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False-nearest-neighbors algorithm and noise-corrupted time series
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The false-nearest-neighbaiSNN) algorithm was originally developed to determine the embedding dimen-
sion for autonomous time series. For noise-free computer-generated time series, the algorithm does a good job
in predicting the embedding dimension. However, the problem of predicting the embedding dimension when
the time-series data are corrupted by noise was not fully examined in the original studies of the FNN algorithm.
Here it is shown that with large data sets, even small amounts of noise can lead to incorrect prediction of the
embedding dimension. Surprisingly, as the length of the time series analyzed by FNN grows larger, the cause
of incorrect prediction becomes more pronounced. An analysis of the effect of noise on the FNN algorithm and
a solution for dealing with the effects of noise are given here. Some results on the theoretically correct choice
of the FNN threshold are also presentE81063-651X97)01605-X]

PACS numbgs): 07.05.Kf, 05.45+b

I. THE FALSE-NEAREST-NEIGHBORS ALGORITHM mine the outpuly(t) directly from time-series data. FNN is
based on the following fact. If the number of time-delay
The false-nearest-neighbo{iSNN) algorithm is a tool to  coordinated is too small, then points close in the time-delay
determine if a given “input” vector contains enough infor- coordinates may only be close because of projection rather
mation to predict another “output” value directly from prop- than the dynamics of the system. In this case, points which
erties of the data. More specifically, for the description are close together in the time-delay coordinates may have
very different outputg/(t). Points which are only close be-
y(n)=G[xy(n),x2(Nn),... x(N)] (1) cause of projection are known galse neighborsWhenl is

FNN answers the question of whether a single-valued funcl—arge enough to represent the dynamics of the system, points

. ; . ' ; which are close in the time-delay coordinates will always
tion G exists relating the; variables and the output variable have outputs/(t) which are “close” in some sense
y for a given data set. buty '

. - Here is a short outline of the FNN algorithm for autono-
The FNN algorithm was originally developed for deter- mous systems.

mining the number of time-delay coordinates needed to re- (1) Identify the closest pointin the Euclidean senseo a

create autonomous dynamifs,2], but FNN hgg also been iven point in the time-delay coordinates. That is, for a given
extended to examine the problem of determining the propegme_delay point

embedding dimension for input-output dynamics and for in-
ferential measurement selectif®]. More information about _ Zl(k):_[y(k_ 7).y (K=17)] (3)_
the theory of using time-delay coordinates for modeling offind the pointz(j) in the data set such that the following
input-output systems can be found[#5]. For autonomous distanced is minimized:

systems described by state space equations, a scalar output at d=llz, (k) =z (j)ll,. (4)
any point in time can be predicted by a function involving z(j) is known as the nearest neighborz¢k).

time-delayed versions of the same output. The following re- (2) Determine if the following expression is true or false:

lationship holds for autonomous systemgf2d, whered ly(K)—y(j)|
is the dimension of the state space dynani&d]: m$R, 5
y(H)=G[y(t—7),y(t—27),... y(t—17]. (2)  whereR is some previously chosen threshold value. If ex-

pression(5) is true, then the neighbors atreie neighbors. If
However, given only a time seriggt) from an unknown the expression is false, then the neighborsfalee nearest
dynamical system, this theoretical result is little help in de-neighbors.
termining the proper embedding dimension (3) Continue the algorithm for all pointsin the data set.
The FNN algorithm was developed to determine theCalculate the percentage of points in the data set which have
smallest number of time-delay coordinateseeded to deter- false nearest neighbors.
(4) Continue the algorithm for increasinguntil the per-
centage of false nearest neighbors drops to Zerosome
*Present mailing address: Institutrfdutomatik, ETH-Z/ETL,  acceptably small numbger
CH-8092 Zuich, Switzerland. Electronic address:  While this single threshold test works quite well for cases
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bors ||z(k)—z(j)|, is large the distance between outputsmation to the functionG can be made. Using a linear ap-
ly(k)—y(j)| can be quite large and still satisfy the above proximation around the poirz,(k), the output of the nearest
threshold tesfEq. (5)]. If the distance between the nearestneighbory(j) is given by
neighbors embedded in the space of outputs and regressors is
roughly the same magnitude as the size of the attractor, then y(K) = y(j)=DG(zx(k))[zn(k) = z4(j)]
the neighbors should also be considered false neighbors. For 112
this reason, a second threshold test which only becomes im- FO(za(K) =2a(D1- (12)
portant in cases of sparse data was also utilized in the orig
nal FNN algorithm[1,10].

