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The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries
where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite
distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in
two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen
boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to
“equivalent” smooth interfaces. We study the correlations between the topography and the field at the surface.
Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the
derivation of Green function for localized flux on the surface of a rough bounfiat{63-651X97)03205-4

PACS numbgs): 02.70—-c, 66.10.Cb, 44.36:v, 61.43.Hv

[. INTRODUCTION explained by the following(i) the description of the rough-
ness is realistic for a number of applicatiofis) the conse-

Defining and computing effective properties of heteroge-quences can be expressed in quite general terms as a function
neous media is a subject that has been studied for a longf a few parameters directly accessible experimentally, and
time, and for which a number of powerful techniques havefinally (iii) the most commonly studied roughness models are
been developed. In most cases, however, the heterogeneiti@monochromatic” surfaces with a single asperity pattern re-
are considered to lie in the bulk of the material. Another typepeated periodically, and hence the transposition to more
of inhomogeneity is due to the random geometry of the surecomplex geometries may be wrogxamples of such cases
face on which boundary conditions are applied. This studywill be discussed below
focuses on this second type. We will thus consider homoge- As previously mentioned, if most surfaces are rough, this
neous media that are limited by a rough surface or interfaceoughness may be of small amplitude macroscopically, and
Our purpose here is to introduce a very efficient way ofthus one may feel that its role can be neglected in most cases.
solving harmonic problems in two-dimensional systems forFortunately, this is generally true. Taking into account pre-
any geometry of the boundary. cisely the surface roughness may be required in two distinct

The occurrence of rough interfaces in nature is more thelasses of problems.
general rule than the exception. Apart from very specific The first clasgl) covers applications where the roughness
cases such as mica where a careful cleavage can producannot be neglected at the scale at which the bulk field var-
planar surfaces at the atomic scale, surfaces are rough. Evess. For obvious reasons, there is no way to avoid an accurate
glass with a very homogeneous composition, where the sudescription of the boundary. We may mention the following
face is obtained by a slow cooling of the material, so thatpotential applications:
surface tension can act effectively to smoothen all irregulari- (1) In confined geometries, such as those encountered
ties, displays roughness in the range 5—50 nm over a windowaturally in surface force study, the roughness of the surface
of a few micrometers widtH1]. Similarly, the so-called may affect the interpretation and thus the precision of the
“mirror” fracture surface that is optically smooth exhibits measurements since the distance between two facing sur-
specific topographic patterns when examined with an atomi€aces is generally estimated from indirect measurements of
force microscopé¢2]. The key question is thus how to iden- transport in the gap between the surfagEs|.
tify the relevant range of scales at which roughness appears. (2) Fields that are rapidly varying in space will be sensi-
From common observations, this question may not have #ve to fine details of the boundary geometry. The most ob-
simple clear cut answer. Indeed, in a variety of cases, theious example in this field is the reflection and scattering of
amplitude of the roughness appears to be strongly dependeatwave by a rough boundafi3]. Of particular importance
on the size of the examined surface. A particular class ofre the cases of surface waves, evanescent waves, Rayleigh
such scale dependent roughness, namely, self-affine rougtvaves in elasticity, etc.
ness[3,4], has recently motivated a lot of activifgee Refs. (3) In a similar spirit, diffusion processes may display
[5-7] for recent reviews because of both its relevance in anomalous behaviors at short times where the diffusion
many different instances, and its theoretical justificationlength is smaller than or comparable to the roughmtds
which has been obtained in statistical physics for a wide The second class of probler(is) where roughness cannot
class of models, such as growth modél§ molecular beam be neglected is when one has to focus on the boundary, ei-
epitaxy[9], fracture surface§l0], and immiscible fluid in- ther because only this part matters for extraneous reasons or
terfaces[11]. Although the present study is not specific to because the system is sensitive to high fields that can be
self-affine surfaces, we shall consider this particular class iimduced by the roughness itself. Some examples of these two
order to apply our method. The interest in this choice may beases are as follows$i) Surface phenomena such as electro-
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filtration require a proper solution of, say, a Stokes flowement numerical implementation. This technique is ex-
field, in the immediate vicinitytypically Debye length scale tremely well suited to our problem, but rather delicate to use,
of a rough boundary where an electric boundary layer isbecause of the use of singular influence functions between
present and can be entrained by the fluid to give rise to aplements.

electric current in response to a fluid flow in a porous me- The method we introduce here shares a number of advan-
dium[15]. (i) The brittle fracture of glass is generally due to tages with the boundary element algorithm in the sense that
surface defects that induce locally high stresses, which reanly surface degrees of freedom are taken into account. It
duce significantly the breaking limit of this material. In the thus has a fast convergence, and does not require a large
absence of specific surface degradation the most importamiemory. However, in contrast with the previous method, no
source of surface defects is the topography itEed]. (iii) singular elements are introduced, but rather simple evanes-
Some growth models have a local growth rate that dependsent wave modes. The practical implementation of the algo-
on a harmonic field locally. The development of unstablerithm solely involves recursive calls to fast Fourier transform
modes that will finally induce a macroscopic roughening re-methods, with no special tricks. The convergence rate is ex-
quires the proper analysis of the field at the surfa:8]. ponential down to machine precision, thus allowing for arbi-

The relative independence of the bulk field on the smalltrary accuracy in short computation times. Moreover, the
scale roughness of the boundary for a slowly varying fieldfirst steps of the algorithms can be performed analytically,
(class Il problemscan be used to explore the local field providing a tool to access analytical results in a perturbation
close to the boundary using an asymptotic analysis with @pproach. Let us note also that this technique can be ex-
double scale technique. The large scale problem consists tended to all sorts of boundary conditions, source and sink
solving the problem at hand by replacing the rough boundarylistributions, etc. once the mapping has been obtained. It can
by a smooth equivalent one. The small scale problem dealkslso be applied to singular problems, such as, e.g., the deter-
with the details of the rough boundary and matches at “in-mination of the stress intensity factor in a rough mode I
finity” with a homogeneous field. This local problem will be crack in antiplane elasticity. It can also be extended to bihar-
considered in full detail in the following. monic problems as discussed in a companion pgp&r

These examples are obviously not exhaustive. Inhomoge- Finally, let us stress that, besides physical problems, the
neous boundary conditions may arise, for instance, in conta@lgorithm may be interesting for numerical purposes. If one
problems where the roughness cannot be neglddféd§. has to deal with a rough boundary, it might be convenient to
One may also consider application outside the realm ofise the conformal map simply to generate a regular meshing
physical applications, such as the use of harmonic problemsn which a finite-difference or finite-element method can be
and particularly conformal maps as a simple means of mestapplied. The computation time needed to get the mapping is
ing a domain limited by a rough boundary. a simple small overhead computation time.

