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We use a conformal mapping method introduced in a companion g&memien Vandembroucq and
Stgohane Roux, Phys. Rev. &5, 6171(1997] to study the properties of biharmonic fields in the vicinity of
rough boundaries. We focus our analysis on two different situations where such biharmonic problems are
encountered: a Stokes flow near a rough wall and the stress distribution on the rough interface of a material in
uniaxial tension. We perform a complete numerical solution of these two-dimensional problems for any
univalued rough surfaces. We present results for a sinusoidal and a self-affine surface whose slope can locally
reach 2.5. Beyond the numerical solution we present perturbative solutions of these problems. We show in
particular that at first order in roughness amplitude, the surface stress of a material in uniaxial tension can be
directly obtained from the Hilbert transform of the local slope. In the case of self-affine surfaces, we show that
the stress distribution presents, for large stresses, a power-law tail whose exponent continuously depends on the
roughness amplitud¢S1063-651X97)03305-9

PACS numbgs): 02.70~c, 46.30.Cn, 47.15.Gf

[. INTRODUCTION concentration diffusion, antiplane elasticity, etc. In this sec-
ond paper, we are specifically concerned with the case of
In a companion papdi], we have presented a conformal biharmonic problems. The method we propose leads to the
mapping technique that allows us to map any two-solution of the biharmonic field through the inversion of a
dimensional(2D) medium bounded by a rough boundary linear system, as most other alternative numerical ap-
onto a half-plane. This method is based on the iterative usBroachese.g., boundary elements method, spectral method,
of fast Fourier transform$éFFT) and is extremely fast and etc) but in contrast to the latter, the linear system to invert is
efficient provided that the local slope of the interface remaind1aturally well conditioned and of rather modest sikeequa-
lower than 1. When the maximum slope exceeds 1 this algaions for N Fourier modes in the conformal mapping
rithm, similar in spirit to a direct iteration technique well method in contrast with direct spectral methodéN un-
suited to circular geometrig®,3], can no longer be used in knowns. Moreover, following the first step of our algorithm
its original form. Under-relaxatiofd] suffices, however, to analytically allows one to obtain systematic perturbation ex-
make it convergent for boundaries having large slopes. BePansion results.
yond the determination of a conformal mapping for a given After recalling our main results about conformal mapping
rough interface we have also shown in Rgf] how to di-  in the first section, we deal successively with two important
rectly generate mappings onto self-affine rough interfaces ofxamples of biharmonic problems: Stokes flows and plane
chosen roughness exponent. The self-affine formalism is a@lasticity. The second section is thus devoted to the study of
anisotropic scaling invariance known to give a good descrip2 stationary Stoke@.e., low Reynolds numbgflow close to
tion of real surfaces such as fracture surfaf®s7]. This @ rough boundary. We shall also develop in this section the
statistical property of fracture surfaces is of great interest iParadigm of the equivalent “no-slip” plane interface. In the
the study of friction or transport processes in geologicathird section we point out the problem of the stress distribu-
faults[8,9]. tion in a two-dimensional material bounded by a rough
Bu||d|ng a conformal mappmg is entire|y equi\/a|ent to boundary and submitted to a uniaxial tension. The StUdy of
solving a harmonic problem with a uniform potenti@r  such situations is of particular interest for computing the
field) condition on the boundary. We used this property ex-nfluence of the roughness on the rupture probability law of
tensively in Ref.[1] to study stationary heat flows in the brittle materials. We show that this problem is formally iden-
vicinity of a rough boundary and we focused on the case ofical to that previously solved for the Stokes flow. We pay
self-affine surfaces where we were able to compute the exagpecial attention to the case of self-affine surfaces and we
correlation between local surface field and height profile. Wedresent in this section numerical results that suggest that for
also gave special emphasis to the problem of the location dfrge stresses, the surface stress statistical distribution law
the plane interface equivalent to the rough one at infinity. [tPresents a power-law behavior.
turned out that the conformal mapping technique provides a
very direct means of computing the shift between the plane Il CONEORMAL MAPPING ON ROUGH BOUNDARIES
equivalent interface and the mean plane of the rough inter-
face. We recall here the essential results described in Réf.
The range of applications of this first study naturally cov-The aim of this section is to conformally map a half plane
ers fields where the Laplace equation appears: electrostatiasnto a two-dimensional domain bounded by a rough inter-
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55 CONFORMAL MAPPING ON ROUGH BOUNDARIE . .. 6187
face. We first recall briefly how to build a conformal map- 02
ping well suited to a given rough interface. This problem can

