
PHYSICAL REVIEW E MAY 1997VOLUME 55, NUMBER 5
False-nearest-neighbors algorithm and noise-corrupted time series
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The false-nearest-neighbors~FNN! algorithm was originally developed to determine the embedding dimen-
sion for autonomous time series. For noise-free computer-generated time series, the algorithm does a good job
in predicting the embedding dimension. However, the problem of predicting the embedding dimension when
the time-series data are corrupted by noise was not fully examined in the original studies of the FNN algorithm.
Here it is shown that with large data sets, even small amounts of noise can lead to incorrect prediction of the
embedding dimension. Surprisingly, as the length of the time series analyzed by FNN grows larger, the cause
of incorrect prediction becomes more pronounced. An analysis of the effect of noise on the FNN algorithm and
a solution for dealing with the effects of noise are given here. Some results on the theoretically correct choice
of the FNN threshold are also presented.@S1063-651X~97!01605-X#

PACS number~s!: 07.05.Kf, 05.45.1b
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I. THE FALSE-NEAREST-NEIGHBORS ALGORITHM

The false-nearest-neighbors~FNN! algorithm is a tool to
determine if a given ‘‘input’’ vector contains enough info
mation to predict another ‘‘output’’ value directly from prop
erties of the data. More specifically, for the description

y~n!5G@x1~n!,x2~n!,...,xl~n!# ~1!

FNN answers the question of whether a single-valued fu
tionG exists relating thexi variables and the output variab
y for a given data set.

The FNN algorithm was originally developed for dete
mining the number of time-delay coordinates needed to
create autonomous dynamics@1,2#, but FNN has also been
extended to examine the problem of determining the pro
embedding dimension for input-output dynamics and for
ferential measurement selection@3#. More information about
the theory of using time-delay coordinates for modeling
input-output systems can be found in@4,5#. For autonomous
systems described by state space equations, a scalar out
any point in time can be predicted by a function involvin
time-delayed versions of the same output. The following
lationship holds for autonomous systems ifl.2d, whered
is the dimension of the state space dynamics@6,7#:

y~ t !5G@y~ t2t!,y~ t22t!,...,y~ t2 l t!#. ~2!

However, given only a time seriesy(t) from an unknown
dynamical system, this theoretical result is little help in d
termining the proper embedding dimensionl .

The FNN algorithm was developed to determine t
smallest number of time-delay coordinatesl needed to deter
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mine the outputy(t) directly from time-series data. FNN i
based on the following fact. If the number of time-dela
coordinatesl is too small, then points close in the time-dela
coordinates may only be close because of projection ra
than the dynamics of the system. In this case, points wh
are close together in the time-delay coordinates may h
very different outputsy(t). Points which are only close be
cause of projection are known asfalse neighbors. Whenl is
large enough to represent the dynamics of the system, po
which are close in the time-delay coordinates will alwa
have outputsy(t) which are ‘‘close’’ in some sense.

Here is a short outline of the FNN algorithm for auton
mous systems.

~1! Identify the closest point~in the Euclidean sense! to a
given point in the time-delay coordinates. That is, for a giv
time-delay point

zl~k!5@y~k2t!,...,y~k2 l t!# ~3!
find the pointzl( j ) in the data set such that the followin
distanced is minimized:

d5izl~k!2zl~ j !i2 . ~4!
zl( j ) is known as the nearest neighbor tozl(k).

~2! Determine if the following expression is true or fals
uy~k!2y~ j!u

izl~k!2zl~ j !i2
<R, ~5!

whereR is some previously chosen threshold value. If e
pression~5! is true, then the neighbors aretrue neighbors. If
the expression is false, then the neighbors arefalsenearest
neighbors.

~3! Continue the algorithm for all pointsk in the data set.
Calculate the percentage of points in the data set which h
false nearest neighbors.

~4! Continue the algorithm for increasingl until the per-
centage of false nearest neighbors drops to zero~or some
acceptably small number!.