In the present paper we essentially focus on harmonic Beyond the harmonic problems, another use of conformal
problems. The latter arise in a variety of different domains inmappings is the resolution of biharmonic problems near a
physics, such as electrostatics, thermal or concentration difough interface; both stress field in elasticity and velocity
fusion, flow in porous media, and antiplane elasticity, tofield in low Reynolds number fluid mechanif85-29 can
mention a few. This field has been intensively studied in thebe derived from potentials that obey such bi-Laplacian equa-
last decade and special attention has focused on the “corions. We refer the reader to the companion paj&f],
stant phase angle” behavior encountered for the measureghich is completely devoted to this specific problem.
impedance of rough electrodes. Taking advantage of the for- This paper is devoted to the study of harmonic problems
mal equivalence between electrostatics and stationary diffun two-dimensional(2D) semi-infinite media limited by a
sion processes, several authors have developed random-watkugh boundary. To extend the definition of the profile of the
algorithms[19-27 eventually improved by coarse-graining boundary to infinity, we use periodic boundary conditions
technigueq 23] that allowed for a better comprehension of along the boundary. Although very specific, this type of ge-
this complex phenomenon and its dependence on the statismetry will be very convenient as soon as no other boundary
tical properties of the surface. lies close to the first one. The distance threshold to consider

The random-walk—based computation provides a generah such a case is typically of the order of magnitude of the
way of addressing harmonic problems. There are very fevarger spatial wavelength of the profile, i.e., the spatial period
limitations to the method in terms of space dimensionality orin the geometry we have described. We use a conformal
constraints on the roughness, in contrast to most other metimapping technique. It consists of constructing a map from
ods. This implies that this method is extremely well suited tothe domain of interestin the complex planeonto a regular
extremely rough, or fractal boundaries. It is extremely easyemiplane. The conformity of the map allows one to preserve
to get a rough estimate of global quantities such as electricadlarmonicity through the map transform.
impedance. The drawback of this method is, however, its In a first part of this paper, we define the form of the
precision. Based on random walks, the convergence of theonformal mapping suited to our geometry. Then, we ad-
results will be extremely slow, typically involving factors of dress the problem of constructing the mapping associated
order 1/N whereN is the number of walkers. with any prescribed interface. We show that this problem can

The most common numerical methods to study harmonibe solved with an iterative algorithm using fast Fourier trans-
fields are finite-element or finite-difference schemes. The latforms (FFT). This algorithm allows one to get the conformal
ter are, however, rather inefficient in our case since one hamap in a few iterations of FFT, whose computation time
to solve a two-dimensional problem. A more clever way is toscales adN In(N), whereN is the number of Fourier modes
use a boundary integral formulation, leading to boundary elused to describe the interface. Note the remarkable efficiency
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Two obvious choices are well suited for our geometry:

u a semi-infinite planeD, Im(z)<0 and(ii) the unit circleC,
|z]<1. These two domains can be related by the transforma-
tion z—In(2), and thus they are basically equivalent. Since
the boundary we consider is periodic in thealirection, the
mapping to the unit circle is well suited. However, in the
following, we will rather use the mapping to the half plane,

z w since it corresponds directly to the “reference” problem

where the roughness vanishes.

FIG. 1. A schematic illustration of the mappifyy which maps
the semi-infinite plané onto the domain limited by a rough inter- B. Specific transformations

face&.

The domain of interest, denoted I8 is limited by a
. S : rough interfaced€, which is a periodic function of ReY of
of such a technique, considering that the map gives the S%’eriodx. The conformal magf is a function ofz, which

lurtcl)obrllercr)wf ?hli_saplr?)%laer:nf:??/elrn ET:S:TSr&;ﬁ%’_‘iﬁ“ggsf‘%ﬂael_associates one point of the reference domdnor C, to
b ' b y another point in€. From now on in order to distinguish the

?hdgzig E;g:lergng’gt;n ag'rgutlﬁétgﬁgtrggﬂy' V:/Veearl;céstgogvelé_nitial and the image domain, we will denote a point in the
. 9 P . y 9 .Image plane asv=u+iv, and keep the notation=x+iy
affine boundaries, a powerful technigque to explore generi

properties of such problems. Specific applications of thiﬁor the initial plane unless otherwise mentioned. Before

technigue to a self-affine profile are studied, which includes[sgei';yslgga;hg d%arﬂgféa}gr?:?o?ft:; e? ?rizi?(?r/r,nlétlizrﬁ) : ssible
(i) the question of defining an equivalent smodfianay 9 q )

. A 4 . Let us first consider the mapping from the half pldh¢o
interface, and finding its height compared to the geometrica] B :
average height of the interface, afid the correlation be- ‘L: As Im(z) tends to—c, the mapping should approach the

tween the height and the field, which is computed exactly in'dem'tyﬂ(z)ﬂz’ since th?.rOUtheSS of the boqndary IS not
expected to play any significant role at a large distanoen-

the limit of a small roughness amplitude. These two ex- . i
amples demonstrate the unexpected difference in behaviojsa red to the perio) from the boundary. We introduce the

for persistent and antipersistent profiles. Finally, we give th Unction «(z) such that
expression of the Green function for localized flux on a Q(2)=2+w(2). )
rough interface.

Functions of the form expf{ikz) with k real thus appear to
be natural candidates fan(z). They are indeed periodic
functions of Ref), and vanish exponentially as l@(goes to

A. Notations —o whenk>0. Moreover, in order to satisfy the same pe-
riodicity as £ we require thatkX=2ns, wheren is an

In order to study harmonic fields in two dimensions, VeIY: eaer. Thus we propose the following decomposition as an
powerful techniques have been developed based on complex ger. prop 9 P

analysis[30]. Among these, we will use in the following €xpression for the transformatid,

Il. SUITED CONFORMAL MAPPING

conformal maps, which allow one to relate the geometry we o

wish to study(i.e., a semi-infinite domain limited by a rough W(2)=2+ E woe2iTkaX 3)
interface, to a regular one as schematically illustrated in Fig. =

1.

As usual, we will identify a point in the plane{y) with  Without loss of generality we will s&X= 2 for the remain-
the complex number=x+iy. We notez=x—iy the com-  der of this paper.
plex conjugate of. The two variableg andz can be treated The rough boundary is to be identified with the image of
as independent variables insteadaindy. A mapping from  thex axis, so that€ obeys the parametric equations
the complex plane onto itself is simply defined as a complex
function ) of z and z, which transforms one point of the .
u=x+ Re(Zk e 'kx>,

complexz plane into another poirf2(z,z). For the mapping

to be of physical interest it has to be bijective in a domain of

interest, and thus inversible. The mappingamformalif the

function isholomorphig i.e., it depends only om and not on v=Im
'Z. It can be shown that in this case, local angles are pre-

served in the transformation—apart from singular points— ) ) )
and hence the term “conformal.” Moreover, the real part The corresponding transformation from the unit disto
and the imaginary part of any such holomorphic function aréhe domaing can be obtained from the above foll® and
both harmonic, i.e.Y?ReQ=V2mQ =0. The latter property the transformatlon_ from the d|sk_to the semi-infinite plane
results from the expression of the Laplacian operator ifMZz=O0. The resulting transformation reads

terms of the variableg andz:

= Q(2)=i In(z)+ K, 5
V2=02+ 2= 4d2, (1) (D=1 In(2)+2 w2 5)

Ek wke—ikx) _ (4)
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vi etrized formw=u+ih(u). To comply with the framework

\ /--\ /—~ we have chosen here, we use in the followingmapriodic
: : ‘ u h.