be written in a form similar to that of a “Theodorsen prob-

lem” [3]; in the semi-infinite geometry we deal with, it can 01+
be solved with an iterative algorithm using fast Fourier trans-
forms [1]. The second part of this section focuses on the
specific case of self-affine interfaces. It turns out, indeed, that > 00|
very simple constraints on a conformal mapping allow one to
generate directly a two-dimensional domain bounded by a

self-affine interface of chosen roughness exponent. This =0.1 [\ . — target (64 modes)
property is of particular interest in statistical studies. We e zg:r’:::gg‘z‘;ﬂ;gzz)
could thus establish in Ref1] the correlation between the ' i
L o 02 , ‘ ‘
nhorm of a harmonic field at a self-affine interface and the 0.0 2.0 4.0 6.0
height of the latter. u
A. Notations FIG. 1. An example of the obtained profi#€ from the confor-

As illustrated in Fig. 1 of Ref[1], we are seeking a map- mal map, compared to the objective one, chosen to be a self-affine
. 9. T . King p- function with a roughness exponefit0.8. The amplitude of the
ping from a half plane onto a two-dimensional domain

- h rofile is 95% of the maximum amplitude, which preserves the

bounded by a rough interface. In the following we place ourjsonver f !
. : . gence of the algorithm.

study in the framework of the complex analysis. We consider
then the lower half plan® whose complex coordinate .
=x+iy is such that Inre<0 and the two-dimensional domain ikx
£ bounded by the rough interfag€; we callw=u+iv the u=x+R go @€ :
complex coordinate i€. We are seeking a mappirfg from
D onto €. We restrict our study to mapping® that are
bijective holomorphic functions; i.ef) depends only on the The first equation is here very close to a Fourier transform
variablez and not on its conjugate=x—iy. The transfor- ~except that we havé(u) instead of justh(x) in the first
mations associated with such functions are said to be confoterm. This formal proximity can be used to build an iterative
mal in the sense that they preserve locally the angles. Let u@gorithm. For sufficiently small roughness, we can see from
now take advantage of the semi-infinite geometry we have téhe second equation thatis an approximation ofi at zeroth
deal with. The two domains we consider are very similarorder. A direct Fourier transform of the profilgx) allows
apart from the region close to the boundary. Far from thighen a first approximatiofiw("’} of the coefficientso,. The

one, () is essentially the identity and we can write latter can be used to correct the previous approximation of
u(x); using Eq.(4) gives then the following estimation of
QU(z)=2+0(2), (D) the nonuniform sampling(x) and of the coefficients, via

) ) the Fourier transform dfi(u(x)). It turns out that this itera-
where the perturbatiom decreases with depth and takes tjye technique converges provided that the maximum slope
non-negligible values only in the close vicinity of the inter- 5¢ the profile remains below unity. The technique can be
face. In the following, we consider periodic interfaces in or-sed for any rough single valued interfa@ee Fig. 1 For
der to minimize edge effects. Wi.thout loss of generali.ty, |etprofi|es whose maximum slope exceeds 1, the algorithm can
us choose # to be the lateral period. A natural form &fis e made convergent with slight modifications such as the use
then of under-relaxation techniques. We refer the reader to Ref.
[1] for more details on the convergence and the stability
analysis in this specific framework. Extensive studies of this
technique in the case of circular geometry are available in
Refs.[2, 4].

o

Q(2)=z+ w(z)=z+k2O we 2k, 2

wherew is expanded on a basis of evanescent modes.

C. Conformal mapping on self-affine interfaces

B. Computing the mapping for an imposed interface As pointed out above, the algorithm we have just de-

We consider a single-valued interfagé. Let h be the scribed is suited to any rough interface. It is, in particular,
real function giving the interface geometry; for all poimts  possible to build conformal mappings associated with self-
=u+iv of d, affine interfaces. The latter are defined by their scaling in-

variance properties: an interface described by the equation
v=h(u). (3)  y=h(x) is said to be self-affine if it remainstatistically
invariant under the transformations

The mapping function) is such thatQ) (D) =¢; i.e.,
X—AX,

— —ikx
h(u)= Im( go wye ) 4) y—\iy (5)
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for all values of the real parametar The exponentl is  ing particles passively advected in a flow, the same process
called the “Hurst” or roughness exponent. It is characteristiccan lead to non-Gaussian statistics of the arrival time of
of the scaling invariance. From this property, we derive eastracer particles.
ily that We consider a semi-infinite 2D geometry with periodic
lateral boundary conditions and a unit shear rate at infinity.
([h() —h(x+8)]%=C?s%, (6)  Far from being specific, the results obtained in this context
can easily be extended for any case of stationary shear flow
in the framework of a double scale analysis. Considering a
Shear flow of shear ratg and an interface of typical bound-
ary e, where the the velocity and pressure fieldsand p
P(K)sk= 172, 7) ot_)ey the usual Na_vier—Stpkes equation, we can, following
Richardsor{11], define an inner problem where the reduced