While this single threshold test works quite well for cas
where there are ‘‘sufficient data’’ to fill out the embeddin
space, for cases where the distance between nearest n
6162 © 1997 The American Physical Society
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55 6163FALSE NEAREST-NEIGHBORS ALGORITHM AND NOISE- . . .
bors izl(k)2zl( j )i2 is large the distance between outpu
uy(k)2y( j )u can be quite large and still satisfy the abo
threshold test@Eq. ~5!#. If the distance between the neare
neighbors embedded in the space of outputs and regress
roughly the same magnitude as the size of the attractor,
the neighbors should also be considered false neighbors
this reason, a second threshold test which only becomes
portant in cases of sparse data was also utilized in the o
nal FNN algorithm@1,10#.

The second threshold test is defined as

Rd11

RA
,Atol , ~6!

where

Rd11
2 5@y~k!2y~ j !#21izl~k!2zl~ j !i2

2, ~7!

RA
25

1

N (
n51

N

@y~n!2 ȳ #2, ~8!

ȳ5
1

N (
n51

N

y~n!. ~9!

The recommended threshold ofAtol52 is used in all of the
examples given here. Failing this additional threshold t
means that the nearest neighbors are far apart in the exte
space ofRd11 and that the neighbors should be conside
false. Since a failure of the above threshold test implie
failure of the threshold test given in Eq.~5! when nearest
neighbors are close@whenizl(k)2zl( j )i2

2 is small#, this test
is only important when the nearest neighbors are relativ
far apart.

II. THEORETICAL CHOICE OF FNN THRESHOLD

Assume that the minimal representation in the time-de
coordinates is known. Letn be the smallest integer for whic
there exists a functionG uniquely determining the outpu
coordinatey(t) for all time-delay vectors.

y~ t !5G@y~ t2t!,y~ t22t!,...,y~ t2nt!# ~10!

5G@zn~ t !#. ~11!

Also assume that the functionG is known. How should the
thresholdR for the ratio test be chosen when the time ser
is noise free? The following choice of threshold should
made if the data are sufficiently ‘‘dense’’ over the region
interest.

Lemma 1. R5maxtiDG„zn(t)…i2 , whereDG(x) is the
Jacobian of the functionG at the pointx, is the smallest
choice of the threshold which will give 0% FNN at th
proper dimensionn for all data sets.

Proof: If sufficient data are available, the nearest neigh
to each point will be in a region where a local linear appro
t
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mation to the functionG can be made. Using a linear ap
proximation around the pointzn(k), the output of the neares
neighbory( j ) is given by

y~k!2y~ j !5DG„zn~k!…@zn~k!2zn~ j !#

1O„@zn~k!2zn~ j !#
2
…. ~12!

Ignoring the higher order terms, by the Cauchy-Schwarz
equality we know

uy~k!2y~ j !u<iDG„zn~k!…i2izn~k!2zn~ j !i2 , ~13!

uy~k!2y~ j !u
izn~k!2zn~ j !i2<iDG„zn~k!…i2 , ~14!

uy~k!2y~ j !u
izn~k!2zn~ j !i2<max

t
iDG„zn~ t !…i2

;k and nearest neighborj . ~15!

For any choice ofR smaller than maxtiDG„zn(t)…i2 , the gain
of the system may cause the FNN algorithm to record a fa
nearest neighbor@see Eq.~5!# at the time-delay pointzn(t) if
the nearest neighbor happens to make the equa
aDG„zn(t)…5@zn(t)2zn( j )# true for someaPR. In other
words, the equality of Eq.~15! will hold when the neares
neighbor tozn(t) happens to lie in the direction of maximum
gain of the Jacobian

Therefore a proper lower bound on the choice of t
thresholdR for the FNN algorithm is dependent on know
edge of the function which needs to be identified. Howev
if an infinite amount of data is available the thresholdR can
be chosen arbitrarily large.

Lemma 2. For an amount of data approaching infinity, a
finite threshold valueR will lead to a nonzero percentage o
FNN when the embedding dimension is smaller thann.