From the particular form of the transformatiéh) we ex-
pand the real and imaginary parts on the boundary

u=x+ RE{E we
k

Ye

\\\

¢
”<<<%

®

h(u)=Im Zk w e

FIG. 2. Image of a regular square grid of the semi-ptanasing | U were equal tox, the second equation would be close to
the transformatior(7). The parametewm has been set to its maxi- & Fourier-transform expression of the functienMore pre-

mum value of 1. A cusp appears on the boundary. cisely, rewriting the last equation as
wherex= '1a has peen used. Evidently, th_e image of the unit h(u)=R E i ek (9)
circle z=¢e'? provides the same parametric form as E. K

With the form of the transformation being imposed, one
needs to check that the transformation is bijective: a pointve see that the coefficiemv, can be computed from the
should have a single image, and an image point a uniquEourier transform oh(u(x)). The difficulty is thatu(x) is a
parent. This condition imposes some restriction on the transgriori unknown. However, we note that if the roughness is
formation ). It can be rephrased simply for the transforma-small enough, say of ordes, u can be written asi=x
tion (3) as +0O(€). Therefore, identifyingx with u is a zeroth-order
approximation. From the latter, the coefficienf can be

do computed by the Fourier transform lofu). This provides a
dz >0 (6)  first-order approximation ofi(x), from which an improved
Z=x+iy estimate ofw, can be obtained by taking the Fourier trans-

form of h(u(x)), i.e., a nonuniform sampling of the profile
for all y<0. In principle, it is sufficient to impose this con- h. |terating this scheme is the basis of our algorithm. We
dition only in the strict interior of the domain. Ii{2/dz  will omit for the time being the prerequisite on the amplitude
=0 on the boundary, a kink may appear at this point. In theof the roughness. We will return to this point by considering
following, we will assume that the interface is smooth at athe stability of the algorithm.

small scale so that poles are forbidden on the boundary. The intermediate quantities appearing at kitie iteration
As an example, if the transformation is simply will be labeled with a superscripk]. We also formulate the
algorithm directly in discrete terms suited for a numerical
Q(2)=z+we ? (7) implementation. In the remainder of this paper, all functions

will be decomposed over a set ohAliscrete values. The
then the condition(6) reduces to|1+iwe™e¥|>0 or |w| Number of Fourier modes will thus be limited ta 2We first

. N 3 _ ! . . . . k . s
<1. For this maximum value, the image of tkeaxis is a  introduce a series of sampling pO'"‘é) with J—Ogl
cycloid, with cusp points. Figure 2 illustrates this limit case. —1, which is initially set to an arithmetic serles,“
=jm/n. The sampling oh(u) by ul gives the array

IIl. COMPUTING THE MAPPING

(K — 110
FOR AN IMPOSED INTERFACE h;™=h(u;™). (10)

The above presented transformation is only useful for arhe discrete Fourier transform of this array is the complex-
particular application if the transformatio can be com- valued array
puted, once the boundapf is imposed. This section is de-
voted to this problem. The algorithm that we have developed n o
generates the transformation very efficiently. Different nu- a}k)= > hieimi (11
merical techniques applied to computing the map from arbi- m=-n+1
trary closed domains to the unit disk can be found in Ref. ) ) ) ) )
[31]. Our algorithm can be shown to be related to the Jacopfor —n<j=n. The latter is written in shortened notation as

method used in these studies.
a(k)Zf[h(k)], (12)

A. Description of the algorithm whereF denotes the Fourier transform, which will be chosen
We define the rough bounda#f as a single-valued real as the FFT algorithm, thus imposing thatis an integer
function h such thatv =h(u) is the equation of the bound- power of 2. The intermediate mapping is computed
ary. In other words, the boundary is given by the param{rom thea® as
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o®=(i/ma® for j>0, (8u)'=F 'GAh'(uF)ou;]. (18
o¥=(i/2n)al, (13)  Letus introduce the norm
(k) — -
0]=0 for j<O. ||u\|252 Juj]. (19

The latter form is obtained from the identification of Egb)
and the definition o&(®, taking care that one sum is over a Parseval’s theorem relates the above norm in real and Fou-

positive index, while the other extends over the intefiial ~ rier spaces according to
—n,n]. Then, one computes the series

|7h) ]| = V2n]h]. (20
bi“=ia for j>0, N , ,
In a similar fashion, the transformatighdoes not affect the
bE)k)ZO, (14) norm:
—_  — h)||=|h]. 21
b9=b8=—ial=—ia® for j<o. lgchyi=lnl @

. L . . ) Using the two previous results, we can estimate the norm of
This linear transformation is written in shortened notation as( su)’ as

b®=g[a®], (15
Su)'[|?= 2, h'(u¥)2(su.)><max(|h’|)?|(su)|>.
whereg is the above detailed transformation. The formgof I | 2 ( . (o) (D cawl
is dictated by Eq(8a) for a positive index, and from the fact (22
that the inverse Fourier transform bf(see below is real.

The new sampling series is finally obtained from Therefore, if the absolute value of the slope of the objective

profile satisfies

uJ(k+1>=J?7T+F1[b(k)]_ (16) |h'(u)|<1 (23

. . . . . for all u, then the fixed poinf)* is attractive for the trans-
Equations(10)~(16) define one step in the algorithm relating formation7. It should, ho?/vever, be noted that the number of

(k+1) (k) i i i i .
w7 10 ™. We give this shortened notation for this Step y,nqesn should be large enough so that the perturbation

(k+1)_ (k) "
as o =TN(™). i ) ) , éu should be small enough to legitimate the Taylor expan-
The searched functiofl is clearly a fixed point of the sion ofh used in the stability analysis.

transformatiori/ defined above in a discretized version. The |, practice, the convergence is very fast provided the suf-
uniqueness of _the transforr_natu_!ih results from th_at of th_e ficient condition(2J) is fulfilled. Moreover it has to be noted
harmonic field in the domaid with an equipotential condi- 3¢ one step in the algorithm requires a rather limited
tion on the boundary and a constant gradient perpendicular tQu, ,n of computing time of order In(n) (i.e., as for a FFT
the boundary at an infinite distance from it. Therefore, theoperatior). Considering that this computation gives the solu-
only condition to consider is the stability of the fixed point. 5" ¢ 2 harmonic problem in a semi-infinite domain, this
cost appears to be extremely low.
B. Stability When our algorithm is applied to a simple monochromatic
Let us assume that we have an approximate solution o$ine (or cosing profile, h(u) =A sin(u), it turns out that as
the transformatiorf)(z), from which we compute the series S0on as the conditio(23) is violated(i.e., A=1) the scheme
u; . All intermediate quantities computed from the exact so-S unstable, and a loop begins to appear _a_round th? origin
lution are denoted by a superscript Following one com- where the slope exceeds 1. Thus the sufficient condition is

plete iteration of the algorithm, we obtain the following ex- also a necessary condition.