When using the algorithm previously described to map dondimensional variables obey, at first ordersina simple
self-affine interface, the first guess for the mapping functionStokes equation in a semi-infinite geometry. In the following

where C is a prefactor. A simple Fourier transform gives
then the power density spectrum of the rough self-affine pro
file:

coefficientsw, is thus such that we present a solution of this Stokes equation that can be
rewritten as a biharmonic equation for the stream function.
w=2ia,ck Y27, (8)  This solution only requires the knowledge of a conformal

mappingQ) from the lower half plané onto the actual space

where thea, are the coefficients of the Fourier transform of £ bounded by the rough interfac€ and the inversion of a
the profile andx, are k independent random variables. It well conditioned linear system; it can thus be applied to any
turns out that this power-law behavior is not altered by thesingle-valued rough interface. We focus this brief study on
following steps of the algorithm. In a symmetric way, we canthe problem of the determination of the location of a plane
impose, without any further restriction, the, to follow a  boundary equivalent to the rough one at infinity. This prob-
power law and have a look at the interface generated. Wiem is equivalent to that of the replacement of the no-slip

thus choose condition on a rough interface by a backflow condititmbe

B P determineglon the mean plane. We compare our results with

wy = A€k ' (9 those of Tuck and Kouzoubop 0] who developed in the

wheree. are random Gaussian variables with zero mean an ctual spacea method similar to ours in spirit. Recent results
unit vaerli(ance for the real and imaginary parts independentl bout Stokes flows near rough boundaries can also be found
However, we must note that noth?n );eF;crilaepriofi that Yin Refs. [12-14; in most of them the Stokes equation is
! . o gp : solved using boundary element methadee, for instance,
the function obtained is bijective. From the parametrical ex- : o
) . . the review of Pozrikidig15]).
pression of the interfacé, we can write
We address here the problem of a unit shear Stokes flow

R 70 +i0
W (X | )

_ _ in the vicinity of a rough boundary. Let us calf(w) the
and to guarantee that remains single valued we have to stream function associated to the velocity fiblah the actual
choose amplitudes lower than the threshold vahg,, spacet. We have by definition
where

o i A. General solution
2 Gkkl 7£87| x ,
K

=1+AIm (10)

o b o 12
-1 WS BT o (12

Amax= |m[2k6kk1/2_ ge—lkXJ . (11)

In a stream-function formalism, the Stokes equation is re-
We checked numericallysee Ref[1]) that the power spec- duced to a simple biharmonic equation. Taking into account
trum of such synthetic profiles was indeed a power law withthe boundary conditions, i.e., no slip on the interface and unit
the expected exponent. shear rate at infinity® (w) has to be solution of the follow-
ing problem:
IIl. STATIONARY STOKES FLOW IN THE VICINITY
OF A ROUGH WALL Viw(w)=0 in &,

The Stokes equation describes fluid flows at low Reynolds
numbers. We address in this section the problem of a station-
ary Stokes flow in the vicinity of a rough boundary. The
study of such flows can be of great technological interest in V(w)~30? as v——c. (13
the case of convective transport proce$d@$ one can think
of problems of surface deposition or erosion. In the samd&he essential difficulty obviously lies in the no-slip condition
spirit, the occurrence of recirculating eddies can render vergn the interface; the use of a conformal mapping allows us to
difficult the decontamination of a polluted surface; contami-build an equivalent problem with a much easier boundary
nant particles can be captured by diffusion in a cavity andcondition, the new interface being plane instead of rough.
remain trapped in it for an arbitrary long time. From a morelLet us associate to the stream functibrin the actual space
fundamental point of view, in experiments consisting of trac-£ the real potentiafb in the half planeD:

Vo¥(w)=0 on J¢&,
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P(2)=¥Q H(w), (14 ®=0 on JD
where) mapsD onto £. We can thus define the following V:»=0 on /D& @:0 on aD. (16)
equivalent problem in the new geometry: ay
Vﬁ,\lr(w)zo The biharmonic potentia® can always be written in terms

VP (W)=0 on dE of two holomorphic function$- andH such that

T(w)~Lp2 as v—— d(z2)=Q(2)F (z)+F(z)Q(z)+H(z)+H(z) (17

, ng,(z) In .the following we split bpth functions into a p_urgly peri-
2 T 2| = odic part(denoted by the indep) and a nonperiodic part.
o 12 (2)] (15) Taking into account the desired behaviors at infinity provides
V,®(z2)=0 on JD