The second threshold test is defined as

iI'gnoring the higher order terms, by the Cauchy-Schwarz in-
equality we know

ly(K)—y(D[<IDG @y (k) 2llzn(K) = zo(l2,  (13)
Rd+1<A ©
Ry o ly(k)—y(j)l
= =||DG(z,(k , 14
||Zn(k)_2n(l)||2 ” (n( ))”2 ( )
where
ly(k)—y(j)|
_ : a5 2 =maxDG(z,()||
Ri+ 1=y -y P +lz() -z ()3, () 1za(k) = za(i) { e
N Vk and nearest neighbor. (15
2 1 12
Ri=y 2 [y(m-y 7T, ® _ .
n=1 For any choice oR smaller than ma§DG(z,(t))||,, the gain
of the system may cause the FNN algorithm to record a false
1N nearest neighbdisee Eq(5)] at the time-delay poirg,(t) if
=— 2 y(n). (99 the nearest neighbor happens to make the equation
N =1 aDG(z,(t))=[z,(t) —z,(j)] true for somea e R. In other

words, the equality of Eq15) will hold when the nearest

The recommended threshold Af,=2 is used in all of the neighbor toz,(t) happens to lie in the direction of maximum
examples given here. Failing this additional threshold tesgain of the Jacobian
means that the nearest neighbors are far apart in the extended Therefore a proper lower bound on the choice of the
space ofR4.; and that the neighbors should be consideredhresholdR for the FNN algorithm is dependent on knowl-
false. Since a failure of the above threshold test implies ®dge of the function which needs to be identified. However,
failure of the threshold test given in E€G) when nearest if an infinite amount of data is available the threshBladan
neighbors are closvhen||z (k) —z(j)|3 is small, this test be chosen arbitrarily large.
is only important when the nearest neighbors are relatively Lemma 2For an amount of data approaching infinity, any
far apart. finite threshold valudR will lead to a nonzero percentage of
FNN when the embedding dimension is smaller than

Proof: The functionG has a unique output for all inputs
only for values of embedding dimensiben. Forl<n, the

Assume that the minimal representation in the time-delayMPplied function relating the time-delay coordinates to the
coordinates is known. Let be the smallest integer for which ©Output may have multiple outputs for a given time-delay vec-
there exists a functiois uniquely determining the output tOF- Take a poinizy(k) where the function does not have a
coordinatey(t) for all time-delay vectors. unique output and a sequence of poirggj;) where
lim;_.z,(j))=2z,(k) but lim;_.y(j;)—y(k)=«#0. Now
using the FNN thresholfEq. (5)] we see

Il. THEORETICAL CHOICE OF FNN THRESHOLD

y(t)=G[y(t—7),y(t=27),....y(t—n7)] (10)

ly()—y(j)]
=Glz()]. (1 "M Tato—zGl (10

Also assume that the functidd is known. How should the or that the threshol® must be infinitely large for the thresh-
thresholdR for the ratio test be chosen when the time serield inequality[Eqg. (5)] to be true. |
is noise free? The following choice of threshold should be When analyzing real, finite time series the results of these
made if the data are sufficiently “dense” over the region oflemmas are not helpful. However, further analysis of the re-
interest. sults of Lemma 2 leads us to believe that when there are

Lemma 1. R-max|DG(z,(t))||,, where DG(x) is the more points in a data set, a larger threshold value can be
Jacobian of the functios at the pointx, is the smallest chosen safely. On the other hand, if the threshold is chosen
choice of the threshold which will give 0% FNN at the too large and nearest neighbors are not close in the time-
proper dimensiom for all data sets. delay space, outputs may be in completely different regions

