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Conformal mapping on rough boundaries. I. Applications to harmonic problems

Damien Vandembroucq and Ste´phane Roux
Laboratoire de Physique et Me´canique des Milieux He´térogènes, Ecole Supe´rieure de Physique et de Chimie Industrielles,

10 rue Vauquelin, 75231 Paris Cedex 05, France
~Received 29 January 1996; revised manuscript received 16 December 1996!

The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries
where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite
distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in
two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen
boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to
‘‘equivalent’’ smooth interfaces. We study the correlations between the topography and the field at the surface.
Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the
derivation of Green function for localized flux on the surface of a rough boundary.@S1063-651X~97!03205-4#

PACS number~s!: 02.70.2c, 66.10.Cb, 44.30.1v, 61.43.Hv
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I. INTRODUCTION

Defining and computing effective properties of heterog
neous media is a subject that has been studied for a
time, and for which a number of powerful techniques ha
been developed. In most cases, however, the heterogen
are considered to lie in the bulk of the material. Another ty
of inhomogeneity is due to the random geometry of the s
face on which boundary conditions are applied. This stu
focuses on this second type. We will thus consider homo
neous media that are limited by a rough surface or interfa
Our purpose here is to introduce a very efficient way
solving harmonic problems in two-dimensional systems
any geometry of the boundary.

The occurrence of rough interfaces in nature is more
general rule than the exception. Apart from very spec
cases such as mica where a careful cleavage can pro
planar surfaces at the atomic scale, surfaces are rough.
glass with a very homogeneous composition, where the
face is obtained by a slow cooling of the material, so t
surface tension can act effectively to smoothen all irregul
ties, displays roughness in the range 5–50 nm over a win
of a few micrometers width@1#. Similarly, the so-called
‘‘mirror’’ fracture surface that is optically smooth exhibit
specific topographic patterns when examined with an ato
force microscope@2#. The key question is thus how to iden
tify the relevant range of scales at which roughness appe
From common observations, this question may not hav
simple clear cut answer. Indeed, in a variety of cases,
amplitude of the roughness appears to be strongly depen
on the size of the examined surface. A particular class
such scale dependent roughness, namely, self-affine ro
ness@3,4#, has recently motivated a lot of activity~see Refs.
@5–7# for recent reviews! because of both its relevance
many different instances, and its theoretical justificati
which has been obtained in statistical physics for a w
class of models, such as growth models@8#, molecular beam
epitaxy @9#, fracture surfaces@10#, and immiscible fluid in-
terfaces@11#. Although the present study is not specific
self-affine surfaces, we shall consider this particular clas
order to apply our method. The interest in this choice may
551063-651X/97/55~5!/6171~15!/$10.00
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explained by the following:~i! the description of the rough
ness is realistic for a number of applications,~ii ! the conse-
quences can be expressed in quite general terms as a fun
of a few parameters directly accessible experimentally,
finally ~iii ! the most commonly studied roughness models
‘‘monochromatic’’ surfaces with a single asperity pattern r
peated periodically, and hence the transposition to m
complex geometries may be wrong~examples of such case
will be discussed below!.

As previously mentioned, if most surfaces are rough, t
roughness may be of small amplitude macroscopically,
thus one may feel that its role can be neglected in most ca
Fortunately, this is generally true. Taking into account p
cisely the surface roughness may be required in two dist
classes of problems.

The first class~I! covers applications where the roughne
cannot be neglected at the scale at which the bulk field v
ies. For obvious reasons, there is no way to avoid an accu
description of the boundary. We may mention the followi
potential applications:

~1! In confined geometries, such as those encounte
naturally in surface force study, the roughness of the surf
may affect the interpretation and thus the precision of
measurements since the distance between two facing
faces is generally estimated from indirect measurement
transport in the gap between the surfaces@12#.

~2! Fields that are rapidly varying in space will be sen
tive to fine details of the boundary geometry. The most o
vious example in this field is the reflection and scattering
a wave by a rough boundary@13#. Of particular importance
are the cases of surface waves, evanescent waves, Ray
waves in elasticity, etc.

~3! In a similar spirit, diffusion processes may displa
anomalous behaviors at short times where the diffus
length is smaller than or comparable to the roughness@14#.

The second class of problems~II ! where roughness canno
be neglected is when one has to focus on the boundary
ther because only this part matters for extraneous reason
because the system is sensitive to high fields that can
induced by the roughness itself. Some examples of these
cases are as follows:~i! Surface phenomena such as elect
6171 © 1997 The American Physical Society
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6172 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
filtration require a proper solution of, say, a Stokes flo
field, in the immediate vicinity~typically Debye length scale!
of a rough boundary where an electric boundary layer
present and can be entrained by the fluid to give rise to
electric current in response to a fluid flow in a porous m
dium @15#. ~ii ! The brittle fracture of glass is generally due
surface defects that induce locally high stresses, which
duce significantly the breaking limit of this material. In th
absence of specific surface degradation the most impo
source of surface defects is the topography itself@16#. ~iii !
Some growth models have a local growth rate that depe
on a harmonic field locally. The development of unsta
modes that will finally induce a macroscopic roughening
quires the proper analysis of the field at the surface@4,8#.

The relative independence of the bulk field on the sm
scale roughness of the boundary for a slowly varying fi
~class II problems! can be used to explore the local fie
close to the boundary using an asymptotic analysis wit
double scale technique. The large scale problem consis
solving the problem at hand by replacing the rough bound
by a smooth equivalent one. The small scale problem d
with the details of the rough boundary and matches at ‘
finity’’ with a homogeneous field. This local problem will b
considered in full detail in the following.

These examples are obviously not exhaustive. Inhomo
neous boundary conditions may arise, for instance, in con
problems where the roughness cannot be neglected@17,18#.
One may also consider application outside the realm
physical applications, such as the use of harmonic probl
and particularly conformal maps as a simple means of me
ing a domain limited by a rough boundary.

In the present paper we essentially focus on harmo
problems. The latter arise in a variety of different domains
physics, such as electrostatics, thermal or concentration
fusion, flow in porous media, and antiplane elasticity,
mention a few. This field has been intensively studied in
last decade and special attention has focused on the ‘‘
stant phase angle’’ behavior encountered for the meas
impedance of rough electrodes. Taking advantage of the
mal equivalence between electrostatics and stationary d
sion processes, several authors have developed random
algorithms@19–22# eventually improved by coarse-grainin
techniques@23# that allowed for a better comprehension
this complex phenomenon and its dependence on the s
tical properties of the surface.

The random-walk–based computation provides a gen
way of addressing harmonic problems. There are very
limitations to the method in terms of space dimensionality
constraints on the roughness, in contrast to most other m
ods. This implies that this method is extremely well suited
extremely rough, or fractal boundaries. It is extremely e
to get a rough estimate of global quantities such as elect
impedance. The drawback of this method is, however,
precision. Based on random walks, the convergence of
results will be extremely slow, typically involving factors o
order 1/AN whereN is the number of walkers.