pressions: The limit |h’(u)|<1 can simply be broken if one uses an
under-relaxation scheme. The optimum determination of the
u,—=uj*+5uj, under-relaxation parameter, or the use of other algorithms
can be found in Ref.31] for mapping arbitrary domains on
hj=hJ* +h’(uj?‘)5uj, the unit disk. The transposition of these algorithms to our
problem can be worked out in detail. Other ways to break
a=a*+F h—h*], (17) this limit is to decompose the transformatiéhin two (or
more substeps. Suppose one could map the real axis onto an
b=b*+gla—a*], intermediate profile using a first transformatiin and then
the intermediate profile onto the objective one using a second
(8u)'=F Yb—b*], transformation(),. The combination of the two transforma-

tions O (z) =05(Q4(2)) is then the searched mapping. By
where a Taylor expansion &f has been used to estimate the breaking the problem into two steps, it is possible that each
values ofh—h* and where indices are omitted when unnec-step can be handled by the above presented algorithm, while
essary. The resulting differencéd)’ after one cycle is thus the combination of the two gives a profile having a slope
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FIG. 3. Power spectrum of the functian computed for a sine FIG. 4. Power spectrum of the functiam computed for a sine
profile. The four curves correspond to four amplitudes, profile in the reduced coordinaté A. The four curves correspond
=0.2(0), 0.4(O), 0.6 (<), and 0.8(A). to four amplitudesA=0.2 O), 0.4J, 0.6 (<), and 0.8(A). One

observes a reasonable collapse for the three smallest amplitudes.
larger than unity. The difficulty here is to devise a suited
intermediate step. One could consider, for example, filteringtudy we did not resort to a FFT algorithm to handle any
the initial objective profile so that the filtered profile may value ofn.) For A=0.5 we observe that about 20 modes are
fulfill the slope constraint. We did not investigate this exten-necessary to reach the single precision used in the computa-

sion any further. tion. As the amplitude increases, the number of modes
needed to reach a small enough error becomes larger and
C. Convergence and example application larger.
We present in the following calculations of conformal IV. SELF-AFFINE BOUNDARIES

transformations associated with a simple sine interface. We
will use a norm on the error similar to the one introduced in  In the description of rough surfaces and interfaces, some
Sec. Il B. The distance between the objective profile and recent progress has been achieved by recognizing some scal-
the calculated one is defined as follows: ing invariance properties that have been observed in a num-
ber of real surfaces, and have been shown to result naturally
in a number of growth models. Recent reviels-7] have
covered this field.

Due to the different roles played by the directions normal
r';md parallel to the surface, the scaling invariance—when
applicable—involves different scale factors depending on

Pt fZﬂ[h(u(x))—Q(x)]zdx (24)
2 0 '

It is convenient to make this distance dimensionless, norma
izing it by the amplitude of the profiled* =(d/A), where
the objective profile has the equatidfu) =A sin(u).

It is worth noting that the problem is far from being as 0.75 ,
simple as it might appear on the surface. In real space one
single Fourier mode is sufficient to entirely characterize the 0.50 |
interface. The transformatiof), however, requires many
more modes. Figure 3 shows the power spectrum ofcthe 0.25 ¢

series for different amplitude&. One can see that the con-
tribution of the different modes decreases exponentially fast > 0.00
with the wave numben but that the number of important

modes increases roughly linearly with the amplitude of the =025 |
sine profile. These observations suggested the scaling of the
axis chosen in Fig. 4 for illustrating the above-mentioned -0.50 r
rough trends.
i i in Ei -0.75 : : :
The convergence of the algorithm is shown in Fig. 5, 0.0 2.0 40 6.0

where the profiles obtained after the first few iterations are
shown. In this particular exampke= 0.5 and the number of
modes is 32. FIG. 5. Images of the real axis obtained after the krierates

The importance of allowing for enough Fourier modes isof the algorithm with the objective profilgh(u) =A sin(u)] shown
also illustrated by considering the minimum ertbobtained  as a bold line. In this particular exampte=0.5 and the number of
as a function ofn as shown in Fig. 6(For this particular modes is 32.
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0.0 w ‘ . -2

log,(d)
log, [P(k)]

0 8 16 24 32 0.0 1.0 2.0 3.0
n log, (k)

FIG. 6. Minimum error obtained using the algorithm described |G, 7. Power spectrum of the image of the real axis obtained
in the text for computing the conformal map on a sine profile with fom synthetic transformatior), obtained from Eq.(29). The
amplitudeA=0.5, as a function of the numbarof modes used in  yoyghness exponent usedzs 0.8. The best power-law regression
- on this power spectrum has a slope —1.32, which corresponds

. ] o ) to an estimated roughness exponght0.82, equal within error
orientation, a property called self-affinity. We consider herepars toy.

only two-dimensional media so that the boundary is self-

affir!e if it remains(statistically invariant under the transfor- the expected generality of scaling results, we will essentially
mation focus on self-affine boundaries as practical applications of
the concepts developed in the framework of the harmonic
(25)  field in the vicinity of rough boundaries.
In view of the form of the transformatiof, and of the
previous scaling, Eq(28), we introduce a particular set of
transformation: let us choose

X—AX,
y—\fy

for all values of\. The exponent is called the “Hurst” or
roughness exponent. It is characteristic of the scaling invari-

— —1/2—
ance. From this property, we derive easily that o =Aek d (29
([y(x)—y(x+ 8)]%)=C26%, (26)  whereg, is a random Gaussian variable with zero mean and
unit variance for the real and imaginary parts independently;
whereC is a prefactor. we can write

It is noteworthy that the self-affinity property does not
involve the scaling of any measure. However, studying the QO
scaling of the length of the curve, two regimes are revealed. R({W (x+i0)
For large distances, larger than a scalethe curvilinear
length of the profile is simply proportional to the projected
length along thex axis, hence one can identify a trivial frac- Then for a given set o§,, we can define a maximum am-
tal dimension equal to 1. On the other hand, for distanceglitude such that the mapping is bijective:
smaller than\, the arc length scales in a nontrivial fashion
with the projected length. This allows one to define a fractal -1
dimension equal td;=2—¢. The crossover scakebetween Amax= IM[S e, kT2 e ™)
these two regimes is such that the typical slope of the profile
is 1, i.e., using the notations of E(6),

z e k12 kx|
K

=14+A Im (30)

(31)

This method gives a short way to generate dire€llyrans-
\=Cl1-0 @27) forms, which image the real axis to a self-affine interface
' shape. This approach is useful to study generic properties of