Proof: The functionG has a unique output for all input
only for values of embedding dimensionl>n. For l,n, the
implied function relating the time-delay coordinates to t
output may have multiple outputs for a given time-delay ve
tor. Take a pointzn(k) where the function does not have
unique output and a sequence of pointszn( j i) where
lim i→`zn( j i)5zn(k) but limi→`y( j i)2y(k)5kÞ0. Now
using the FNN threshold@Eq. ~5!# we see

lim
i→`

uy~k!2y~ j i !u
izl~k!2zl~ j i !i2

5` ~16!

or that the thresholdRmust be infinitely large for the thresh
old inequality@Eq. ~5!# to be true. j

When analyzing real, finite time series the results of th
lemmas are not helpful. However, further analysis of the
sults of Lemma 2 leads us to believe that when there
more points in a data set, a larger threshold value can
chosen safely. On the other hand, if the threshold is cho
too large and nearest neighbors are not close in the ti
delay space, outputs may be in completely different regi
of the attractor and still be considered true neighbors by
ratio test. This problem will not be encountered with lar
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6164 55CARL RHODES AND MANFRED MORARI
data sets where the space is ‘‘filled out’’ with data.
Another fact to remember when choosing the thresh

valueR is that points which are false neighbors tend to mo
very far apart in the output space. This is a consequenc
the previously mentioned fact that false neighbors are o
close because of projection. It has been our experience~as
well as that of Abarbanelet al.! that the percentage of fals
nearest neighbors tends to remain fairly constant for a fa
wide range ofR(10<R<30). OnceR is large enough to
account for the local gain of the system, the false neighb
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move far enough apart to cause the ratio test to fail for e
fairly large values ofR.

III. THE EFFECT OF NOISE

Now consider the case where the data set to be exam
is corrupted with noise. Assume that for each timet, what
we observe is ym(t)5y(t)1d where d is magnitude
bounded (udu<d`). The time-delay coordinates will also b
corrupted with noise,zn

m(k)5@ym(k2t),...,ym(k2nt)#
5@y(k2t)1d1 ,...,y(k2nt)1dn#,
uym~k!2ym~ j !u<uG„zn~k!…2G„zn~ j !…u12d` ~17!

<iDG„zn~k!…i2izn~k!2zn~ j !i212d` ~18!

<iDG„zn~k!…i2@ izn
m~k!2zn

m~ j !i212And`#12d` ~19!

<max
t

iDG„zn~ t !…i2@ izn
m~k!2zn

m~ j !i212And`#12d` . ~20!
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Converting this final result into a form similar to the thres
old function,

uym~k!2ym~ j !u
izn

m~k!2zn
m~ j !i2

<max
t

iDG„zn~ t !…i2

1
2d`~An maxtiDG„zn~ t !…i211!

izn
m~k!2zn

m~ j !i2
.

~21!

Note that there are two terms on the right hand side of
above equation. The first term accounts for the maxim
possible local gain of the system at a pointzn(k), and the
second term is due only to the effects of noise. Also note
the second term is inversely proportional to the separatio
the nearest neighbors in the time-delay coordinates.

If a ratio test with a threshold independent of the dens
of the points is used to analyze a time series which cont
noise @such as the original FNN test given in Eq.~5!#, the
percentage of false nearest neighbors arising only from n
should increase proportionally with the density of the poi
in the system.

This effect can be seen by using a time series from a w
studied example. Let us use the FNN algorithm to exam
data from integration of the Lorenz equations:

ẋ5s~y2x!,

ẏ52xz1rx2y,
~22!

ż5xy2bz,

s510, r545.92, b54.

A 50 000 point scalar time series was found by taking
x output from the integration of the above equations usin
e

at
of

y
s
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s

ll
e

e
a

sampling time of 0.1. Two noisy data sets were also dev
oped by adding uniformly distributed noise of maximum a
solute value 0.5 and 1.0, respectively, to the original data
~thex variable of the Lorenz signal has a standard deviat
of 12.36!.

The FNN algorithm was utilized on each of the three d
sets using time series of three different lengths~500, 5000,
50 000 points!. The standard choice of threshold recom
mended in@1# (R517.3) was used. The results of the alg
rithm can be seen in Figs. 1–3. When the percentage of F
drops to 0, the embedding dimension is large enough to
resent the dynamics.

