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Stability of temporal chirped solitary waves in quadratically nonlinear media
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A two-parameter family of moving solitary waves in nonlinear quadratic media is obtained and discussed in
different parameter spaces, where they are unstable in certain domains. The stability criterion is derived and
confirmed by means of a beam propagation method.@S1063-651X~97!14905-4#

PACS number~s!: 42.65.Tg, 42.65.Ky
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I. INTRODUCTION

Recently solitary waves based on a quadratically non
ear interaction attracted a lot of attention in nonlinear op
@1–14#. They were found to exist as self-guided beams
bulk materials@8# and planar waveguides@9#. Both spatial
and temporal solitary waves are described by the same
lution equations. Until recently only a one-parameter fam
of such solutions has been identified. They can be calcul
as real valued. For one value of the ratio of the diffraction
dispersion coefficients of the fundamental and second
monics the evolution equations are invariant under a cer
transformation, thus yielding a two-parameter family of so
tary wave solutions that can be directly obtained from
real-valued one-parameter family~see, e.g.,@12#!. With the
exception of one element of the family, which is known an
lytically @1,3,6#, the solitary wave solutions have to be dete
mined numerically@5#. It was found that they exhibit a nar
row domain of instability@11#. The collision of two such
waves shows that they merge for sufficiently small relat
velocities @12#. This is due to the fact that the evolutio
equations are not integrable.

In the spatial case the real-valued family of solitary wa
solutions corresponds to the fundamental and second
monics propagating in the same direction. No spatial wa
off is induced, e.g., by birefringence. The spatial walk-o
can be avoided in a planar waveguide, whereas in the t
poral case the situation is much more complicated. In
case the one-parameter family of solitary wave solutions c
responds to a certain carrier frequency where the group
locities of the two pulses~fundamental and second harmo
ics! are equal. In most materials such a frequency does
exist. Here we concentrate on the more common situa
where the two pulses tend to move away from each other
to a group velocity difference. The family of solitary wav
solutions obtained is two-parametric and complex valued
has been identified independently very recently, focusing
the spatial case@14#. Here we concentrate on the tempor
case using a different scaling from@14# to employ a mini-
mum number of parameters for clarity. But the central role
our analysis is the stability of the moving solitary wave s
lutions, which is a crucial issue for potential application
We derive the manifold in parameter space where the s
tary waves destabilize.
551063-651X/97/55~5!/6155~7!/$10.00
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This paper is organized as follows. In Sec. II we introdu
the basic sets of equations and point out the number of
rameters of the family of solutions under investigation. W
discuss the solitary wave solutions with the emphasis on
temporal case. Section III deals in detail with their stabili
In Sec. IV the solitary wave solutions are discussed in ter
of their parameters and Sec. V concludes the paper.

II. BASIC EQUATIONS AND SOLITARY WAVE
SOLUTIONS

We consider pulse propagation, e.g., in a channel wa
guide with a quadratically nonlinear medium. The evoluti
equations for the slowly varying amplitudesA18 andA28 of the
fundamental and second harmonics in a reference fra
moving with the group velocity of the fundamental are

i
]A18

]Z8
1
D1

2

]2A18

]T82
1x1A18*A2850 ,

i
]A28

]Z8
1 ig8

]A28

]T8
1
D2

2

]2A28

]T82
2b8A281x2A18

250 , ~1!

with

b852b1~v0!2b2~2v0! ,

g85
]b2

]v U
v52v0

2
]b1

]v U
v5v0

, ~2!

D152
]2b1

]v2 U
v5v0

, D252
]2b2

]v2 U
v52v0

.