Proof: If sufficient data are available, the nearest neighborof the attractor and still be considered true neighbors by the
to each point will be in a region where a local linear approxi-ratio test. This problem will not be encountered with large
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data sets where the space is “filled out” with data. move far enough apart to cause the ratio test to fail for even
Another fact to remember when choosing the thresholdairly large values oR.

valueR is that points which are false neighbors tend to move

very far apart in the output space. This is a consequence of lll. THE EFFECT OF NOISE

the previously mentioned fact that false neighbors are only Now consider the case where the data set to be examined

close because of projection. It has been our experiéase is corrupted with noise. Assume that for each timevhat

well as that of Abarbanedt al) that the percentage of false we observe isy™(t)=y(t)+5 where § is magnitude

nearest neighbors tends to remain fairly constant for a fairlppounded (8= &..). The time-delay coordinates will also be

wide range ofR(10<R<30). OnceR is large enough to corrupted with noise,z3'(k)=[y™(k—7),....y"(k—n7)]

account for the local gain of the system, the false neighbors[Y(k—7)+ 61,....y(k—n7)+&,],

Y™ (k) =y™()| <[ G (2z(k) ~ G(zo(}))| + 26.. 17
<[DG@(k)2lZn(K) — za(j)l| 2+ 26, (18)
<[DG @ (k)ILI1ZR(K) ~ 2z ()l +2Vn s8]+ 26.. (19
gmta>4|DG(Zn(t))H2[”an(k)_an(j)||2+2\/ﬁ5w]+25oc- (20)

Converting this final result into a form similar to the thresh- sampling time of 0.1. Two noisy data sets were also devel-

old function, oped by adding uniformly distributed noise of maximum ab-
solute value 0.5 and 1.0, respectively, to the original data set
ly™(k) —y™(j)| <maX|DG(z,(1))] (the x variable of the Lorenz signal has a standard deviation
[zZto—z(Dl mo of 12.36. , N
The FNN algorithm was utilized on each of the three data
25,.(\n max||DG(z,(1))||,+1) sets using time series of three different length80, 5000,

50 000 points The standard choice of threshold recom-
mended in1] (R=17.3) was used. The results of the algo-
(21) rithm can be seen in Figs. 1-3. When the percentage of FNN
. ) drops to 0, the embedding dimension is large enough to rep-
Note that 'ghere are tyvo terms on the right hand side _of th@asent the dynamics.
abov_e equation. _The first term accounts _for the maximum  Fqr pojse-free data, the percentage of false nearest neigh-
possible local gain of the system at a pomtk), and the  pors for a given dimension remains constant as the amount
second term is due only to the effects of noise. Also note thagt gata increases. However, for data corrupted with noise, the
the second term is inversely proportional to the separation dhercentage of false nearest neighbors for a given embedding
the nearest neighbors in the time-delay coordinates. gimensionincreasesas the amount of data is increased. For
If a ratio test with a threshold independent of the densityine ENN algorithm working on noise-corrupted data, more
of the points is used to analyze a time series which containgata are not necessarily better. This is contrary to the com-
noise[such as the original FNN test given in E@)], the  mgn pelief in identification that more data lead to more ac-
percentage of false nearest neighbors arising only from noisgrate results. Larger time series lead to “false” false near-
should increase proportionally with the density of the pointsggt neighbors, neighbors which are a result of noise

in the system. , _ , corruption rather than an incorrect embedding dimension.
This effect can be seen by using a time series from a well

studied example. Let us use the FNN algorithm to examine

I1z8'(k) =zl

data from integration of the Lorenz equations: IV. A POSSIBLE SOLUTION
x=o(y—x), A possible solution to this problem is to account for noise
by using a FNN threshold which includes both a constant
y=—Xz+px—Yy, term (as in the original FNN formulationand another term
(22)  to account for noise.
z=xy— fz, Instead of using Eq5) for the threshold, a logical test for

nearest neighbors based on the previous analysis is
=10, p=45.92, B=4.