The most common numerical methods to study harmo
fields are finite-element or finite-difference schemes. The
ter are, however, rather inefficient in our case since one
to solve a two-dimensional problem. A more clever way is
use a boundary integral formulation, leading to boundary
s
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ement numerical implementation. This technique is e
tremely well suited to our problem, but rather delicate to u
because of the use of singular influence functions betw
elements.

The method we introduce here shares a number of ad
tages with the boundary element algorithm in the sense
only surface degrees of freedom are taken into accoun
thus has a fast convergence, and does not require a l
memory. However, in contrast with the previous method,
singular elements are introduced, but rather simple eva
cent wave modes. The practical implementation of the al
rithm solely involves recursive calls to fast Fourier transfo
methods, with no special tricks. The convergence rate is
ponential down to machine precision, thus allowing for ar
trary accuracy in short computation times. Moreover,
first steps of the algorithms can be performed analytica
providing a tool to access analytical results in a perturbat
approach. Let us note also that this technique can be
tended to all sorts of boundary conditions, source and s
distributions, etc. once the mapping has been obtained. It
also be applied to singular problems, such as, e.g., the d
mination of the stress intensity factor in a rough mode
crack in antiplane elasticity. It can also be extended to bih
monic problems as discussed in a companion paper@24#.

Finally, let us stress that, besides physical problems,
algorithm may be interesting for numerical purposes. If o
has to deal with a rough boundary, it might be convenien
use the conformal map simply to generate a regular mes
on which a finite-difference or finite-element method can
applied. The computation time needed to get the mappin
a simple small overhead computation time.

Beyond the harmonic problems, another use of conform
mappings is the resolution of biharmonic problems nea
rough interface; both stress field in elasticity and veloc
field in low Reynolds number fluid mechanics@25–29# can
be derived from potentials that obey such bi-Laplacian eq
tions. We refer the reader to the companion paper@24#,
which is completely devoted to this specific problem.

This paper is devoted to the study of harmonic proble
in two-dimensional~2D! semi-infinite media limited by a
rough boundary. To extend the definition of the profile of t
boundary to infinity, we use periodic boundary conditio
along the boundary. Although very specific, this type of g
ometry will be very convenient as soon as no other bound
lies close to the first one. The distance threshold to cons
in such a case is typically of the order of magnitude of t
larger spatial wavelength of the profile, i.e., the spatial per
in the geometry we have described. We use a confor
mapping technique. It consists of constructing a map fr
the domain of interest~in the complex plane! onto a regular
semiplane. The conformity of the map allows one to prese
harmonicity through the map transform.

In a first part of this paper, we define the form of th
conformal mapping suited to our geometry. Then, we
dress the problem of constructing the mapping associa
with any prescribed interface. We show that this problem c
be solved with an iterative algorithm using fast Fourier tra
forms ~FFT!. This algorithm allows one to get the conform
map in a few iterations of FFT, whose computation tim
scales asN ln(N), whereN is the number of Fourier mode
used to describe the interface. Note the remarkable efficie
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55 6173CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
of such a technique, considering that the map gives the
lution of a Laplacian field in the entire two-dimension
problem. This problem is very close to the so-called ‘‘Th
odorsen problem’’@30# in a circular geometry. We also sho
that one can generate maps that naturally give rise to s
affine boundaries, a powerful technique to explore gen
properties of such problems. Specific applications of t
technique to a self-affine profile are studied, which includ
~i! the question of defining an equivalent smooth~planar!
interface, and finding its height compared to the geometr
average height of the interface, and~ii ! the correlation be-
tween the height and the field, which is computed exactly
the limit of a small roughness amplitude. These two e
amples demonstrate the unexpected difference in beha
for persistent and antipersistent profiles. Finally, we give
expression of the Green function for localized flux on
rough interface.

II. SUITED CONFORMAL MAPPING

A. Notations

In order to study harmonic fields in two dimensions, ve
powerful techniques have been developed based on com
analysis@30#. Among these, we will use in the following
conformal maps, which allow one to relate the geometry
wish to study~i.e., a semi-infinite domain limited by a roug
interface!, to a regular one as schematically illustrated in F
1.

As usual, we will identify a point in the plane (x,y) with
the complex numberz5x1 iy . We notez̄5x2 iy the com-
plex conjugate ofz. The two variablesz andz̄ can be treated
as independent variables instead ofx andy. A mapping from
the complex plane onto itself is simply defined as a comp
function V of z and z̄, which transforms one point of th
complexz plane into another pointV(z,z̄). For the mapping
to be of physical interest it has to be bijective in a domain
interest, and thus inversible. The mapping isconformalif the
function isholomorphic; i.e., it depends only onz and not on
z̄. It can be shown that in this case, local angles are p
served in the transformation—apart from singular points
and hence the term ‘‘conformal.’’ Moreover, the real pa
and the imaginary part of any such holomorphic function
both harmonic, i.e.,¹2ReV5¹2ImV50. The latter property
results from the expression of the Laplacian operator
terms of the variablesz and z̄:

¹2[]xx
2 1]yy

2 54]z z̄
2 . ~1!

FIG. 1. A schematic illustration of the mappingV, which maps
the semi-infinite planeD onto the domain limited by a rough inter
faceE.
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Two obvious choices are well suited for our geometry:~i!
a semi-infinite planeD, Im(z)<0 and~ii ! the unit circleC,
uzu<1. These two domains can be related by the transfor
tion z→ ln(z), and thus they are basically equivalent. Sin
the boundary we consider is periodic in thex direction, the
mapping to the unit circle is well suited. However, in th
following, we will rather use the mapping to the half plan
since it corresponds directly to the ‘‘reference’’ proble
where the roughness vanishes.

B. Specific transformations

The domain of interest, denoted byE, is limited by a
rough interface]E, which is a periodic function of Re(z) of
periodX. The conformal mapV is a function ofz, which
associates one point of the reference domain,D or C, to
another point inE. From now on in order to distinguish th
initial and the image domain, we will denote a point in th
image plane asw5u1 iv, and keep the notationz5x1 iy
for the initial plane unless otherwise mentioned. Befo
specifying the particular form of the boundary, it is possib
to guess an adequate form for these transformations.

Let us first consider the mapping from the half planeD to
E. As Im(z) tends to2`, the mapping should approach th
identityV(z)→z, since the roughness of the boundary is n
expected to play any significant role at a large distance~com-
pared to the periodX! from the boundary. We introduce th
functionv(z) such that

V~z!5z1v~z!. ~2!

Functions of the form exp(2ikz) with k real thus appear to
be natural candidates forv(z). They are indeed periodic
functions of Re(z), and vanish exponentially as Im(z) goes to
2` whenk.0. Moreover, in order to satisfy the same p
riodicity as ]E we require thatkX52np, where n is an
integer. Thus we propose the following decomposition as
expression for the transformationV;

V~z!5z1 (
k50

`

vke
22ipkz/X. ~3!