F(2)=5z+Fy(2),

d(z)~3y? as y——o» (18

In the case of a simple harmonic equation, building the con- H(2)=—32°+H1(2)+Hy(2),

formal mapping gives immediately the complete solution; .

o . . th
this is unfortunately no longer true in the case of a bihar-
monic equation. One can see that the original equation is _ _
changed into a linear equation with nonconstant coefficients. Fo(2)=2 foe M Hy(2)=2 he ", (19
The latter equation is directly related to the mapping function n=0 n=0
Q. We shngln the foIIolelllnE that tk;z d|ff|cultyhcanbbe C'rd andH is z times anx-periodic function. The lateral period-
curr;)vednte g et us rr]eca that in ?ﬁlhltlon tk()) the Ia 0(;’7(; ®icity of @ forbids the occurrence of terms proportional to
scribed con |t|on§,t e new potentlhas t(?. € realan é)olynoms of the real variable; hence,
periodic inx. Besides, the boundary condition can be mad

simpler by taking into account that the interface is now Hq(z)= Z[Fp(Z)+8w(Z)] (20)
plane. Definingd apart from an additive constant, we can
write that it obeys and ® becomes then

1 4 — . — — 1 e 1 .
<D(Z)=§y2+; hne—'n2+; hne'nz+2iy; (fn‘*'gw_n)e'nZ—Ziy; fn+§wn>e_'”z

+ 2 (fp@nspt @p fn+p)e'”xe(“+2p)y+2 E (o, fn+p+fpwn+p)e inxg(n+2p)y

n=1 n=1

+, (@nfnt+ opfn)e?V. (21)
n

We can deduce from the latter expression the partial derivativke with y:

1 —inz
+ g w,|€e

od ) S — 1 o
— (2)=y+ 2, nh,e "2+ nh,e"Z+2iy > nl f,+ = w,|e"Z—2iy >, n| f
&y n n n 8 n

+2iz fn+§wn) inz_ 2|E fn—l—gw ) 'n2+2 2 (n+2p)(fpwn+p+w fn+p) ginxg(n+2p)y
n n=1
+n21 % (n+2p)(w—pfn+p+f_pwn+p)e*i”Xe<“+2P>y+; 2n(wpf ot onf ) e, (22)

Because the holomorphic functiof,, F,, andH, are 27 periodical, they can be developed using the basis of the functions
{e" k2. Besides, because the mterface ap |s simply the x axis, the restriction of these holomorphic functions to
the boundary can be written 8~ '**}. The boundary condition problem can then be written by canceling the projections
of ® and 4,® on the function vectorge ¥}, Keeping only the firstN modes, we obtain 12 equations, which allow
one to obtain the B componentsf, and h,. The projection of the boundary condition on the function-vectok £ @)

gives first
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®: X (wpfp+@pfe)+hethe=0,
n

9y D: D 2n(wpfnt opfy)+2i

n

— 1\ 1
f0+ § 0)0) —2i f0+ § 0)0) =0. (23)

We have then for the function vectofs™ '} with k+0:

®: % (@pfkspt fp@ksp) + =0,

_ — . 1
5y(1)2 Zp (k+2p)(wpfk+p+fpwk+p)+khk—2l(fk+gwk>=O. (24)
|
We can thus write the following linear system: The conformal mapping avoids such numerical difficulties

since the boundary is a plane in the equivalent domain. One
can see in Figs. 2 and 3 maps of the stream function for a
stationary Stokes flow for two rough surfaces identical up to
(29 a dilation of a factor of 4 in the vertical direction. The stream
L — lines closely follow the smooth interfad€ig. 2), while an
he=-2 (pfirp=Fowisp). eddy appears in the largest depression of the roughest inter-
P face (Fig. 3.
The coefficient{f,} are solutions of the first equation, a
NX N linear system. The coefficien{h,} are easily deduced
from the {f,}. Once the conformal mapping is known, the
numerical resolution of the Stokes equation just requires the We now introduce the notion of an equivalent plane no-
inversion of the linear system. Let us note that the latteslip boundary in the framework of a stationary Stokes flow.
system is easy to invert, which would not have been the cas@ur aim here is to replace the no-slip condition on the rough
if we had written the boundary condition in thespace. The boundary by a no-slip condition on an equivalent plane
latter method was recently used by Tuck and Kouzoubowpoundary, the stream function remaining unchanged at infin-
[10]. In the cited reference, they use expansions in a basis df- Let us recall that as in the case of a rough electrode,
{efkyCoskx)} and write a linear System discretizing the Wh|Ch was studied in Re(l], noth|ng preSCI‘I_beS the plane
rough interface ifN points. If this method is efficient in the €duivalent boundary to lie at the average height of the rough
small slope limit, it becomes, however, impracticable forone. In harmonic problems, the dissymmetry between the
large slopes. The procedure requires thus the numerical irgffects of the peaks and those of the cavities causes the
version of a matrix consisting of terms of ordstNA, where equivalent plane boundary to be shifted towards the peaks.
A is the roughness amplitude and this becomes practically