A 50 000 point scalar time series was found by taking the ly(k)—y(j)| _ 2eR\I+2¢

AN - 23
x output from the integration of the above equations using a lz(k)=z(j)l lz1(k) =z (j)ll2
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* FIG. 1. FNN plots for noise-
free Lorenz time series.
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By examining Eq.(23) further, it can be seen that the equivalent to asking whether the two observed outputs lie
threshold test has two distinct limits depending on the size ofvithin a certain noise threshold of each other for identical
the term|z(k)—z(j)|l,. When the distance between the inputs.
nearest neighbors is relatively large, the first term on the The main problem with this choice of threshold is that
right hand side of the inequality will dominate and this ratio there are now two variables which must be tuned, namely,
test is equivalent to the original FNN test. When the distancdk and e. Optimally we should choose= 6., andR as sug-
between nearest neighbors approaches zero, the second tegested before. However, for time series wheke is un-
on the right hand side dominates. In this limit, the new test isknown, some physical arguments based on the size of ex-

T T 1

— 500 points .

— — 5000 points

~~~~~ 50000 points - 7
=
z | FIG. 2. FNN plots for Lorenz
e time series with magnitude 0.5
() .

noise.
25 3 35 4

Dimension
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pected measurement noise can be made for determining the standard threshold inequality E). The thresholds
The results of the algorithm should be fairly independent ofwere set withR=17.3 (as befor¢ and e=0.05. Figures 5

the choice ofR over a large range as before. Using thisand 6 show the results of the modified algorithm on the noisy
modified test for false nearest neighbors, the problem of adata. These figures can be compared to Figures 3 and 4,
increasing number of false nearest neighbors with increasingespectively, which are the results of the original FNN algo-
amounts of data will not be encountered in noisy data setsrithm.

In fact, as can be seen in the following example, by uti- Notice thate is well below the recommendet], values of
lizing the new ratio test even a smalterm can dramatically 0.5 and 1.0 for the two data sets. However, the modified
affect the results of the FNN algorithm. The same data weralgorithm has the desired results of distinguishing those false
examined with the FNN algorithm substituting H&3) for  nearest neighbors which are the result of noise from those

100¢ T T T T T

T
7

— No noise -
N - — Noise .5 mag
S TR Noise 1 mag

920

80

T
b

70f N -
60 \ / 7

50 AN . FIG. 4. FNN plots for the three
\ different Lorenz time series of
40} \ - length 50 000.

% FNN

30} N .
20+ : N -

10F SO _

1 15 2 25 3 35 4
Dimension
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- FIG. 5. FNN plots for Lorenz
time series with magnitude 1.0
noise, modified algorithm
Il L LI \
25 3 3.5 4

Dimension

which are the result of an incorrect embedding dimensionnoise are not encountered when using the original FNN ratio
The reason that such a smallvorks well in this case may be test. For larger data sets, the problem with increasing data
both because a conservative choicé&kdé made and the new causing false nearest neighbors from noise is no longer
FNN threshold is conservative in construction. False nearegiresent with the new ratio test and correct prediction of the
neighbors which are the result of noise in the original algo-embedding dimension is again possible.
rithm are not counted as false nearest neighbors with this
modified formulation.

For the data set of size 500, the modified algorithm incor-
rectly predicts an embedding of dimension 2 for the noisy In this section, two additional examples will be presented
data set. However, for small data sets problems arising frorwhich illustrate the advantages of the proposed threshold

V. ADDITIONAL EXAMPLES

100 T Ll T T T
ool — No noise .
— — Noise .5 mag

s | Noise 1 mag T

z -
g FIG. 6. FNN plots for modi-
ES fied algorithm(Lorenz time series,

] length 50 00D
= —— 5 ! ©
25 3 3.5 4

Dimension
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test. The first example consists of data from the Mackeyalgorithm the threshol®=17.3 is used and in the modified
Glass delay-differential equation, and the second examplENN algorithm the threshold=0.001 is used. The results of
examines white noise time-series data. The results given bie original FNN algorithm seem to suggest that the proper
the new threshold test are compared with the results of thembedding dimension of the noise-free time series is 4.
standard FNN ratio test. When the noise-corrupted time series is examined by the