Here b1(v) and b2(v) are the dispersion relations of th
two guided modes corresponding to the fundamental
second harmonics andv0 is the carrier frequency. The pro
files of the two guided modes enter into the effective nonl
ear coefficientsx1 andx2. The quantities derived from the
dispersion relations are the phase mismatchb8 between the
fundamental and second harmonics, the negative differe
of their inverse group velocitiesg8, and their dispersion co
efficientsDn , n51,2. Positive and negativeDn correspond
to anomalous and normal dispersion, respectively. The t
6155 © 1997 The American Physical Society
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proportional tog8 in the second of Eqs.~1! is commonly
referred to as walk-off. Applying the transformation

T5
T8

T0
, Z5

Z8

LD
, A15Ax1x2LDA18 , A25x1LDA28 ,

g5
g8LD
T0

, b5b8LD , s5
D2

D1
, LD5

T0
2

uD1u
, ~3!

where T0 denotes the pulsewidth andLD the dispersion
length, leads for anomalous dispersion~both waves! to

i
]A1

]Z
1
1

2

]2A1

]T2
1A1*A250 ,

i
]A2

]Z
1 ig

]A2

]T
1

s

2

]2A2

]T2
2bA21A1

250 . ~4!

The above equations describe the spatial case with walk
as well. They are similar for the case of normal dispersi
The solutions of Eqs.~4! we are interested in are solitar
waves with bright shapes. Due to their group velocity diffe
ence fundamental and second harmonic components of a
lution tend to separate from each other. On the other ha
for a solitary wave to exist it is required that both consti
ents move with a common velocity. Thus the question
whether the nonlinear interaction is able to prevent the se
ration and which common velocity such a symbiotic obje
attains. It is expected that the complex term introduced
the walk-off in general leads to a chirped solution. Th
another parameter of the solutions is the average freque
~or momentum!.

Even if solitary waves are determined for a fixed carr
frequency corresponding to a certain walk-off the result
solution need not be centered at this chosen frequency. T
the whole frequency domain has to be considered. Soli
waves are expected to be found in certain domains of
velocity-average frequency plane. Though being an imp
tant parameter the average frequency of a solitary wav
difficult to handle because it depends on the solution i
nontrivial way. To obtain a coherent description of the so
tary waves we introduce a wave number coming back to
more relevant average frequency later. Thus we are look
for a two-parameter family of solutions with parametersk
~wave number! and v ~velocity!. To this end we introduce
the following transformation of Eqs.~4!:

t5Ak2
v2

2
~T2vZ! , z5S k2

v2

2 DZ ,

a15
1

k2v2/2
e2 i ~k2v2!Ze2 ivTA1 ,

a25
1

k2v2/2
e22i ~k2v2!Ze22ivTA2 , ~5!

d5
~2s21!v1g

Ak2v2/2
, a5

b12k12~s21!v212gv
k2v2/2

,

giving
ff
.

-
so-
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-
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e
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i
]a1
]z

1
1

2

]2a1
]t2

2a11a1* a250 ,

i
]a2
]z

1 id
]a2
]t

1
s

2

]2a2
]t2

2aa21a1
250 . ~6!

Bright solitary waves are now calculated as stationary so
tions of Eqs.~6!, i.e., equating thez derivatives to zero and
applying the appropriate boundary conditions. They dep
on the rescaled phase mismatcha and the rescaled walk-of
d. The solitary wave solutions calculated in this way can
considered as moving ones of Eqs.~4! with propagation con-
stant k and velocityv, thus establishing a two-paramet
family of solutions. The scaling defined by Eqs.~5! reduces
the number of parameters from four (g, b, k, and v) to
two (a andd) without loss of generality. Note from Eqs.~5!
the interplay between the velocityv, the walk-offg, and the
dispersion coefficients in the expression for the rescale
walk-off d. This indicates that the group velocity mismatc
and the velocity of a solitary wave solution act similarl
This fact can be conveniently exploited, since a shift of t
velocity v→v1v0 @v052g/(2s21)# and of the propaga-
tion constantk→k1(v1v0/2)v0 allows the restriction to
g50, provided thatsÞ1/2 and the phase mismatch is reno
malized asb→b1g2/(2s21).