Without loss of generality we will setX52p for the remain-
der of this paper.

The rough boundary is to be identified with the image
the x axis, so that]E obeys the parametric equations

u5x1ReS (
k

vke
2 ikxD ,

v5ImS (
k

vke
2 ikxD . ~4!

The corresponding transformation from the unit diskC to
the domainE can be obtained from the above form~3! and
the transformation from the disk to the semi-infinite pla
Imz<0. The resulting transformation reads

V~z!5 i ln~z!1(
k

vkz
k, ~5!



n

ne
in
qu
n
a

-

th
t a

e

r

-
e
u
rb
e
o

l
-
m

to

is

s-
e
e

de
ng

al
ns

ex-

s

en

-

6174 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
whereX51 has been used. Evidently, the image of the u
circle z5eiu provides the same parametric form as Eq.~4!.

With the form of the transformation being imposed, o
needs to check that the transformation is bijective: a po
should have a single image, and an image point a uni
parent. This condition imposes some restriction on the tra
formationV. It can be rephrased simply for the transform
tion ~3! as

UdV

dzU
z5x1 iy

.0 ~6!

for all y,0. In principle, it is sufficient to impose this con
dition only in the strict interior of the domain. IfdV/dz
50 on the boundary, a kink may appear at this point. In
following, we will assume that the interface is smooth a
small scale so that poles are forbidden on the boundary.

As an example, if the transformation is simply

V~z!5z1ve2 iz ~7!

then the condition~6! reduces tou11 iveixeyu.0 or uvu
,1. For this maximum value, the image of thex axis is a
cycloid, with cusp points. Figure 2 illustrates this limit cas

III. COMPUTING THE MAPPING
FOR AN IMPOSED INTERFACE

The above presented transformation is only useful fo
particular application if the transformationV can be com-
puted, once the boundary]E is imposed. This section is de
voted to this problem. The algorithm that we have develop
generates the transformation very efficiently. Different n
merical techniques applied to computing the map from a
trary closed domains to the unit disk can be found in R
@31#. Our algorithm can be shown to be related to the Jac
method used in these studies.

A. Description of the algorithm

We define the rough boundary]E as a single-valued rea
function h such thatv5h(u) is the equation of the bound
ary. In other words, the boundary is given by the para

FIG. 2. Image of a regular square grid of the semi-planeD using
the transformation~7!. The parameterv has been set to its maxi
mum value of 1. A cusp appears on the boundary.
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etrized formw5u1 ih(u). To comply with the framework
we have chosen here, we use in the following a 2p periodic
h.

From the particular form of the transformationV, we ex-
pand the real and imaginary parts on the boundary]E:

u5x1ReF(
k

vke
2 ikxG ,

~8!

h~u!5ImF(
k

vke
2 ikxG .

If u were equal tox, the second equation would be close
a Fourier-transform expression of the functionh. More pre-
cisely, rewriting the last equation as

h~u!5ReF(
k
i v̄ke

ikxG ~9!

we see that the coefficientiw̄k can be computed from the
Fourier transform ofh„u(x)…. The difficulty is thatu(x) is a
priori unknown. However, we note that if the roughness
small enough, say of ordere, u can be written asu5x
1O(e). Therefore, identifyingx with u is a zeroth-order
approximation. From the latter, the coefficientvk can be
computed by the Fourier transform ofh(u). This provides a
first-order approximation ofu(x), from which an improved
estimate ofvk can be obtained by taking the Fourier tran
form of h„u(x)…, i.e., a nonuniform sampling of the profil
h. Iterating this scheme is the basis of our algorithm. W
will omit for the time being the prerequisite on the amplitu
of the roughness. We will return to this point by consideri
the stability of the algorithm.

The intermediate quantities appearing at thekth iteration
will be labeled with a superscript (k). We also formulate the
algorithm directly in discrete terms suited for a numeric
implementation. In the remainder of this paper, all functio
will be decomposed over a set of 2n discrete values. The
number of Fourier modes will thus be limited to 2n. We first
introduce a series of sampling pointsuj

(k) with j50,...,n
21, which is initially set to an arithmetic seriesuj

(0)

5 jp/n. The sampling ofh(u) by uj
(k) gives the array

hj
~k!5h~uj

~k!!. ~10!

The discrete Fourier transform of this array is the compl
valued array

aj
~k!5 (

m52n11

n

hm
~k!eim j ~11!

for 2n, j<n. The latter is written in shortened notation a

a~k!5F@h~k!#, ~12!

whereF denotes the Fourier transform, which will be chos
as the FFT algorithm, thus imposing thatn is an integer
power of 2. The intermediate mappingv (k) is computed
from thea(k) as
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55 6175CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
v j
~k!5~ i /n!aj

~k! for j.0,

v0
~k!5~ i /2n!a0

~k! , ~13!

v j
~k!50 for j,0.

The latter form is obtained from the identification of Eq.~8b!
and the definition ofa(k), taking care that one sum is over
positive index, while the other extends over the interval@1
2n,n#. Then, one computes the series

bj
~k!5 ia j

~k! for j.0,

b0
~k!50, ~14!

bj
~k!5b2 j

~k!52 ia2 j
~k!52 ia j

~k! for j,0.

This linear transformation is written in shortened notation

b~k!5G@a~k!#, ~15!

whereG is the above detailed transformation. The form ofG
is dictated by Eq.~8a! for a positive index, and from the fac
that the inverse Fourier transform ofb ~see below! is real.
The new sampling series is finally obtained from

uj
~k11!5

jp

n
1F21@b~k!#. ~16!

Equations~10!–~16! define one step in the algorithm relatin
v (k11) to v (k). We give this shortened notation for this ste
asv (k11)5T(v (k)).

The searched functionV is clearly a fixed point of the
transformationT defined above in a discretized version. T
uniqueness of the transformationV results from that of the
harmonic field in the domainE with an equipotential condi-
tion on the boundary and a constant gradient perpendicula
the boundary at an infinite distance from it. Therefore,
only condition to consider is the stability of the fixed poin

B. Stability

Let us assume that we have an approximate solution
the transformationV(z), from which we compute the serie
uj . All intermediate quantities computed from the exact s
lution are denoted by a superscript* . Following one com-
plete iteration of the algorithm, we obtain the following e
pressions:

uj5uj*1duj ,

hj5hj*1h8~uj* !duj ,

a5a*1F@h2h* #, ~17!

b5b*1G@a2a* #,

~du!85F21@b2b* #,

where a Taylor expansion ofh has been used to estimate t
values ofh2h* and where indices are omitted when unne
essary. The resulting difference (du)8 after one cycle is thus
s

to
e

of

-

-

~du!85F21GF@h8~uj* !duj #. ~18!

Let us introduce the norm

iui2[(
j

uuj u2. ~19!

Parseval’s theorem relates the above norm in real and F
rier spaces according to

iF~h!i5A2nihi . ~20!

In a similar fashion, the transformationG does not affect the
norm:

iG~h!i5ihi . ~21!