1 ) o —
ft g w,d—l% P(@pf s pt F ook p) =0,

B. Equivalent plane boundary

difficult or imprecise as soon as the prodidA increases. 20
0.4 \ ; : 1ol
0.2 [ N 0.0
0.0 > -1.0 f
= 0.2 -2.0
-0.4 -3.0
—06 A _40 L L L
0.0 2.0 4.0 6.0
-08 : : ‘ X
0.0 2.0 4.0 6.0
X FIG. 3. Stream lines of a Stokes flow along the same rough

surface as above but four times rougher. We observe that a recircu-
FIG. 2. Stream lines of a Stokes flow along a rough surface. lation flow appears in the deepest cavity.
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We shall see in the following that the same conclusion holddution that can be directly computed from the Fourier coef-
in the case of the stationary Stokes flow. An illustration officients of the interface.

this disymmetry naturally emerges with the occurrence of )

little eddies in pronounced depressions of the rough bound- 1. Conformal mapping approach

ary. We have chosen in this text to develop the paradigm of As already mentioned, the stream functibriu,v) of the
the no-slip plane equivalent boundary but it is naturally alsoStokes flow is entirely determined by the following condi-
possible to consider a plane boundary fixed at the averagéons:

plane with a roughness-dependent slip boundary. The con- VW (w)=0 in &

clusion previously mentioned about the place of the equiva- W ’

lent boundary(nearer to the peaks than to the cavitiés V,¥(w)=0 on ¢,

then expressed by a reversal flow condition. We show in the V(w)~ 12 as v——o. (26)

following that the conformal mapping method gives a natural
way to compute the vertical shift of the plane equivalent If we now return to the solution obtained via conformal
boundary. We compare these results with a perturbative samapping, we have

1 |
fot = wp | €712

1 ) — — 1 o
®(2)==y2+ > h,e "2+ > he"Z+2iy >, (fn+—w—n)em—2iy2
2 n n n 8 n 8

+Z 2 (fpw_n+p+wpfn+p)emxe(n+2p)y_|_2 2 (w_pfn+p+fpwn+p)e_mxe(n+2p)y

n=1 p n=1 p

+, (@nfnt+ opfn)e?V. 27)
n

By construction®(z) is such thatV'(w) is biharmonic in  lent electrode, we expect two different behavidiig:a de-
£ and fulfills the no-slip boundary condition at the rough pendence om?/\ in the case of small amplitude or low
interface. Let us now build the stream functitify, associ-  spatial frequencyi) a linear dependence @in the case of
ated with a plane interface locatedwat H; we have imme- large amplitude or high spatial frequency. The latter behavior

diately comes directly from the fact that the equivalent plane reaches
at the most the level of the highest peaks. In the case of small
Wefw) = L(p—H)? (28) slopes, it is easy to show that the correction from the average
¢ ’ plane is of ordeA?/\. The deviatiorH is naturally normal-
and its associated function in the half plaPds ized by the amplitude of roughnegs The ratioH/A then
has to be a function of the only two characteristic lengths of
(Pec{Z):%[lmQ(Z)—H]Z, (29) the systemA and \, and can be expanded in the limit of
small slopes:
which becomes at infinity
A ¢(A + A+ A 2+O A)s (32
—=¢|—|=apgta; —tay — = .
®(2)=3y?+ 3y[IM(wg) +8 IM(fo) [ +O(1)  as y——=, ATV TR TR A

30 A simple symmetry about the mean plane has to leldve

_1,2 _ _ unchanged, since this symmetry is equivalent to a transfor-
Ped 2)=2y"+ylIM(wo) ~H]+O(1) s y——ce. mation ofA into —A, a; anda, have to be zero, and

Taking into account Eq.23), which specifies the expression
of fy, the identity betweerd and ® ., defines the value of
H:

A2

A4

33/ (33

— A detailed perturbative analysis can be built in the case of
H= Im(w0)+2; N(wnfnt onfy). () a simple sine interfacEL0]. Writing a perturbative solution
in the conformal mapping formalism allows us to deal with
2. Perturbative approach any rough interface. Following Eq21) we have