For noise-free data, the percentage of false nearest ne
bors for a given dimension remains constant as the amo
of data increases. However, for data corrupted with noise,
percentage of false nearest neighbors for a given embed
dimensionincreasesas the amount of data is increased. F
the FNN algorithm working on noise-corrupted data, mo
data are not necessarily better. This is contrary to the c
mon belief in identification that more data lead to more a
curate results. Larger time series lead to ‘‘false’’ false ne
est neighbors, neighbors which are a result of no
corruption rather than an incorrect embedding dimension

IV. A POSSIBLE SOLUTION

A possible solution to this problem is to account for noi
by using a FNN threshold which includes both a const
term ~as in the original FNN formulation! and another term
to account for noise.

Instead of using Eq.~5! for the threshold, a logical test fo
nearest neighbors based on the previous analysis is

uy~k!2y~ j !u
izl~k!2zl~ j !i2

<R1
2eRAl12e

izl~k!2zl~ j !i2
. ~23!
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FIG. 1. FNN plots for noise-
free Lorenz time series.
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By examining Eq.~23! further, it can be seen that th
threshold test has two distinct limits depending on the size
the term izl(k)2zl( j )i2 . When the distance between th
nearest neighbors is relatively large, the first term on
right hand side of the inequality will dominate and this ra
test is equivalent to the original FNN test. When the dista
between nearest neighbors approaches zero, the second
on the right hand side dominates. In this limit, the new tes
f

e

e
erm
s

equivalent to asking whether the two observed outputs
within a certain noise threshold of each other for identi
inputs.

The main problem with this choice of threshold is th
there are now two variables which must be tuned, nam
R ande. Optimally we should choosee5d` andR as sug-
gested before. However, for time series whered` is un-
known, some physical arguments based on the size of
FIG. 2. FNN plots for Lorenz
time series with magnitude 0.5
noise.
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FIG. 3. FNN plots for Lorenz
time series with magnitude 1.0
noise.
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pected measurement noise can be made for determinine.
The results of the algorithm should be fairly independent
the choice ofR over a large range as before. Using th
modified test for false nearest neighbors, the problem o
increasing number of false nearest neighbors with increa
amounts of data will not be encountered in noisy data se

In fact, as can be seen in the following example, by u
lizing the new ratio test even a smalle term can dramatically
affect the results of the FNN algorithm. The same data w
examined with the FNN algorithm substituting Eq.~23! for
f

n
g
.
-

re

the standard threshold inequality Eq.~5!. The thresholds
were set withR517.3 ~as before! and e50.05. Figures 5
and 6 show the results of the modified algorithm on the no
data. These figures can be compared to Figures 3 an
respectively, which are the results of the original FNN alg
rithm.

Notice thate is well below the recommendedd` values of
0.5 and 1.0 for the two data sets. However, the modifi
algorithm has the desired results of distinguishing those fa
nearest neighbors which are the result of noise from th
f

FIG. 4. FNN plots for the three

different Lorenz time series o
length 50 000.
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FIG. 5. FNN plots for Lorenz
time series with magnitude 1.0
noise, modified algorithm
on

re
o
th

or
is
ro

atio
ata
ger
the

ed
old
which are the result of an incorrect embedding dimensi
The reason that such a smalle works well in this case may be
both because a conservative choice ofR is made and the new
FNN threshold is conservative in construction. False nea
neighbors which are the result of noise in the original alg
rithm are not counted as false nearest neighbors with
modified formulation.

For the data set of size 500, the modified algorithm inc
rectly predicts an embedding of dimension 2 for the no
data set. However, for small data sets problems arising f
.

st
-
is

-
y
m

noise are not encountered when using the original FNN r
test. For larger data sets, the problem with increasing d
causing false nearest neighbors from noise is no lon
present with the new ratio test and correct prediction of
embedding dimension is again possible.

V. ADDITIONAL EXAMPLES

In this section, two additional examples will be present
which illustrate the advantages of the proposed thresh
FIG. 6. FNN plots for modi-
fied algorithm~Lorenz time series,
length 50 000!
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FIG. 7. FNN plots for
Mackey-Glass time series.
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test. The first example consists of data from the Mack
Glass delay-differential equation, and the second exam
examines white noise time-series data. The results given
the new threshold test are compared with the results of
standard FNN ratio test.

A. Mackey-Glass delay-differential equation

The Mackey-Glass equation is the delay-differential eq
tion given as

dx~ t !

dt
520.1x~ t !1

0.2x~ t2D!