Using the two previous results, we can estimate the norm
(du)8 as

i~du!8i25(
j
h8~uj* !2~duj !

2<max~ uh8u!2i~du!i2.

~22!

Therefore, if the absolute value of the slope of the object
profile satisfies

uh8~u!u,1 ~23!

for all u, then the fixed pointV* is attractive for the trans-
formationT. It should, however, be noted that the number
modesn should be large enough so that the perturbat
du should be small enough to legitimate the Taylor expa
sion ofh used in the stability analysis.

In practice, the convergence is very fast provided the s
ficient condition~23! is fulfilled. Moreover it has to be noted
that one step in the algorithm requires a rather limit
amount of computing time of ordern ln(n) ~i.e., as for a FFT
operation!. Considering that this computation gives the so
tion of a harmonic problem in a semi-infinite domain, th
cost appears to be extremely low.

When our algorithm is applied to a simple monochroma
sine ~or cosine! profile, h(u)5A sin(u), it turns out that as
soon as the condition~23! is violated~i.e.,A>1! the scheme
is unstable, and a loop begins to appear around the or
where the slope exceeds 1. Thus the sufficient conditio
also a necessary condition.

The limit uh8(u)u,1 can simply be broken if one uses a
under-relaxation scheme. The optimum determination of
under-relaxation parameter, or the use of other algorith
can be found in Ref.@31# for mapping arbitrary domains on
the unit disk. The transposition of these algorithms to o
problem can be worked out in detail. Other ways to bre
this limit is to decompose the transformationV in two ~or
more! substeps. Suppose one could map the real axis ont
intermediate profile using a first transformationV1 and then
the intermediate profile onto the objective one using a sec
transformationV2 . The combination of the two transforma
tions V(z)5V2„V1(z)… is then the searched mapping. B
breaking the problem into two steps, it is possible that e
step can be handled by the above presented algorithm, w
the combination of the two gives a profile having a slo
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6176 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
larger than unity. The difficulty here is to devise a suit
intermediate step. One could consider, for example, filter
the initial objective profile so that the filtered profile ma
fulfill the slope constraint. We did not investigate this exte
sion any further.

C. Convergence and example application

We present in the following calculations of conform
transformations associated with a simple sine interface.
will use a norm on the error similar to the one introduced
Sec. III B. The distanced between the objective profile an
the calculated one is defined as follows:

d25
1

2p E
0

2p

@h„u~x!…2V~x!#2dx. ~24!

It is convenient to make this distance dimensionless, norm
izing it by the amplitude of the profile,d*5(d/A), where
the objective profile has the equationh(u)5A sin(u).

It is worth noting that the problem is far from being a
simple as it might appear on the surface. In real space
single Fourier mode is sufficient to entirely characterize
interface. The transformationV, however, requires man
more modes. Figure 3 shows the power spectrum of thv
series for different amplitudesA. One can see that the con
tribution of the different modes decreases exponentially
with the wave numbern but that the number of importan
modes increases roughly linearly with the amplitude of
sine profile. These observations suggested the scaling o
axis chosen in Fig. 4 for illustrating the above-mention
rough trends.

The convergence of the algorithm is shown in Fig.
where the profiles obtained after the first few iterations
shown. In this particular exampleA50.5 and the number o
modes is 32.

The importance of allowing for enough Fourier modes
also illustrated by considering the minimum errord obtained
as a function ofn as shown in Fig. 6.~For this particular

FIG. 3. Power spectrum of the functionv computed for a sine
profile. The four curves correspond to four amplitudes,A
50.2(s), 0.4 ~h!, 0.6 ~L!, and 0.8~n!.
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study we did not resort to a FFT algorithm to handle a
value ofn.! ForA50.5 we observe that about 20 modes a
necessary to reach the single precision used in the comp
tion. As the amplitude increases, the number of mo
needed to reach a small enough error becomes larger
larger.

IV. SELF-AFFINE BOUNDARIES

In the description of rough surfaces and interfaces, so
recent progress has been achieved by recognizing some
ing invariance properties that have been observed in a n
ber of real surfaces, and have been shown to result natu
in a number of growth models. Recent reviews@5–7# have
covered this field.

Due to the different roles played by the directions norm
and parallel to the surface, the scaling invariance—wh
applicable—involves different scale factors depending

FIG. 4. Power spectrum of the functionv computed for a sine
profile in the reduced coordinaten/A. The four curves correspond
to four amplitudes,A50.2 s!, 0.4h, 0.6 ~L!, and 0.8~n!. One
observes a reasonable collapse for the three smallest amplitud

FIG. 5. Images of the real axis obtained after the firstk iterates
of the algorithm with the objective profile@h(u)5A sin(u)# shown
as a bold line. In this particular exampleA50.5 and the number of
modes is 32.
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55 6177CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
orientation, a property called self-affinity. We consider he
only two-dimensional media so that the boundary is s
affine if it remains~statistically! invariant under the transfor
mation

x→lx,
~25!

y→lzy

for all values ofl. The exponentz is called the ‘‘Hurst’’ or
roughness exponent. It is characteristic of the scaling inv
ance. From this property, we derive easily that

^@y~x!2y~x1d!#2&5C2d2z, ~26!

whereC is a prefactor.
It is noteworthy that the self-affinity property does n

involve the scaling of any measure. However, studying
scaling of the length of the curve, two regimes are revea
For large distances, larger than a scalel, the curvilinear
length of the profile is simply proportional to the project
length along thex axis, hence one can identify a trivial frac
tal dimension equal to 1. On the other hand, for distan
smaller thanl, the arc length scales in a nontrivial fashio
with the projected length. This allows one to define a frac
dimension equal todf522z. The crossover scalel between
these two regimes is such that the typical slope of the pro
is 1, i.e., using the notations of Eq.~26!,

l5C1~12z!. ~27!

Once a roughness profile has been measured, a very
venient way@32# to check the self-affinity is to compute th
power spectral density~PSD! of the profile. In the case of a
self-affine profile of exponentz, the PSD is expected to hav
the following behavior:

P~k!}k2122z. ~28!

It is important to stress that the approach developed in
paper is not specific to self-affine boundaries. However,
ing given the practical importance of such boundaries,

FIG. 6. Minimum error obtained using the algorithm describ
in the text for computing the conformal map on a sine profile w
amplitudeA50.5, as a function of the numbern of modes used in
v.
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the expected generality of scaling results, we will essentia
focus on self-affine boundaries as practical applications
the concepts developed in the framework of the harmo
field in the vicinity of rough boundaries.

In view of the form of the transformationV, and of the
previous scaling, Eq.~28!, we introduce a particular set o
transformation: let us choose

vk5Aekk
21/22z, ~29!

whereek is a random Gaussian variable with zero mean a
unit variance for the real and imaginary parts independen
we can write

ReF]V

]x
~x1 i0!G511A ImF(

k
ekk

1/22ze2 ikxG . ~30!