Let us consider an interface of amplitude, say, with ®(z)=1Ly?+4y Im[Fp(z)+§w(z)]
characteristic lengthn such that the profile is statistically
symmetrical. When we seek the location of the plane equiva- +2 R w(2)Fp(2)+Hy(2)]. (39
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By constructionw, F,, andH, are of orderA, with A being 0.0

the roughness amplitude. At first order the no-slip boundary ) G“un .
condition becomes o ot
®(x)=0=ReHLY(x)]=0,
-1.0 U\\u\\
JP JHLY RS
Z(x)= (1) 1,0 P o
oy (X)=0=4 1M F/(X)+ 507 (x)]+2 Re{ oy (x) » | ”\;\\
= 0 . (3 5) 20 | z o> o \EI
The holomorphic functions being bounded, the resolution of
these Hilbert problems gives immediately
HY(2)=0, F(2)=-30"(2), (36) 30 , { o
) . . . ) . 0.0 0.5 1.0 1.5 20 2.5
Using the iterative algorithm briefly presented in Sec. I, a A

first-order approximation of the coefficienss, is
~ FIG. 4. Shift from the mean plane of the plane equivalent
@ + O(Az) (37) boundary for a Stokes flow in the case of a sine interface of varying
N ’ amplitudeA. The dotted line corresponds to the second-order per-
_ turbative expansion and the symbols to computations using confor-
where{h} is the 2N discrete Fourier transform of the real mal mapping. The dashed line has a slope-df.
function h associated with the rough interface. Using the
expression of Img) derived in Sec. V B of Ref.1], we can  sponsible for the mechanical strength of glass fibers. Recent
write experimental resultgl6] suggest that the nanometric rough-
ness at the surface of glass fibers with a diameter of a few
__ i w2 micrometers could be responsible for the decrease of the ten-
H=- 7 2 klhJ? (3y ~ microm! ecr .
N sile resistance by a factor of about 5. In uniaxial tension, the
resistance of a fiber is directly related to the distribution of
This result is consistent with the one proposed in Refmaximum positive principal stresses. Using a simple pertur-
[10] for a backflow slip condition on the mean plane of thepative expansion, we show that in the limit of small slopes,
interface. In the particular case of a pure sine profile of amthe surface stress can be directly computed from the Hilbert
plitude A and wavelength\, we recover transform of the local slope.
The Weibull law[17] usually gives a correct description

wk=i

A2
H=-27 T (39)

0.00 —e-org—
“0..0‘
o

It has to be noted that these first-order results are exactly “a,
identical to those obtained in the case of a rough electrode 9,
(up to a factor 2 despite the fact that we had to solve here a N
biharmonic equation instead of a simple harmonic one. In o
Figs. 4 and 5 we have plotted results of both the perturbative
solution and the conformal mapping calculation in the case 0N
of a sine interface and a self-affine interface of roughness™ ~095 | 00
exponent 0.8 built with 64 Fourier modes. We check that the e
perturbative calculations correctly fit the results for small R
slopes(up to 0.9. For larger slopes, the perturbative expres-
sion overestimates the deviation, whose behavior becomes e
progressively linear. Note that our numerical method al- o
lowed us to reach local slope values up to 2.5. This maxi- .
mum slope can be increased by using more Fourier modes in %195 05 10 s 20 25
the mapping functionwe used 256 modes in the present )
calculation.

max

FIG. 5. Shift from the mean plane of the plane equivalent

IV. ELASTICITY boundary for a Stokes flow in the case of a self-affine interface of

) ) ) varying amplitude. We use in the abscissa the maximum local slope

In this section, we analyze the effect of a slight surfaces, . The dotted line corresponds to the second-order perturbative

roughness on the stress distribution in an elastic medium. Wegxpansion and the symbols to computations using conformal map-
emphasize here the case of a semi-infinite material submittgsing. The dashed line has a slope-60.06. The surface has been

to uniaxial tension. Although very elementary, this simplebuilt with 64 Fourier modes and we used 256 modes in the solution

model illustrates an effect that has been suggested to be rbased on conformal mapping.
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of failure statistics in a wide range of brittle materials. This nent of this power law, i.e., the Weibull modulus, continu-
phenomenological law is partly based on the identification obusly depends on the roughness amplitude.

the weakest link in the materi@lvhose size is supposed to be

that of the smallest defegtswWe will see in the following

that for a self-affine surfacesuch as measured for glass fi- A. General solution

bers by atomic force microscopy techniquié§]) the statis-

tical distribution of tensile stresses at the boundary displays a In plane stress or plane strain conditions, the stress tensor
power-law behavior, which naturally implies the validity of [o] can be completely represented by a unique real function,
Weibull statistical failure distribution. Moreover, the expo- named the Airy function:

_{a’uu O'UU} h _072\1’ B P _&Z\If 10
[o]= Tuy Ty’ where oy,= w2’ Oy = Iudv Oy = JuZ (40
|
This form directly comes from the stress balance in the ab- V.o
sence of external forces, i.e., fiixj=0. In the framework of —’Z =0 on ¢D,
2D elasticity in an isotropic medium, the Airy function obeys V'(z) (46)
AAY=0 in & (41) =V, =0 on 4D.

With the stress tensor being computed from two successive turns out that the boundary condition at the interface is
derivations of the biharmonic functiod, the latter is only exactly the same as the one we have encountered for the
defined apart from a linear function inandwv. In the fol-  no-slip condition in a Stokes flow. The Airy function is thus

lowing, we consider free boundary conditions|n=0 and identical to the above-derived stream function for Stokes
we impose uniaxial tension at infinity. Let denote a unit  flow.
vector normal to the interface, we have

[¢]n=0 on o€ B. Surface stress distribution

1. Perturbative approach
as y— —o. (42) With the normal stress being zero at the interface, the

first-order expression derived in the previous section gives us
the following result for the principaitangential stress at the

1 O
[0‘]—>[0 0

The Airy function¥ is thus such that

interface:

A A\

P PR on gg’ A(I)(X) ,
M 502 ™™ Guap 0 oy=AT (W)= Wzl—Z R o™ (x)]

FaY Py

———n, —=0 on J¢, k=n
" Guge M guZ ~° =1-2 > i L(—ik) Ee‘ikx

1 k==n+1 |k| 2n

T2 L

v womTE @ =1-2H[¢'1(x), @)

At any point of the interface’s, it is possible to give a WwhereH[ ] stands for the Hilbert transform operator on the
parametric representation of the tangential and normal vedeal axis. At first order, we find that the tangential surface

torst andn. In complex coordinates, we have stress deviation from its mean value is proportionathe
Hilbert transform of the local slopeFigures 6 and 7 give
Q' (x) iQ'(x) two examples of stress distribution on surfaces of maximum
t(w)= Qx| n(w) = QX (44 sjope 0.1 and 0.4, respectively. In both cases, we can see that

the stress fluctuations are much greater than the height fluc-
The boundary conditions at the interface can be rewritten: tuations (which have been dilated by a factor of 5 in the
figureg. Note that(taking into account the dilation of the

[c]n=0 on €, height profilg the stress fluctuations are very large compared
<(t-V,)V, =0 on ¢, (450  with those of the height. In the context of rupture, with the
=V, ¥=const=0 on d€E. relevant parameter being the maximum stress, one can un-

derstand that a very modest roughness can be responsible for
We can choose the constant to be zero since the Airy funca dramatic decrease of the material resistance.
tion is only defined apart from an affine function. This leads We observe good agreement between the stress profile
to computed by conformal mapping and the perturbative result
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---------- 1" order perturbation
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X log,,(0)

FIG. 6. Stress and height profiles on the rough interface of 22D F|G. 8. Surface stress distribution for self-affine surfaces of
medium submitted to uniaxial tension. The bold line represents th%ughness exponent=0.8 and of roughness amplitude&
hei_ght_ profil_e(of maximum slppg 0.)_1di|ated _by a factor 5. The  =0.05¢,,,; €max is the amplitude such that the maximum local
solid line gives the stress distribution obtained by the completesjope is equal to 1. The self-affine interfaces have been built with
conformal mapping computation, the dotted line is a first-order ex32 Fourier modes and the results averaged on 1500 surfaces. We
pression of the stress, which is directly obtained from the Hilbertcan check that the distributiofsymbol3 is well fitted by a pa-
transform of the local slope of the interface. rabola, which shows that the stress is log-normally distributed.