original FNN algorithm the proper embedding dimension ap-

A. Mackey-Glass delay-differential equation pears to be 5. Again, by applying the modified threshold test,
The Mackey-Glass equation is the delay-differential equall® Proper embedding dimensiéd) of the noise-corrupted
tion given as time series can t_)e recov_ered assuming one considers 0.05%
false nearest neighbors is close enough to zero for the pur-
dx(t) 0.(t—A) pose of determining the embedding dimension.
at 1+x(t—A)D (24 What is especially important is that the modified FNN

algorithm finds nearly the same percentage of false nearest
This delay-differential equation exhibits chaotic behaviorn€ighbors for those embedding dimensions where the origi-
over a wide range of delay parametersFor this study, a na! FNN algo.rlthm. gives a small number of false negrest
time series with 50 000 points was created by integrating Eqr)elghbors. This is important becaL_lse accurate p_redlctlon of
(24) with A=17. The sampling time used to create the dis-the percentage of false_ neares; neighbors is crucial when the
crete time series is 6, as is suggested by a previous study Bfrcentage of false neighbors is small.
Casdagli 8].

In addition to the noise-free time series, a noise-corrupted . .

time series is created by adding normally distributed noise B. White noise
with a standard deviation of 0.03 to the original time series. In order to confirm that the FNN threshold test presented
These two time series are then analyzed by the original andere does not give spurious results, both the original and new
modified FNN algorithms, and the results are presented ifrNN threshold tests are applied to a time series consisting of
Fig. 7 and Table I. For both the original and modified FNN white noise. A normally distributed white noise time series

TABLE I. FNN analysis of data from Mackey-Glass equation.

Embedding Dimension

% FNN 1 2 3 4 5 6
Noise-free data, original FNN 99.12 26.81 0.42 0 0 0
Noisy data, original FNN 99.37 75.70 12.37 0.71 0.03 0.01

Noisy data, modified FNN 84.36 44.01 2.65 0.05 0 0
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of length 50 000 was generated by theTLAB command deterministic. However, for dimensions largerniaa large

RANDN [9]. The variance of the time series is one and thenumber of the false nearest neighbors come as a result of the

mean is zero. Ry 1 threshold tesfEq. (6)]. To be sure the results of the
Again, both the original FNN algorithm and the modified original threshold tegtEq. (5)] are not affected by the modi-

threshold test were applied to the time series with the threskfication, a second study was conducted excludingRhe;

old R=17.3. For the modified threshold test, threshokds threshold test. The results of the previous examfllesenz,

=0.001 and 0.005 were used. The results of the FNN analyMackey-Glasp are not affected by excluding th&y,

sis are given in Fig. 8. It appears that qualitatively the resultshreshold tesfEq. (6)].

are identical for the two different FNN threshold tests. More  When theR,. ; test is excludedFig. 9), the percentage of

importantly, none of the tests predict that the time series isalse nearest neighbors for embedding dimensions 4 and

10%‘ 1 T 1 T 1 T 1 T 1

Q(XB:_.. N

— Original FNN 7
\ — — epsilon=0.001
80 N e epsilon=0.005 1

70+ N ! 1

% FNN

60
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1.5

25

3

3.5 4
Dimension

D O—

FIG. 9. FNN plots for white
noise, excludingRy,, distance
test.
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larger is significantly different than those given in Fig. 8.to analyze time series from physical systems. A ratio test
However, the results of FNN with the origingEqg. (5)] and  which solves this problem is proposed. However, an easy
modified[Eq. (23)] threshold tests are nearly identical. The method of determining the correct choice of thresholds is a
modified FNN threshold test does not significantly changeproblem which remains to be solvdds it does with the
the percentage of false neighbors given by the original FNNoriginal FNN algorithm. Some theoretical results and other
algorithm. guidelines are given to aid the proper choice of Bhand e
thresholds. The modified threshold test is then applied to
VI. CONCLUSIONS time-series data from the Mackey-Glass equation and to a

) o . ) white noise time series and the results are analyzed.
The problem of analyzing noisy time series with the FNN

algorithm has been discussed and illustrated using data from ACKNOWLEDGMENT

the Lorenz attractor. The problem of false nearest neighbors

which arise from noise rather than incorrect embedding di- Partial support from the Department of Energy is grate-
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