Then for a given set ofek , we can define a maximum am
plitude such that the mapping is bijective:

Amax5
21

Im@(kekk
1/22ze2 ikx#

. ~31!

This method gives a short way to generate directlyV trans-
forms, which image the real axis to a self-affine interfa
shape. This approach is useful to study generic propertie
self-affine boundaries.

When the amplitudeA is small enough,u'x, and thus
the seriesvk is equal to the Fourier transform of the profil
The transformationV sends the real axis onto a period
function whose power spectrum is of the form Eq.~28!.
When the amplitude increases, the first iteration of the al
rithm turns out to be rather approximative. In order to sh
that the power spectrum ofvk is not significantly altered by
further steps, we show in Fig. 7 the power spectrum ofvk as
compared to the initial zeroth-order approximation. The
sults have been obtained from an average over 100 pro

FIG. 7. Power spectrum of the image of the real axis obtain
from synthetic transformationV, obtained from Eq.~29!. The
roughness exponent used isz50.8. The best power-law regressio
on this power spectrum has a slopes521.32, which corresponds
to an estimated roughness exponentz850.82, equal within error
bars toz.
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6178 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
with 2048 modes each. We see that the synthetic genera
of the transform does not modify the power spectrum ov
coefficients.

Therefore, we can directly generate mappingsv that will
transform the real axis into a periodic boundary that is s
affine with any prescribed roughness exponent for distan
smaller than the period. Such a construction may appea
artificial in the sense that the rough boundary is not impo
but, on the contrary, it results from the choice of the ma
ping. It is, however, useful, as will be shown later, becaus
allows one to study generic properties of harmonic fie
close to self-affine boundaries.

The alternative way consists in using the mapping c
struction algorithm. As mentioned above, we have analy
the convergence of the algorithm applied to the special c
of a sine profile. We now consider the case of a self-affi
boundary in a similar fashion. This interface has been ca
lated in the real space with 64 modes, and we have used
modes in the conformal transformation. The standard de
tion of the height distribution is calleds. The chosenz ex-
ponent chosen for this example isz50.8. From Eq.~31!, we
note that the maximum amplitude decreases as the numb
modesn increases. This is natural since as the lower cu
in the scaling regime decreases, the self-affine function
tend toward a continuous but nondifferentiable curve wh
0,z,1. The distribution of local slopes is indeed expect
to get wider and wider as the number of modes increa
Quantitatively,Amax}n

z21. It is to be noted that asn in-
creases, the standard deviation of the heights does not in-
crease. It is to be noted that these conclusions are dr
under the hypothesis that the longest wavelength rem
fixed; here it is set to 2p. Alternatively, if the smaller cutoff
and the amplitude of the corresponding mode were kept c
stant while increasing the number of modes, then the m
mum amplitude would remain constant.

As in the previous example~sine profile!, we can observe
in Fig. 8 an example of the conformal map obtained
s/smax50.95, where the maximum standard deviation t
could be handled by the algorithm without diverging
smax'0.1. We can see in this figure that the major diffe

FIG. 8. An example of the obtained profile]E from the confor-
mal map, compared to the objective one, chosen to be a self-a
function with a roughness exponentz50.8. The amplitude of the
profile is 95% of the maximum amplitude, which preserves
convergence of the algorithm.
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ences between the objective and calculated profiles occu
areas where the local slope is maximum. For roughness
plitude greater than the convergence threshold, one can
loops appearing in these areas. The convergence speed
sensitivity to the number of modes allowed in the determ
nation ofV, the evolution of the minimum error, etc. be
haved for these self-affine profiles in a similar qualitati
way as for the simple sine profile.

V. GENERIC PROPERTIES OF HARMONIC POTENTIALS

In the following, we show that the knowledge of such
conformal transformation allows one to solve immediate
harmonic problems. We essentially focus here on the c
where the field is assumed to be uniform far from the bou
ary. This is a typical case as soon as the roughness is of s
amplitude. This can be seen as an asymptotic expansion
cusing here on the small scale details of the interfa
whereas the matching with the far field can be done usin
field whose variation is small on the scale of the roughn
amplitude. We will now focus on two problems: a perfect
conducting boundary so that the potential gradient is nor
to the boundary, and a perfectly insulating boundary wh
the potential gradient is parallel to the surface. Since
know how to tailor mappings that image the real axis on
generic self-affine boundary, this gives us an opportunity
consider the scaling features of harmonic fields in the vic
ity of self-affine boundaries.

Harmonic fields are encountered very frequently in n
ture. Linear transport involving scalar fieldsF, where the
flux J is proportional to the field gradient plus a conservati
law in the absence of sources and, under steady condit
div(J)50, implies the harmonic nature of the fieldF, ¹2F
50. Heat diffusion obeying Fourier’s law gives a harmon
temperature field under steady conditions. Mass diffus
with Fick’s law is a similar example with the concentratio
field. Electric conduction with Ohm’s law, viscous flow i
confined two-dimensional Hele-Shaw cells, vorticity
Stokes flow, etc. constitutes a partial list of possible appli
tions.

A. Homogeneous far field

In this part, for the sake of concreteness, we use the c
of thermal conduction. We are interested in the tempera
field T in the regionE limited by the rough interface]E. Let
us first consider the case of a perfectly conducting interfa
so thatT5T0 for each point of the boundary. We impose
the far field a homogeneous unit flux of heat. The problem
solve is

¹w
2T50 in E,

T5T0 on ]E, ~32!

¹W T~w!→eW v if v→2`.

The knowledge ofV allows one to defineQ, the image
field of T in the smooth domainD:Q(z)5T+V(z)5T(w).
As ¹z

2Q5¹w
2TuV8(z)u2 andV8(z)Þ0 in D, the resolution

of Eq. ~32! in E is thus equivalent to

ne
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55 6179CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
¹z
2Q~z!50 in D,

Q~z!5T0 on ]D, ~33!

¹W Q~z!→eW y if y→2`.

The frontier]D being the real axis, we have immediate
the solution inD:Q(z)5T01y and then the solution inE is

T~w!5T01Im@V21~w!#. ~34!

Figure 9 shows a set of isotherm curves close to a s
affine isotherm boundary. These lines become smoother
smoother when the distance to the electrode increases.
morphology of these isotherm lines has some interesting
tures. IfD denotes the distance from the boundary, one
observe from the form of the mappingV that modes with a
wavelength smaller thanD will be damped whereas longe
wavelength modes will only be slightly decreased. The
fore, the isotherm curves will be similar to the profile up to
low pass filtering. In the case of a self-affine boundary,
isotherms will preserve the self-affine character with
same exponent, but their lower cutoff will increase as
distance to the actual boundary, up to the distance of orde
the largest wavelength.

Let us now study the temperature gradient. Quite gen
ally, we can write the gradient in the complex plane as

¹wT~w![~]u1 i ]v!T~w!52] w̄T. ~35!

From the expression of the temperature field, we have

¹wT~w!5 iV218~w!5 i @11v8~z!#21. ~36!