Once a roughness profile has been measured, a very copg!f-affine boundaries.
venient way[32] to check the self-affinity is to compute the  When the amplitudeé is small enoughu~Xx, and thus
power spectral densityPSD) of the profile. In the case of a the seriesw, is equal to the Fourier transform of the profile.
self-affine profile of exponent, the PSD is expected to have The transformation() sends the real axis onto a periodic

the following behavior: function whose power spectrum is of the form HGS8).
When the amplitude increases, the first iteration of the algo-
P(k)ock =172, (29 rithm turns out to be rather approximative. In order to show

that the power spectrum @, is not significantly altered by
It is important to stress that the approach developed in thifurther steps, we show in Fig. 7 the power spectrumpbs
paper is not specific to self-affine boundaries. However, beeompared to the initial zeroth-order approximation. The re-
ing given the practical importance of such boundaries, andults have been obtained from an average over 100 profiles
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ences between the objective and calculated profiles occur in
areas where the local slope is maximum. For roughness am-
plitude greater than the convergence threshold, one can see
loops appearing in these areas. The convergence speed, the
sensitivity to the number of modes allowed in the determi-
nation of (), the evolution of the minimum error, etc. be-
haved for these self-affine profiles in a similar qualitative
way as for the simple sine profile.

0.2

0.1

0.0 |

V. GENERIC PROPERTIES OF HARMONIC POTENTIALS

—— target (64 modes)
........... computed (64 modes)

. — 7 computed (128 modes) In the following, we show that the knowledge of such a
02 ‘ ‘ ; conformal transformation allows one to solve immediately
0.0 2.0 4.0 6.0 harmonic problems. We essentially focus here on the case
u where the field is assumed to be uniform far from the bound-

ary. This is a typical case as soon as the roughness is of small

FIG. 8. An example of the obtained profi#€ from the confor-  amplitude. This can be seen as an asymptotic expansion fo-
mal map, compared to the objective one, chosen to be aself-aﬁir@using here on the small scale details of the interface,
function with a roughness exponefi-0.8. The amplitude of the \yhereas the matching with the far field can be done using a
profile is 95% of the maximum amplitude, which preserves thefie|q whose variation is small on the scale of the roughness

convergence of the algorithm. amplitude. We will now focus on two problems: a perfectly

0crpnducting boundary so that the potential gradient is normal
to the boundary, and a perfectly insulating boundary where
the potential gradient is parallel to the surface. Since we
Therefore, we can directly generate mappiagghat will know .hOW to tgilor mappings that i.mage the real axis on a
transform the real axis into a periodic boundary that is selfJeneric self-afﬂne boundary, this gives us an opportunity to
onsider the scaling features of harmonic fields in the vicin-

affine with any prescribed roughness exponent for dlstance%/ of self-affine boundaries.

smaller than the period. Such a construction may appear a H ic field tered ¢ v i
artificial in the sense that the rough boundary is not impose armonic Melds are encountered very irequently in na-
ure. Linear transport involving scalar fields, where the

but, on the contrary, it results from the choice of the map- ) ) . . .
y b lux J is proportional to the field gradient plus a conservation

ping. It is, however, useful, as will be shown later, becausej i the ab ¢ d. und d aiti
allows one to study generic properties of harmonic fields2 !N the absence of sources and, under steady conditions

close to self-affine boundaries. (ﬂv(J)=0, ‘”.‘P"e_s the ha_rmonic n_atL,Jre of the fiedd, V2 :
The alternative way consists in using the mapping con-— 0. Heat diffusion obeying Fourier’s law gives a harmonic

struction algorithm. As mentioned above, we have analyze&e_”;lpe_r alif”? field U”?'e,fl steady clond!tir(l)ns. Mass diffusion
the convergence of the algorithm applied to the special cas@ith Fick’s law is a similar example with the concentration
of a sine profile. We now consider the case of a self-affin ield. Electric conduction with Ohm’s law, viscous flow in

boundary in a similar fashion. This interface has been calcuSonfinéd two-dimensional Hele-Shaw cells, vorticity in

lated in the real space with 64 modes, and we have used zs%tokes flow, etc. constitutes a partial list of possible applica-

modes in the conformal transformation. The standard deviad9nS:

tion of the height distribution is called. The chosernl ex-

ponent chosen for this exampleds- 0.8. From Eq(31), we A. Homogeneous far field

note that the maximum amplitude decreases as the number of |, ihis part, for the sake of concreteness, we use the case
modesn increases. This is natural since as the lower cutofiyt {hermal conduction. We are interested in the temperature
in the scaling regime decreases, the self-affine function Wl|he|d T in the region limited by the rough interfaceg. Let

tend toward a continuous but nondifferentiable curve when,q firt consider the case of a perfectly conducting interface,
0<¢<1. The distribution of local slopes is indeed expectedg thatT=T, for each point of the boundary. We impose in

to get wider and wider as the number of modes increasegye fay field a homogeneous unit flux of heat. The problem to
Quantitatively, A,nt L It is to be noted that as in- solve is

creases, the standard deviation of the heiglttoes not in-

with 2048 modes each. We see that the synthetic generati
of the transform does not modify the power spectrunwof
coefficients.

crease. It is to be noted that these conclusions are drawn V@Tzo in &
under the hypothesis that the longest wavelength remains
fixed; here it is set to 2. Alternatively, if the smaller cutoff T=T, on d€ (32

and the amplitude of the corresponding mode were kept con-

stant while increasing the number of modes, then the maxi- R

mum amplitude would remain constant. VT(w)—§, if
As in the previous examplgsine profilg, we can observe

in Fig. 8 an example of the conformal map obtained for The knowledge of) allows one to definé, the image

o/ omax=0.95, where the maximum standard deviation thaffield of T in the smooth domaiD: 0 (z) =Te(}(z)=T(w).

could be handled by the algorithm without diverging is As V20 =VZT|Q’(2)|?> andQ’(z)#0 in D, the resolution

omax>0.1. We can see in this figure that the major differ- of Eq. (32) in £ is thus equivalent to

v—— 0.
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FIG. 9. Example of isotherm curves close to a rough self-affine  FIG. 10. Profileh(u) of the rough boundarybold line) and
boundary on which the temperature is constant, whereas the terfemperature gradien,T(u) (dotted ling on the surface of the
perature gradient is homogeneous and vertical far from the bouncsame boundary. We note strong correlations between the two
ary. curves.

deepesthighesj areas. This field depends naturally both on
the local topography and on its remote environment. The
connection between the field and the local topography can be