(related to the Hilbert transform of the slofer the smooth- ¢4 4ests thus that the stress distribution is Gaussian. In Fig.
est interface but this is no longer the case for the roughes e have plotted in a log-log scale the surface stress distri-
one especially in the area where the curvature is 1arg&, ion optained for 1500 self-affine surfaces of roughness
Higher-order perturbative terms are thus necessary to recov@&ponenz=0.8 and of maximum slope 0.05; one can check
the actual stress. that, as expected, the distribution is well fitted by a parabola.
In the case of larger slopes we have seen that the agree-
ment between the first-order perturbative results and the
Let us now turn to the study of stress distributions oncomplete computation becomes poorer. We then question if
self-affine surfaces. The latter are designed to present tae log-normal behavior of the distribution is preserved. In
Gaussian height distribution; i.e., their Fourier coefficientsFig. 9, we have plotted the surface stress distribution for four
arefi,=Aek Y27¢, wheree, is a Gaussian random variable self-affine surfaces of roughness exponéat0.8 and of re-
of zero mean and unit standard deviation. In the case ofpective maximum slopes 0.2, 0.4, 0.6, and 0.8. These results
small slopes, the validity of the first-order perturbative resultwere obtained by averaging the data obtained from 1000
different surfaces, each defined with 64 Fourier modes. We
can see a clear power-law-like behavior for large stress am-
plitudes. The slopes we can measure are very dependent on
the roughness amplitude. The interpretation of these new nu-
merical results requires a perturbative analysis that we have
not developed yet for this biharmonic problem. We have,
however, performed a similar analysis in the case of a har-
monic field on self-affine interfacg48|. It turned out that in
a fashion similar to the one presented above, the field distri-
bution law presents a power-law tail with an exponent
«A~2|17¢ whereA is the roughness amplitudethe spatial
lower cutoff of the self-affine domain, anfithe roughness
exponent. Callingg the logarithm of the field, the latter re-
sult was derived, showing that the reduced variable

2. Statistical results

1.0

(o—06,)/0,

! tangential stress
Vo 1% order perturbation

-10 ‘ : : fa(0)=(V1+2Kg—1)/KA (48)

0.0 2.0 4.0 6.0

X
follows a Gaussian distributiofK=2 for harmonic prob-

FIG. 7. Same as Fig. 6 with an interface four times rougher. Ondéms. Using K=0.25, we can check indeedee Fig. 10
observes that in large curvature areas, the first-order approximatioiiat all data obtained from our calculations collapse on the
no longer suffices to represent precisely the local stress. The heiggame parabola in a log-log scale. These numerical results
profile (of maximum slope 0)is dilated by a factor of 5. indicate that the same scaling applies for both harmonic and
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FIG. 9. Surface stress distribution for self-affine surfaces of F|G. 10. Same distributions as in Fig. 9 in the reduced variable
roughness exponent=0.8 and of roughness amplitudeA fa(g) =(V1+2Kg—1)/KA, whereg=log;o( o) andK=0.25. The
=0.26ma(D), 0.4€mad ©), 0.6ema{)), and 0.&,a{O); €maxis the  data collapse onto a simple parabola, which shows the Gaussian
amplitude such that the maximum local slope is equal to 1. Thesharacter of the distribution df(g).
self-affine interfaces have been built with 64 Fourier modes and the
results averaged on 1000 surfaces. For each distribution, a bold li

shows the power-law behavior obtained for large stresses. "dllowed us to retrieve for it a result proposed by Tuck and

Kouzoubov[10]. In the context of the plane elasticity, the
ame perturbative result has allowed us to show that, in the
imit of small slopes, the surface stress distribution was di-
rectly related to the Hilbert transform of the slope of the
interface. This very simple result could be used, e.g., for the
V. CONCLUSION evolution of a stress-corrosion front. The analysis of statisti-

After introducing a conformal mapping technique that al-cal results for the principal stress on self—affing surfaces has
lowed for a detailed study of the harmonic field in the vicin- SNOwn moreover that the large stress distribution presents a
ity of rough boundarie§l], we have extended in this paper power-law tail whose exponent continuously depen_ds on the
the use of this method to the study of biharmonic fields. wg©ughness amplitude. Such results could be applied in the
have given a general solution to problems such as the Stok&@ntext of glass fiber rupture statistics to provide a funda-
flow over a rough surface and the stress distribution in dneéntal basis for the Weibull law that is known to describe

medium (bounded by a rough interface uniaxial tension. accurately the rupture statistics. A realistic description of
Besides the knowledge of the mapping functi@btained these stress distributions requires a second-order perturbative

using a simple iterative algorithmthis solution only re- analysis, which is planned to be presented in a futher study.
quires the linear inversion of a well conditioned matrix. Be-We have, however, recently proposed such an approach in
cause the determination of the mapping function is only lim-the case of harmonic fields.8] where distributions of the
ited by the maximum value of the local slope at the interfaceS@me kind have also been found and justified in two and
the method is well suited to any kind of single-valued inter-three dimensions.

face. As an illustration, we have thus presented results of

Stokes flow over self-affine boundaries whose maximum ACKNOWLEDGMENTS

slope reaches 2.5. In the same context of a Stokes flow over
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