From the expression of the functionv, we see that at a larg
distance from the rough boundary, the termv8 vanishes ex-
ponentially. Therefore, one recovers the imposed condi
for the temperature at infinity, i.e.,¹T→ i .

In Figure 10 we have presented both the profile of a rou
electrode and the modulus of the temperature gradient.
may see quite easily that the field is very large~small! in the

FIG. 9. Example of isotherm curves close to a rough self-affi
boundary on which the temperature is constant, whereas the
perature gradient is homogeneous and vertical far from the bo
ary.
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deepest~highest! areas. This field depends naturally both
the local topography and on its remote environment. T
connection between the field and the local topography can
analyzed through cross correlations, as will be done belo

The perfectly insulating boundary is the other archety
cal problem whose expression is

¹w
2T50 in E,

]nT50 on ]E, ~37!

T~w!→u if v→2`.

The solution to this problem can simply be obtained from
previous solution using duality properties of the harmo
field. The real part of the previous solution gives the answ
to the problem:

T~w!5Re@V21~w!#. ~38!

The temperature gradient is then simply

¹wT~w!5@11v8~z!#21. ~39!

B. ‘‘Equivalent’’ smooth boundary condition

We have seen previously that once we know the con
mal mapping capable of transplanting the half complex pla
D onto the rough domainE, we have immediately the solu
tion of the electrical potential near the rough electrode]E. If
the roughness amplitude remains below the converge
threshold, we will be able to solve this problem for any kin
of boundary. In practice, very often, one does not wo
about the details of the rough interface. As we have s
most perturbations die away from the boundary expon
tially fast. Therefore, knowing the longest wavelength of t
boundary gives the scale away from the boundary where
field becomes homogeneous.

This means, practically, that if one is interested only
the far field, one could replace the rough interface by
straight one so that the far field is unperturbed. The ques
we want to address in this section is the following: whe
should the ‘‘equivalent’’ straight interface be located so as

e
m-
d-

FIG. 10. Profileh(u) of the rough boundary~bold line! and
temperature gradient]nT(u) ~dotted line! on the surface of the
same boundary. We note strong correlations between the
curves.
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6180 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
match the asymptotic far field? A zeroth-order guess is
place it at the geometrical average of the height distributi
This will be shown to be not to an exact answer; in t
following, we call H the distance between the equivale
position and the geometrical average.

In order to illustrate the problem, let us imagine the fo
lowing experiment. Let us consider an electrolytic ba
where the electrical field is homogeneous between two
posite electrodesA andB at a distanceL from each other.
The electrical resistanceR of the set-up is measured. The
as illustrated in Fig. 11 we place in the middle of the ba
and parallel to the electrodes a rough planeC of negligible
thickness that is a good conductor, so that it can be con
ered as an equipotential. We measure again the elect
resistance of the setup, which is now reduced toR2DR.
What is the value ofDR? To answer this question, we divid
the system in two,A-C andB-C. Each of these two prob
lems corresponds to the situation described in the introd
tion of this section. Extrapolating the field from electro
A, we find an offsetH1 . Similarly, from B we obtain a
different offsetH2 , so that, ignoring the details of the pe
turbed field in the vicinity ofC, the rough electrode will
appear to be equivalent to a plane electrode of thicknesHt
5H11H2 . This ‘‘electrical thickness’’ has nothing to d
with the real thickness of the plane considered here to
zero. If the rough electrode has the shape of a sine func
of amplitudeA and wavelengthl, we will argue below that
Ht}A

2/l. Finally it is a simple matter to relate the resi
tance drop to this effective thickness throughDR/R
5Ht /L.

We now revert to the notation of the previous paragra
and deal with the temperature instead of the voltage.
distances away from the rough boundary much greater
2p ~our longest wavelength!, all exponential terms die out
and hence the far field can be written as

T~w!'T01Im~w2v0!, ~40!

wherev0 is the constant term in the functionv. The offset
position of the equivalent isotherm is thus

FIG. 11. Schematic illustration of the finite ‘‘electrical’’ thick
ness of a rough equipotential. The rough equipotentialC ~shown as
a bold curve! is placed in between two remote planar electrod
The presence of the rough equipotential reduces the resistan
the medium in a similar way as an planar equipotential with a fin
thickness. Extrapolating the far electrical field from the remote e
trodes gives ‘‘equivalent’’ smooth boundaries shown as dot
lines. Their relative distance defines the ‘‘electrical’’ thicknessht .
o
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H5Im~v0!. ~41!

Let us first analyze the problem for a small amplitude s
boundary of amplitudeA and wavelengthl. The offsetH in
the location of the equivalent straight boundary is to be n
malized byA to obtain a dimensionless quantity. The latt
should be a function of the dimensionless ratioA/l. Taylor
expansion of this function provides the perturbation exp
sion

H5a0A1a1
A2

l
1a2

A3

l2 1O~A4/l3!. ~42!

A simple argument allows one to simplify the latter equatio
Suppose one would analyze the problem for the profile
amplitude2A. The latter is obtained from the former by
translation along thex axis by an amountl/2. Thus H
should be unchanged. This imposes that odd terms in
expansion should vanish, hence,

H5a1
A2

l
1O~A4/l3!. ~43!

Thus the dominant correction is of orderA2/l. It can be
interpreted as the product of the amplitudeA and a typical
slope (A/l). This result holds in the limit of a small ampli
tude and long wavelength. If the wavelength goes to ze
clearly the offset should converge to the amplitude, but
latter limit cannot be obtained from the above Taylor expa
sion in the small parameterA/l.

For a sine profile of small amplitude it is possible to car
out the computation of the coefficienta1 . We briefly sketch
here the solution. The potential is to be computed to sec
order inA. We revert, as above, to a wavelengthl52p.
The solution reads

T~w!5T01Im@w1~ i /2!A22Ae2 iw2~ i /2!A2e22iw#

1O~A3!. ~44!

The offset can be read from this equation asH5(1/2)A2.
Reincorporating thel dependence, we arrive ata15p or

H52p
A2

l
1O~A4/l3!. ~45!

This last result is of course only valid for smallA values,
H being bounded byA. In Figs. 12 and 13, we can se
comparisons between this perturbative calculation and
result directly obtained by conformal transformation. We o
serve excellent agreement for small amplitudes~large wave-
lengths! and then the perturbative calculation overestima
H for larger values of the amplitude~smaller wavelength!. In
view of the upper bound on the offset and the above per
bation expansion, we propose the following form:

H'2
2A

p
arctanS p2A

2l D , ~46!

which fits the data accurately as can be seen on Figs. 12
13, and which reproduces both limiting behaviorsl→0 and
l→`.
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55 6181CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
We now ask how the result translates to a rough profile
particular for a self-affine profile, there is no characteris
length scale apart from the cutoffs. The product of the a
plitude times the slope is a scale-dependent factor. Is it p
sible to reach quantitative conclusions for such profiles?