V20(z)=0 in D,

©(2)=T, on 4D, (33 analyzed through cross correlations, as will be done below.
. o The perfectly insulating boundary is the other archetypi-
VO(z)—e, if y——oo. cal problem whose expression is
The frontiergD being the real axis, we have immediately V@Tzo in &,

the solution inD:0®(z) =Ty+Yy and then the solution if is
d,T=0 on J¢, (37)
T(W)=To+Im[Q Y(w)]. (34)
T(w)—u if v——o.
Figure 9 shows a set of isotherm curves close to a self-
affine isotherm boundary. These lines become smoother anthe solution to this problem can simply be obtained from the
smoother when the distance to the electrode increases. Tiwevious solution using duality properties of the harmonic
morphology of these isotherm lines has some interesting fedield. The real part of the previous solution gives the answer
tures. IfA denotes the distance from the boundary, one cato the problem:
observe from the form of the mapping that modes with a _
wavelength smaller thad will be damped whereas longer T(w)=Re Q™ (w)]. (38)
wavelength modes will onl_y be §Iightly decreasgd. Thererhe temperature gradient is then simply
fore, the isotherm curves will be similar to the profile up to a
low pass filtering. In the case of a self-affine boundary, the VoTW)=[1+w'(2)]" (39
isotherms will preserve the self-affine character with the
same exponent, but their lower cutoff will increase as the
distance to the actual boundary, up to the distance of order of
the largest wavelength. We have seen previously that once we know the confor-
Let us now study the temperature gradient. Quite genermal mapping capable of transplanting the half complex plane
ally, we can write the gradient in the complex plane as D onto the rough domaik, we have immediately the solu-
tion of the electrical potential near the rough electréte If
Vo T(W)=(dy+id,)T(W)=205T. (350  the roughness amplitude remains below the convergence
threshold, we will be able to solve this problem for any kind
From the expression of the temperature field, we have of boundary. In practice, very often, one does not worry
- about the details of the rough interface. As we have seen
VoTW =i Y (W) =i[l+w'(2)]" % (36) most perturbations die away from the boundary exponen-
tially fast. Therefore, knowing the longest wavelength of the
From the expression of the functias we see that at a large boundary gives the scale away from the boundary where the
distance from the rough boundary, the tesrhvanishes ex- field becomes homogeneous.
ponentially. Therefore, one recovers the imposed condition This means, practically, that if one is interested only in
for the temperature at infinity, i.e{,T—i. the far field, one could replace the rough interface by a
In Figure 10 we have presented both the profile of a rouglstraight one so that the far field is unperturbed. The question
electrode and the modulus of the temperature gradient. Onge want to address in this section is the following: where
may see quite easily that the field is very lafgeall) in the  should the “equivalent” straight interface be located so as to

B. “Equivalent” smooth boundary condition
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H=Im(w). (41

Let us first analyze the problem for a small amplitude sine
boundary of amplitudé and wavelength.. The offsetH in
the location of the equivalent straight boundary is to be nor-
malized byA to obtain a dimensionless quantity. The latter
should be a function of the dimensionless rakib.. Taylor
expansion of this function provides the perturbation expan-
sion

A? A3
H=agA+a; — +a, — + O(AY\3). (42)
FIG. 11. Schematic illustration of the finite “‘electrical” thick- A A

ness of a rough equipotential. The rough equipote@iéghown as impl I implify the | .
a bold curve is placed in between two remote planar eIectrodes.A simple argument allows one to simplify the latter equation.

The presence of the rough equipotential reduces the resistance g/PPOSe one would analyze the problem for the profile of
the medium in a similar way as an planar equipotential with a finite@Mplitude —A. The latter is obtained from the former by a
thickness. Extrapolating the far electrical field from the remote eleciranslation along thex axis by an amount/2. ThusH
trodes gives “equivalent” smooth boundaries shown as dottedShould be unchanged. This imposes that odd terms in the
lines. Their relative distance defines the “electrical” thicknegs ~ expansion should vanish, hence,

A2
match the asymptotic far field? A zeroth-order guess is to H=a, T+O(A4/)\3)' (43
place it at the geometrical average of the height distribution.

This will be shown to be not to an exact answer; in theThus the dominant correction is of ord@?/\. It can be

foIIo_v_vmg, we callH the _dlstance between the equwalentinterpreteol as the product of the amplitudleand a typical
position and the geometrical average.

In order to illustrate the problem, let us imagine the fol- slope @/2). This result holds in the limit of a small ampli-

lowing experiment. Let us consider an electrolytic bath tude and long wavelength. If the wavelength goes to zero,
9 exp ' y ‘clearly the offset should converge to the amplitude, but the

Platter limit cannot be obtained from the above Taylor expan-
sion in the small parametéy/\.

For a sine profile of small amplitude it is possible to carry
out the computation of the coefficieat. We briefly sketch
J]ere the solution. The potential is to be computed to second
order in A. We revert, as above, to a wavelengthk 2.

e solution reads

posite electrode#& andB at a distancd. from each other.
The electrical resistand@ of the set-up is measured. Then,
as illustrated in Fig. 11 we place in the middle of the bath
and parallel to the electrodes a rough pl&hef negligible
thickness that is a good conductor, so that it can be consi
ered as an equipotential. We measure again the electric
resistance of the setup, which is now reducedrie AR.
What is the value oAR? To answer this question, we divide () =T +Im[w+ (i/2)A2— Ae W —(i/2)A%e2W]
the system in twoA-C andB-C. Each of these two prob-

lems corresponds to the situation described in the introduc- +O(A3). (44
tion of this section. Extrapolating the field from electrode

A, we find an offsetH,. Similarly, from B we obtain a The offset can be read from this equation ks (1/2)A%
different offsetH,, so that, ignoring the details of the per- Reincorporating the. dependence, we arrive a{=m or

turbed field in the vicinity ofC, the rough electrode will A2
appear to be equivalent to a plane electrode of thickikkss H=—7 — + O(A%\3). (45)
=H;+H,. This “electrical thickness” has nothing to do Y

with the real thickness of the plane considered here to be ] ]
zero. If the rough electrode has the shape of a sine functior,Nis last result is of course only valid for smal values,

of amplitudeA and wavelengti, we will argue below that H Peing bounded byA. In Figs. 12 and 13, we can see
H,<A%\. Finally it is a simple matter to relate the resis- COmparisons between this perturbative calculation and the

tance drop to this effective thickness throughR/R  'esultdirectly obtained by conformal transformation. We ob-
—H, /L. serve excellent agreement for small amplitudasye wave-
We now revert to the notation of the previous paragraph'engths) and then the perturbative calculation overestimates
and deal with the temperature instead of the voltage. FOH for larger values of the amplitudesmaller wavelength In
distances away from the rough boundary much greater thaf€W Of the upper bound on the offset and the apove pertur-
21 (our longest wavelengihall exponential terms die out, Pation expansion, we propose the following form:
and hence the far field can be written as 2
2A TA
T(W)=To+ IM(W— ), (40 H~— - arctan 5=, (46)
which fits the data accurately as can be seen on Figs. 12 and
where wg is the constant term in the functian The offset 13, and which reproduces both limiting behaviars:0 and
position of the equivalent isotherm is thus AN—0oo,
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FIG. 12. OffsetH of the equivalent boundary from the geo-
metrical average of a sine profile of variable amplitédand fixed
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FIG. 14. OffsetH of the equivalent boundary from the geo-
metrical average of a self-affine profile of variable amplitédea

wavelengthh =27 The dotted line is the result of the perturbation roughness exponerft=0.8 and 16 modes. The dotted line is the
analysis, Eq(43) and the symbols are the results obtained from aresult of the perturbation analyg&q. (49)] and the symbols are the

conformal mapping. The dashed curve is the proposed fi{4&).

particular for a self-affine profile, there is no characteristic
length scale apart from the cutoffs. The product of the am-
plitude times the slope is a scale-dependent factor. Is it pos-
sible to reach quantitative conclusions for such profiles?

results obtained from a conformal mapping.

