d!

where Kx , Ky , Ku , and Kv are the perturbations give
by Eq. ~3b!, introduced for migration. When the extern
periodic force is included, for small values of amplitudef ,
of the force two orbits with periodT52p/v coexist. For
example, a151, b151, a250.114, b250.1, d50.05,
v51, d50.4, andf50.25 for two period-T orbits to coex-
ist. Figure 1 shows the transfer of the system dynamics fr
the limit cycleX1 to X2 , whereX5X(x,y,u,v).

As an interesting case we next consider the mig
tion from chaotic motion to a coexisting periodic motio
For a1521, b1524, a2521.1, b2523.9, d50.4,
d50.002, f50.1147, andv50.526 both chaotic and peri
odic attractors coexist. Suppose the system is in the cha
state. We select the goal dynamicsg(t) as the coexisting
periodic orbit and fixa520.5. Figure 2 illustrates the mi
gration from chaotic motion to the chosen goal orbit.
the absence of the control the system is integra
using a fourth-order Runge-Kutta method with tim
step t5(2p/v)/100 with the initial condition X(0)
5(0,0.35,0,0.3). The system is allowed to evolve in
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chaotic state. Control is switched on att580(2p/v), with
S(t)51. Figures 3~a! and 3~b! show the required perturba
tions. The perturbations are found to vanish once the mig
tion to g(t) is achieved. This is because the goal orbit is
particular solution of the uncontrolled system.

The system dynamics is studied with the switching fun
tion

S~ t !512exp~2lt !, ~6!

where l is a constant parameter. Desired migration
achieved forl.0. The efficacy of the OPCL control ha
been studied by calculating the recovery timeRT5t082t0,
wheret0 andt08 are the times at which control is initiated an
after whichuuX(t)2g(t)uu is always less than 1023, respec-
tively. RT is calculated for 200 initial conditions chosen o
the chaotic attractor and then its average value is obtai
Figure 4 shows the dependence ofRT on l. As l is in-
creased from zeroRT decreases rapidly and approaches
constant value for higher values ofl. Migration from one
attractor to another attractor can also be achieved by

FIG. 1. Migration dynamics from the limit cycleX1 to X2 of
the two coupled Duffing oscillators by the OPCL method.

FIG. 2. Migration from chaotic motion to a coexisting period
orbit in Eq. ~1!. The controlled equation is Eq.~5!.
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adaptive control algorithm~ACA! @2,9#. The two coupled
Duffing oscillators equation with the ACA is written as

ẋ5y, ~7a!

ẏ52dy1a1x2b1x
32dxu21 f cos~vt !1p~ t !, ~7b!

u̇5v, ~7c!

FIG. 3. Variation of the required perturbations in the controll
two coupled Duffing oscillators~5! for migration from chaotic mo-
tion to a periodic motion. In~a! continuous and dashed curves re
resent the perturbationsKx andKy respectively. In~b! they repre-
sentKu andKv, respectively.

FIG. 4. Recovery timeRT vs l for the OPCL method.
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v̇52dv1a2u2b2u
32dux21 f cos~vt !, ~7d!

ṗ5e@~x1y2u2v !2~ x̄1 ȳ2ū2 v̄ !#

[eG~X2X̄!, ~7e!

where p(t) is the perturbation added for migration
X̄5( x̄,ȳ,ū,v̄) is the desired orbit,e is the stiffness paramete
of the control, andG is a function proportional to (X2X̄).
The functionG can be linear or nonlinear. Here we consid
the linear form ofG. To illustrate the migration from chaoti
dynamics to a coexisting periodic motion we choo
a1521, b1524, a2521.1, b2523.9, d50.4,
d50.002,v50.526, andf50.11474. Figure 5 shows th
migration from chaotic attractor to the coexisting limit cyc
for e50.002. The variation of the perturbationp(t) is plot-
ted in Fig. 6. The control is switched on att580(2p/v).
The parameterp(t) evolves according to Eq.~7e! and adjusts
its value until the desired state is reached. Once the des
migration is achievedp(t) vanishes and the control can b
switched off if the conditionX5X̄ is realized.

In general, the control mechanism is sensitive to the va
of e and the form of the functionG. In Eq. ~7! stable control

FIG. 5. Migration from chaotic motion to a coexisting period
orbit by the ACA.

FIG. 6. Variation of the required perturbationp(t).
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to the coexisting limit cycle attractor is found to occur f
e values in the interval~20.0035,20.0018! and ~0.00023,
0.004!. Figure 7 shows the dependence of recovery time
e. We add that the recovery time shows a different char
teristic behavior in the ACA~Fig. 7! compared to the OPCL
~Fig. 4! method. In the two coupled Duffing oscillators, in
stead ofp, any other parameters can also be chosen for
gration control.

In summary, we studied the transfer from one attracto
another coexisting attractor in the two coupled Duffing o
cillators. Interestingly, migration from chaos to periodic m
tion is possible by both OPCL and ACA methods. Thus,
simultaneous presence of periodic orbits in a chaotic sys
is of great use for bringing the system from chaos to order
the OPCL and ACA methods the required perturbation v
ishes once the desired goal orbit is reached. The other e
ing feedback methods@1,2,4,5# are primarily designed to sta
bilize the unstable periodic orbits embedded in the cha
attractor, where, as to implement the OPCL, the desired
tractor need not be embedded in the chaotic attractor.
shown in the two coupled Duffing oscillator the actual d
namics can be directed towards a goal orbit which is
away from the actual orbit. In the OPCL method migrati
from one attractor to a desired coexisting attractor is alw
guaranteed. In the case of ACA and other feedback meth
@2,4,5# stable control is possible only for certain range
values of the stiffness parametere, and it has to be deter
mined either by linear stability analysis or experimenta
before implementing the specific control algorithm. Furth
in contrast to the linear feedback methods, where con
function must be on forever, the migratory controls~OPCL
and ACA! require control actions for only a limited time
That is, the control can be switched off once the syst
trajectory reaches the basin of attraction of the goal dyna
ics.

S.R. would like to thank University Grant Commissio
India for financial suport.

FIG. 7. Recovery timeRT vs l for the ACA.
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