In order to estimateH for a rough boundary, we use th
formalism developed for introducing the algorithm. We e
pand the functionv as well as all other intermediate quan
ties in the series of the profile amplitude. Using the linear
of the transformationsF, G, andF(21), we arrive at

H5Im@v0#5
Re@a0#

2n
5

1

2n (
j
hj*

5
1

2n (
j
h8~uj !F~21!+G+F@hj # ~47!

FIG. 12. OffsetH of the equivalent boundary from the geo
metrical average of a sine profile of variable amplitudeA and fixed
wavelengthl52p. The dotted line is the result of the perturbatio
analysis, Eq.~43! and the symbols are the results obtained from
conformal mapping. The dashed curve is the proposed fit Eq.~46!.

FIG. 13. OffsetH of the equivalent boundary from the geo
metrical average of a sine profile of amplitudeA50.05 and variable
wavelengthl. The dotted line is the result of the perturbation ana
sis @Eq. ~43!# and the symbols are the results obtained from a c
formal mapping. The dashed curve is the proposal fit, Eq.~46!.
n
c
-
s-

-

y

up to third-order terms in the amplitude. We now need
asymmetric version of Parseval’s theorem. Let us comp
the integral for two arbitrary arrays defined in real space
u and Fourier space forv:

(
j
ujF~21!@v# j5

1

2n (
j

(
k
ujvke

2 ik j5
1

2n (
k
F@u#kvk .

~48!

The offset can now be expressed as

H5
i

4n2 (
k
F@h#kG+F@h~x!#kk

52
1

4n2 S (
k.0

h̃kh̃kk2 (
k,0

h̃kh̃kkD
52

1

2n2 (
k.0

uh̃~k!u2k, ~49!

whereh̃k is the Fourier transform ofhj .
Figure 14 gives the evolution ofH with the amplitude of

self-affine profiles of roughness exponentz50.8, and 16
modes. Again, we observe that the expression~49! is accu-
rate for small amplitude, but shows deviations for larger a
plitudes.

It is interesting to consider the scaling ofH observed
from the generic transformations wherevk are postulated to
be vk5Aekk

21/22z. The expectation value of the offse
^H& reads, to dominant order in the amplitude,

^H&5A2(
j51

n

j22z ~50!

where the extra factor of 2 comes from the expectation va
of ^ueu2&52, since real and imaginary parts ofek are inde-
pendent Gaussian variables of zero mean and unit varia
Depending on the value of the roughness exponentz two
cases are to be distinguished.

a

-
-

FIG. 14. OffsetH of the equivalent boundary from the geo
metrical average of a self-affine profile of variable amplitudeA, a
roughness exponentz50.8 and 16 modes. The dotted line is th
result of the perturbation analysis@Eq. ~49!# and the symbols are the
results obtained from a conformal mapping.
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6182 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
~1! For a ‘‘persistent’’ profile—i.e., z.0.5—the sum in
Eq. ~50! is dominated by the smallestj , i.e., the longest
wavelength, and thus the scaling of^H& can be expressed a

^H&5Z~2z!
A2

4 S 2p

lmax
D 22z

, ~51!

whereZ(s)5S1
`k2s is the Riemann zeta function. We hav

dropped momentarily the convention that the largest wa
length is 2p; hencelmin andlmaxare respectively the small
est and largest cutoff lengths in the profile. In this case,A,
the amplitude, is such that the largest wavelength m
amounts toAe1(2p/lmax)

21/22z. Let us introduce the stan
dard deviation of the profile given by

s25
1

lmax
E h~x!2dx5

1

2n (
j
hj
2, ~52!

which leads~using Parseval’s theorem! to

^s2&5
1

4n2 (
k

uh̃ku25Z~2z11!
A2

2 S 2p

lmax
D 22z21

~53!

with z similar to the scaling Eq.~26!.
Equation~50! can then be expressed as

^H&5p
Z~2z!

Z~2z11!

^s2&
lmax

. ~54!

The latter equation simply means that the rough profile
haves as a simple monochromatic profile. This conclusion
however, not always valid, as is shown in the following ca

~2! For an ‘‘antipersistent’’ profile—i.e., z,0.5—the
sum in Eq.~50! is dominated by the largestj , i.e., the short-
est wavelength, in contrast to the previous persistent cas

^H&}A2lmax
2z S lmin

lmax
D 2z21

. ~55!

Therefore, we can express the scaling ofH in an intrinsic
fashion as

^H&}
^s2&
lmax

S lmin

lmax
D 2z21

. ~56!

In contrast to the persistent case, it appears that the o
H is dependent on the lower cutoff scale of the profile.
fact if lmin is kept fixed, the standard deviations grows as
lmax
2z . Therefore, one sees that the upper scale cutoff dis

pears, so thatH only depends onlmin . In order to see this
more clearly, we introduce another measure of the roughn
that is sensitive to the small scale. Letz be the norm of the
derivative ofh:

z25~1/lmax!E h8~u!2du5~1/2n!(
j
h8~uj !

2, ~57!

which amounts to

^z2&}A2lmax
2z21S lmin

lmax
D 2z22

. ~58!
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From the latter norm, the offset can be written as

^H&}^z2&lmin , ~59!

which is the counterpart of Eq.~54! for the antipersistent
case.

As a conclusion, the scaling of the offsetH is controlled
by the shortest~longest! scale cutoff of the self-affine regim
for antipersistent~persistent! boundaries.

C. Correlation between local field and topography

Above, we extracted the expression of the temperat
gradient as a function of the transformationv. We now use it
to investigate the correlations between the topography
the temperature gradient. We study these correlations in
limit of small amplitude.

The first-order perturbation in the temperature gradi
can be extracted from Eq.~36! as

u¹Tu2512v8~x!2v8~x!1O~e2!, ~60!

where the amplitude of the profile is assumed to be of or
e. We introduce the logarithm of the temperature gradi
denoted byw, which can be expressed as

w[ ln~ u¹Tu2!522 Re@v8~x!#1O~e2!. ~61!

From now on we will omit theO(e2) term, keeping in mind
that we focus here only on the dominant term.

In order to compute the correlation between the gradi
of temperature and the height, we form the cross product
average overu ~or x for convenience, since their differenc
is of ordere!. The expectation value of the product is

^w~u!h~u!&522^Re@v8~x!#Im@v~x!#&522(
k
kuvku2.

~62!

It is amazing that the same expression appeared when c
puting the offset of the equivalent straight boundary.

We define now the correlation coefficienta, which can be
identified as the slope of a linear regression betweenh andw.
Its value is

a[
^w~u!h~u!&

^h2~u!&
~63!

since^h&5^w&50 to first order ine. Hence we have

a522
(kkuvku2

(kuvku2
. ~64!

This expression holds for any rough boundary of small a
plitude.