. up to third-order terms in the amplitude. We now need an
r1asymmetric version of Parseval’'s theorem. Let us compute
the integral for two arbitrary arrays defined in real space for
u and Fourier space far:

1 Lo 1
In order to estimatéd for a rough boundary, we use the >, ujjf(‘l)[v]j=2— > > ujvke"k1=2— > Aulwk.
formalism developed for introducing the algorithm. We ex- | ok Nk

pand the functiono as well as all other intermediate quanti-
ties in the series of the profile amplitude. Using the linearity.
of the transformations, G, and /=Y, we arrive at

H=Im[ wo]=

1 -
=on 2 N(U)F oG FTh)]

0.00

Rdap] 1 *
T EJ: h;

n

-0.01

-0.02

-0.03
0.0

1.0

20
s

3.0

(48)
The offset can now be expressed as
i -
H= 7 2 FLNIGFTh(0 1k
S Rk Tk
B W k>0 Kk k<0 Kk
(47) 1 B

=— h(k)|?k, 49

2n? & [h(k)| (49

wherehy is the Fourier transform dfi; .

Figure 14 gives the evolution ¢ with the amplitude of
self-affine profiles of roughness exponef# 0.8, and 16
modes. Again, we observe that the express®) is accu-
rate for small amplitude, but shows deviations for larger am-
plitudes.

It is interesting to consider the scaling &f observed
from the generic transformations whepg are postulated to
be w,=Aek Y27¢ The expectation value of the offset
(H) reads, to dominant order in the amplitude,

(H)=A*2 j7% (50

FIG. 13. OffsetH of the equivalent boundary from the geo- Where the extra factor of 2 comes from the expectation value

metrical average of a sine profile of amplitulle= 0.05 and variable

of {|€|?)=2, since real and imaginary parts ef are inde-

wavelength\. The dotted line is the result of the perturbation analy- pendent Gaussian variables of zero mean and unit variance.
sis[Eq. (43)] and the symbols are the results obtained from a conDepending on the value of the roughness exporietwo

formal mapping. The dashed curve is the proposal fit, (E6).

cases are to be distinguished.
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(1) For a “persistent profile—i.e., {>0.5—the sum in From the latter norm, the offset can be written as
Eqg. (50) is dominated by the smallegt i.e., the longest )
wavelength, and thus the scaling{®1) can be expressed as (H)< () N i (59

A% [ 27\ "% which is the counterpart of E¢54) for the antipersistent
<H>:Z(2§) Z (rx) ) (51 case.
ma As a conclusion, the scaling of the offddtis controlled

whereZ(s) =37k % is the Riemann zeta function. We have by the shortestionges} scale cutoff of the self-affine regime
dropped momentarily the convention that the largest wavefor antipersistentpersistent boundaries.
length is 2; hence\ i, andA ., are respectively the small-
est and largest cutoff lengths in the profile. In this cakse, C. Correlation between local field and topography
the amplitude, is such that the largest wavelength mode
amounts toAe;(27/\ gy Y2 €. Let us introduce the stan-
dard deviation of the profile given by

Above, we extracted the expression of the temperature
gradient as a function of the transformati@nWe now use it
to investigate the correlations between the topography and
1 1 the temperature gradient. We study these correlations in the
o?=—— | h(x)2dx== >, h?, (52)  limit of small amplitude.
A max 2n 7 The first-order perturbation in the temperature gradient

which leads(using Parseval's theorento can be extracted from E¢36) as

1 _ A2 —27-1 |IVT]?=1—0'(X)— o' (X)+0(€?), (60)
(=g S IR=220+1) o | 27
4n® K 2 where the amplitude of the profile is assumed to be of order
(53 e. We introduce the logarithm of the temperature gradient

with £ similar to the scaling Eq(26). denoted byp, which can be expressed as

Equation(50) can then be expressed as e=In(|VT|?)=—2 Rd o' (X)]+O(). (61)

() (dP)
(=7 2207 D) "oy

(54) From now on we will omit theD(€?) term, keeping in mind
that we focus here only on the dominant term.

The latter equation simply means that the rough profile be-ftln ordertto comdptjhte ;\h? Ect)rrelaftlon tt)ﬁtween the %raq['eng

haves as a simple monochromatic profile. This conclusion 0! lemperature and the nheight, we Torm the cross product an

however, not always valid, as is shown in the following case.élver"‘“ge oveu (or x for convenience, since their difference

(2) For an “antipersisterit profile—i.e., {<0.5—the 'S of ordere). The expectation value of the product is

sum in Eq.(50) is dominated by the largest i.e., the short-
est wavelength, in contrast to the previous persistent case, (o(u)h(u))=—2(Rd o’ (x)]IM[w(x)])= -2> K| oy 2.
K

S\ 20-1
<H>xA2x;g~(;‘—”:) : (55) 2

It is amazing that the same expression appeared when com-
Therefore, we can express the scalinghbfin an intrinsic ~ Puting the offset of the equivalent straight boundary.

fashion as We define now the correlation coefficiestwhich can be
identified as the slope of a linear regression betweand¢.
(%) [ Nin| 271 Its value is
(Hy= 1 (A m) . (56
mac T ~ {e(wh(u)) 63
In contrast to the persistent case, it appears that the offset @= (h%(u)) (63)
H is dependent on the lower cutoff scale of the profile. In
fact if A, is kept fixed, the standard deviatiengrows as  since(h)={¢)=0 to first order ine. Hence we have
)\zm{ax. Therefore, one sees that the upper scale cutoff disap-
pears, so thaH only depends on ,,. In order to see this _ 3 k| w2
_ a=-22K (64)
more clearly, we introduce another measure of the roughness Sl oy
that is sensitive to the small scale. Lebe the norm of the
derivative ofh: This expression holds for any rough boundary of small am-

plitude.

In the particular case of a self-affine boundary, we assume
as above that the transformatiancan be taken as the one
generated artificially from its Fourier decomposition. The

£~ (U | 1 (7du= (103 (W), (57)
J

which amounts to latter expression can thus be written as
Nmin| 2472 Sk~
20— min k
<§2>°€A2)\m§axl()\ma) . (58) a’Z—ZW. (65)
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FIG. 15. Average of the logarithm of the temperature gradient
{@)={log(|VT]?), for fixed heighth, as a function oh. The data
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FIG. 16. Evolution of the limitw* as a function of the roughness
exponent{. As { approaches 1/2, the coefficient diverges &s (

points(® symbols are averages over 1000 profiles of small ampli- —1/2)"*. The dotted line shows the predicted behavior and the
tude, with a roughness exponept 0.8, and 64 Fourier modes. The symbols are the results computed from conformal mappings.
theoretical prediction is shown as a dotted line of slafe

From the latter expression, we have to distinguish betwee
persistent {>1/2) and anti-persistentZ1/2) profiles de-
pending on whether the series is convergent or diverge

when the number of modes increases.