11x~ t2D!10
. ~24!

This delay-differential equation exhibits chaotic behav
over a wide range of delay parametersD. For this study, a
time series with 50 000 points was created by integrating
~24! with D517. The sampling time used to create the d
crete time series is 6, as is suggested by a previous stud
Casdagli@8#.

In addition to the noise-free time series, a noise-corrup
time series is created by adding normally distributed no
with a standard deviation of 0.03 to the original time seri
These two time series are then analyzed by the original
modified FNN algorithms, and the results are presented
Fig. 7 and Table I. For both the original and modified FN
-
le
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e
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r
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of

d
e
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d
in

algorithm the thresholdR517.3 is used and in the modifie
FNN algorithm the thresholde50.001 is used. The results o
the original FNN algorithm seem to suggest that the pro
embedding dimension of the noise-free time series is
When the noise-corrupted time series is examined by
original FNN algorithm the proper embedding dimension a
pears to be 5. Again, by applying the modified threshold te
the proper embedding dimension~4! of the noise-corrupted
time series can be recovered assuming one considers 0
false nearest neighbors is close enough to zero for the
pose of determining the embedding dimension.

What is especially important is that the modified FN
algorithm finds nearly the same percentage of false nea
neighbors for those embedding dimensions where the o
nal FNN algorithm gives a small number of false near
neighbors. This is important because accurate prediction
the percentage of false nearest neighbors is crucial when
percentage of false neighbors is small.

B. White noise

In order to confirm that the FNN threshold test presen
here does not give spurious results, both the original and
FNN threshold tests are applied to a time series consistin
white noise. A normally distributed white noise time seri
01
TABLE I. FNN analysis of data from Mackey-Glass equation.

% FNN

Embedding Dimension

1 2 3 4 5 6

Noise-free data, original FNN 99.12 26.81 0.42 0 0 0
Noisy data, original FNN 99.37 75.70 12.37 0.71 0.03 0.
Noisy data, modified FNN 84.36 44.01 2.65 0.05 0 0
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FIG. 8. FNN plots for white
noise with all FNN tests.
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and
of length 50 000 was generated by theMATLAB command
RANDN @9#. The variance of the time series is one and
mean is zero.

Again, both the original FNN algorithm and the modifie
threshold test were applied to the time series with the thre
old R517.3. For the modified threshold test, thresholdse
50.001 and 0.005 were used. The results of the FNN an
sis are given in Fig. 8. It appears that qualitatively the res
are identical for the two different FNN threshold tests. Mo
importantly, none of the tests predict that the time serie
e

h-

y-
ts

is

deterministic. However, for dimensions larger than 3 a large
number of the false nearest neighbors come as a result o
Rd11 threshold test@Eq. ~6!#. To be sure the results of th
original threshold test@Eq. ~5!# are not affected by the modi
fication, a second study was conducted excluding theRd11
threshold test. The results of the previous examples~Lorenz,
Mackey-Glass! are not affected by excluding theRd11
threshold test@Eq. ~6!#.

When theRd11 test is excluded~Fig. 9!, the percentage o
false nearest neighbors for embedding dimensions 4
FIG. 9. FNN plots for white
noise, excludingRd11 distance
test.
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larger is significantly different than those given in Fig.
However, the results of FNN with the original@Eq. ~5!# and
modified @Eq. ~23!# threshold tests are nearly identical. Th
modified FNN threshold test does not significantly chan
the percentage of false neighbors given by the original F
algorithm.

VI. CONCLUSIONS

The problem of analyzing noisy time series with the FN
algorithm has been discussed and illustrated using data
the Lorenz attractor. The problem of false nearest neighb
which arise from noise rather than incorrect embedding
mension is one which will be encountered when using F
S.

n

e
xi
e
N
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rs
i-

to analyze time series from physical systems. A ratio t
which solves this problem is proposed. However, an e
method of determining the correct choice of thresholds i
problem which remains to be solved~as it does with the
original FNN algorithm!. Some theoretical results and oth
guidelines are given to aid the proper choice of theR ande
thresholds. The modified threshold test is then applied
time-series data from the Mackey-Glass equation and t
white noise time series and the results are analyzed.
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