In the particular case of a self-affine boundary, we assu
as above that the transformationv can be taken as the on
generated artificially from its Fourier decomposition. T
latter expression can thus be written as

a522
(kk

22z

(kk
2122z . ~65!
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From the latter expression, we have to distinguish betw
persistent (z.1/2) and anti-persistent (z,1/2) profiles de-
pending on whether the series is convergent or diverg
when the number of modes increases.

In the case of apersistentself-affine boundary, as th
number of modes increases to infinity, the value ofa con-
verges toward an asymptotic limita* given by a ratio of
Riemann zeta functions:

a*522
Z~2z!

Z~112z!
. ~66!

The divergence of the zeta function as its argument
proaches 1 leads to a divergence ofa* as (z21/2)21. In the
more general case wherelmax is not set to 2p, the above
equation should be corrected to

a*522
Z~2z!

Z~112z! S 2p

lmax
D . ~67!

As a practical illustration of the latter property we ha
studied the correlations betweenh andw by averaginĝw& at
fixed h for 1000 profiles having the same characteristi
amplitudeA50.25Amax, roughness exponentz50.8, and 64
Fourier modes. Figure 15 shows the evolution ofw versus
h. From Eq. ~66! we estimatea*522Z(1.6)/Z(2.6)'
23.50. As shown on Fig. 15, this value ofa* provides an
accurate fit to the data. The evolution of this coefficient a
function of z is shown in Fig. 16.

The antipersistent self-affine profile behaves differen
from the previous case. The correlation between the sur
temperature gradient and the height vanishes. Mathem
cally, this result can be traced to the difference in behavio
the two series in Eq.~65!. However, as in the previous se
tion concerning the location of the equivalent smooth int
face, one can extract the asymptotic behavior ofa:

a5
^w~u!h~u!&

^h82~u!&

^h8~u!2&

^h~u!2&
522S 222z

122z D S lmin

2p D S z2

s2D .
~68!

FIG. 15. Average of the logarithm of the temperature gradi
^w&5^ log10(u,Tu2)&, for fixed heighth, as a function ofh. The data
points~d symbols! are averages over 1000 profiles of small amp
tude, with a roughness exponentz50.8, and 64 Fourier modes. Th
theoretical prediction is shown as a dotted line of slopea* .
n
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This latter result sheds some light on the physical me
ing of the previously mentioned divergence. In our presen
tion, we have chosen to fix the largest wavelength~set to
lmax52p! and amplitude of this mode. Increasing the nu
ber of modes implies that the shortest wavelengthlmin de-
creases. For roughness exponents in the range 0,z,1, this
implies an algebraic increase of§2 with n, while s2 is
bounded. This divergence of§2 is of no importance for the
correlationa only if the profile is persistent. Otherwise, Eq
~68! holds. The perturbation method used, however, assu
that boths2 and §2 should be small. The above analys
simply identifies which cutoff will dictate its behavior to th
correlation. The antipersistent case is more suited to the
wherelmin is fixed together with its amplitude, whilelmax

varies. In this case, thea coefficient increases aslmax
122a as

can be read from Eq.~68! using the scalings2}lmax
2§ ~§

being independent oflmax.!

D. Green function for harmonic problems on a rough
interface

Up to now, we have only considered harmonic proble
with a uniform field at infinity. This kind of boundary con
dition is of particular interest for problems where the scale
variation of the field in the bulk of the solid is large com
pared to the scale of the roughness so that an asymp
development can be performed where the matching is to
done on the far field as one focuses on the rough bound
However, from the conformal mapping, one can addr
more complex types of boundary conditions.

In order to illustrate this, we develop here a particu
class of solutions that can be used to solve any problem.
will consider Green functions that give the field in the m
dium for localized fluxf injected in the medium from the
surface.

Let us consider the following problem: a localized flu
f51 is injected at point~1,0!, on the border of the unit circle
C. The remaining boundary is perfectly insulating. The sa
flux is withdrawn at the origin wheref521. The harmonic
field that fulfills such boundary conditions is

t FIG. 16. Evolution of the limita* as a function of the roughnes
exponentz. As z approaches 1/2, the coefficient diverges asz
21/2)21. The dotted line shows the predicted behavior and
symbols are the results computed from conformal mappings.
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F~z!52ReF lnS ~z21!2

z D G . ~69!

This potentialF is the Green function for the domainC.
Considering the transformationz→2 i ln(z) maps the unit
circle to the semiplaneD. In the transformation, the potentia
F becomes

F~z!52Re@ iz12 ln~12eiz!#, ~70!

which is the Green function for a unit flux localized at eve
site (2kp,0) for all integersk. At infinity, the potential ap-
proachesF(z)→y. From this Green function it is simple t
derive the one obtained for a translated array of sources.
sources at (x012kp,0), we have

F~z,x0!52Re@ iz12 log~12ei ~x02z!!#. ~71!

From this latter expression, the Green function for a
calized and periodic source on the rough profile is obtai
by combiningF andV. The Green function thus reads

C~w,w0!5F„V21~w!,V21~w0!…, ~72!

which gives the potential at pointw for a series of source
periodically spaced with the same period as the profilew0
12kp.

VI. CONCLUSION

We have introduced here a conformal mapping techni
that allows one to address harmonic problems in se
infinite domains limited by a rough interface. This mappi
is accompanied by an efficient numerical technique that
lows us to compute the mapping by a few iterations o
one-dimensional Fourier transform. Moreover, this techniq
provides a natural basis for discussing analytically so
practical applications.

We then defined and studied the notion of an equiva
smooth boundary, whose position has been obtained exa
in the limit of a small amplitude. This question underline
the differences between persistent and antipersistent bo
in-
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or
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e
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l-
a
e
e
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tly
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aries, in terms of sensitivity to the lower or upper scale cut
of the self-affine character of the boundary.

We considered the question of correlations between
gradient of the harmonic field on the boundary and the he
of the profile at the same point. The correlation has be
explicitly computed and shown to converge to a precise li
for persistent boundaries. Antipersistent profiles lead to
correlation coefficient that is dependent on the self-affin
range.

Finally we have shown that the same mapping can
used to address different boundary conditions, including
extreme case of a pointlike source on the boundary tha
treated exactly.

Extensions of the above technique are numerous. We
sentially focused here on static problems involving harmo
fields. However, the same mapping may also be used in c
nection with evolution problems such as diffusion or wa
propagation~localization!. Thermal diffusion in the vicinity
of a rough boundary has recently been shown to disp
anomalous scaling behavior at early stages, which could
addressed by such methods. The ac impedence of rough
trodes is another potential field of extension that has b
studied in recent years.

The mapping we discuss may also be one constitutive
of a different mapping dealing with different geometries. A
example of such extensions is the stress intensity factor~i.e.,
the singular behavior of the stress field! at a crack tip. In the
framework of antiplane elasticity one can compute the lo
stress intensity factor at the crack tip and relate it to
far-field singular behavior. This problem is currently bein
investigated.

In a companion paper@24# we extend our mapping to
computations of biharmonic fields with applications
Stokes flow close to rough boundaries and elastic st
fields close to a rough surface.
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