In the case of gersistentself-affine boundary, as the
number of modes increases to infinity, the valueaofon-
verges toward an asymptotic limit* given by a ratio of

Riemann zeta functions:

Z(2¢)
Z(1+20)

a*=-2

This latter result sheds some light on the physical mean-
919 of the previously mentioned divergence. In our presenta-
tion, we have chosen to fix the largest wavelengét to
rﬂmaxzbr) and amplitude of this mode. Increasing the num-
ber of modes implies that the shortest wavelenggf, de-
creases. For roughness exponents in the rargé<01, this
implies an algebraic increase @f with n, while o2 is
bounded. This divergence ef is of no importance for the
correlationa only if the profile is persistent. Otherwise, Eq.
(68) holds. The perturbation method used, however, assumes
that botho® and s? should be small. The above analysis
simply identifies which cutoff will dictate its behavior to the

The divergence of the zeta function as its argument apgorrelatlon. The antipersistent case is more suited to the case

proaches 1 leads to a divergencendfas ((—1/2)" L. In the
more general case whebkg,,, is not set to zr, the above

equation should be corrected to

a

T fZ(1+20)

As a practical illustration of the latter property we have
studied the correlations betwebrand ¢ by averaging¢) at

o, 220 (277)

Nmax/

where i, is fixed together with its amplitude, whilg 4«
varies. In this case, the coefficient increases as..2* as
can be read from Eq(68) using the scalingr,<\2., (s

max
being independent of,,.)

D. Green function for harmonic problems on a rough
interface

Up to now, we have only considered harmonic problems

fixed h for 1000 profiles having the same characteristicswith a uniform field at infinity. This kind of boundary con-
amplitudeA=0.25A,,,, roughness exponeyt=0.8, and 64 dition is of particular interest for problems where the scale of

Fourier modes. Figure 15 shows the evolutiongofersus
h. From Eq. (66) we estimatea* =—2Z(1.6)/2(2.6)~
—3.50. As shown on Fig. 15, this value af provides an

variation of the field in the bulk of the solid is large com-
pared to the scale of the roughness so that an asymptotic
development can be performed where the matching is to be

accurate fit to the data. The evolution of this coefficient as alone on the far field as one focuses on the rough boundary.

function of ¢ is shown in Fig. 16.

However, from the conformal mapping, one can address

The antipersistent self-affine profile behaves differentlymore complex types of boundary conditions.
from the previous case. The correlation between the surface In order to illustrate this, we develop here a particular
temperature gradient and the height vanishes. Mathematglass of solutions that can be used to solve any problem. We
cally, this result can be traced to the difference in behavior ofvill consider Green functions that give the field in the me-
the two series in Eq(65). However, as in the previous sec- dium for localized fluxf injected in the medium from the
tion concerning the location of the equivalent smooth intersurface.
face, one can extract the asymptotic behaviotvof

a

~ (0 A w) (h(w?

_{e(wh(w) (h"(wW? (2—24“
1-2{

)\min

27

g

52
&)

Let us consider the following problem: a localized flux
f=1 is injected at poin€1,0), on the border of the unit circle
C. The remaining boundary is perfectly insulating. The same
flux is withdrawn at the origin wheré= —1. The harmonic
field that fulfills such boundary conditions is
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(69 of the self-affine character of the boundary.

We considered the question of correlations between the
This potential® is the Green function for the domaif gradient of the harmonic field on the boundary and the height
Considering the transformation— —i In(2) maps the unit of the profile at the same point. The correlation has been

circle to the semiplan®. In the transformation, the potential explicitly_ computed anq shown fo converge to a precise limit
®d becomes ' for persistent boundaries. Antipersistent profiles lead to a

correlation coefficient that is dependent on the self-affinity
®(z)=—Rdiz+2In(1-€?)], 700  range.

@ 4 ( )] (79 Finally we have shown that the same mapping can be
which is the Green function for a unit flux localized at every used to address different boundary conditions, including the
site (2kr,0) for all integersk. At infinity, the potential ap- €Xtreme case of a pointlike source on the boundary that is
proachesb(z)—y. From this Green function it is simple to treated exactly.

derive the one obtained for a translated array of sources. For EXte€nsions of the above technique are numerous. We es-
sources atXy+2k,0), we have sentially focused here on static problems involving harmonic

fields. However, the same mapping may also be used in con-
D (z,%0)= —Rgiz+2 log(1— e *o~2)]. (71) nection vyith evol_utio_n problems su_ch as di_ffusion or wave
propagation(localization. Thermal diffusion in the vicinity
From this latter expression, the Green function for a lo-of a rough boundary has recently been shown to display
calized and periodic source on the rough profile is obtaine@nomalous scaling behavior at early stages, which could be

(z—1)2 aries, in terms of sensitivity to the lower or upper scale cutoff
d(2)=—-R In( )

by combining® and (). The Green function thus reads addressed by such methods. The ac impedence of rough elec-
L ) trodes is another potential field of extension that has been
W(w,wg) =D Q™ (W), (Wp)), (72)  studied in recent years.

The mapping we discuss may also be one constitutive part
of a different mapping dealing with different geometries. An
example of such extensions is the stress intensity faceor
the singular behavior of the stress figlt a crack tip. In the
framework of antiplane elasticity one can compute the local

VI. CONCLUSION stress intensity factor at the crack tip and relate it to the
We have introduced here a conformal mapping techniqu%\r/'gisetligastg:?mar behavior. This problem is currently being

that allows one to address harmonic problems in semi- | . o4 d .
infinite domains limited by a rough interface. This mapping N a companion .pape[ ] we extend our mapping to
computations of biharmonic fields with applications to

is accompanied by an efficient_numerical tec_hniqu_e that alStokes flow close to rough boundaries and elastic stress
lows us to compute the mapping by a few iterations of agields close to a rough sur?ace

one-dimensional Fourier transform. Moreover, this techniqu
provides a natural basis for discussing analytically some
practical applications.

We then defined and studied the notion of an equivalent It is a pleasure to acknowledge useful discussions with A.
smooth boundary, whose position has been obtained exacty. Boccara and F. PlourabauB.V. thanks the DRET for
in the limit of a small amplitude. This question underlined support. Partial support was also provided by the CNRS GdR
the differences between persistent and antipersistent bountiPhysique des Milieux H&roganes Complexes.”

which gives the potential at point for a series of sources
periodically spaced with the same period as the prafije
+2k7r.
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