For d50 the real-valued families of solitary wave solu
tions are recovered. The one-parameter family~parameter
k) corresponds tosÞ1/2, i.e., v50 for g50 or
v52g/(2s21) otherwise. It is just a limiting case within
broader class of solutions. The two-parameter family~param-
etersk andv) is obtained in the cases51/2, i.e.,g50. As
can be seen from the transformation of Eqs.~5! the moving
solutions of this family can be generated directly from t
resting ones. The solitary wave solutions obtained for n
vanishingd are complex-valued with a nontrivial phase; i.e
they have a chirp~see Fig. 1!. Obviously there is no limita-
tion with respect to the rescaled walk-offd for solitary
waves to exist. The lower boundary of the rescaled ph
mismatcha depends ond @a.d2/(2s), see next section#.

FIG. 1. Intensities and time derivatives of the phases of a s
tary wave solution ford50.6, a50.5, ands50.8. Solid and
dashed lines correspond to the fundamental and second harmo
respectively.
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55 6157STABILITY OF TEMPORAL CHIRPED SOLITARY . . .
Equations~6! yield two conservation laws that play a ce
tral role in our analysis, the energyp and the momentumq
of a solitary wave solutionan0 , n51,2:

q5E dt ~ ua10u21ua20u2! ,

p5
1

2i E dtFa10]a10*

]t
2a10*

]a10
]t

1
1

2S a20]a20*

]t
2a20*

]a20
]t D G .

~7!

It should be mentioned that there is a third conserved qu
tity, a Hamiltonian, which is not given here.

Figure 2 shows a contour plot of the energyq in the
(d,a) plane. If the lower limit of existence is approached t
width of the solitary waves diverges. All the energy is ca
ried by the second harmonic and an infinite power is requ
to maintain the balance within the solitary wave~compare
Fig. 6 for solitary waves close to the limit of existence!.

More meaningful than the momentum itself is the sca
average frequencyv̄5p/q, which is conserved as well. Fo
an unchirped pulsev̄ is the difference from the carrier fre
quency. Thus the excitation of a solitary wave withv̄ re-
quires an initial pulse with that frequency. The averaged
quencyv̄ changes only marginally witha for fixed scaled
walk-off d ~Fig. 3! and is fairly small in terms of these pa
rameters. As in the case of the Schro¨dinger soliton, where the
e

t

lu

te
n-

-
d

d

-

frequency is proportional to the velocity,v̄ also increases
with increasingd, without giving rise to a strong additiona
chirp. For a5d2/(2s), i.e., at the limit of existence, the
second of Eqs.~6! with the last term neglected yield
v̄5d/(2s). This is half the frequency of a second harmon
wave that travels with the group velocity corresponding
the scaled walk-offd. Another limit is the Schro¨dinger case
~see@5#! for a→`. In this limit v̄50 since in the stationary
case considered here the Schro¨dinger soliton has no fre-
quency.

III. STABILITY ANALYSIS

For the one-parameter family of solitary waves (d50) a
narrow instability region was identified@11#. We show that
this is the case for the moving solutions as well. To this e
Eqs. ~6! are linearized around a solitary wave solutiona0.
Here we introduced the real four-component vec
a5(Rea1 ,Rea2 ,Ima1 ,Ima2)

T, whereT denotes the trans
posed and Rean , Iman , n51,2, the real and imaginary
parts of the fields, respectively. Substituting the ans
a5a01daelz into Eqs. ~6! and linearizing with respect to
da yields an eigenvalue problem forl:

Lda5lda , ~8!

where the operatorL is defined as
L5S 2Ima20 Ima10 2
1

2

]2

]t2
111Rea20 2Rea10

22Ima10 2d
]

]t
22Rea10 2

s

2

]2

]t2
1a

1

2

]2

]t2
211Rea20 Rea10 Ima20 Ima10

2Rea10
s

2

]2

]t2
2a 22Ima10 2d

]

]t

D . ~9!
ese
on-
d

es
ary
f
tive
he
table

of
oes
Asymptotically, i.e., fort→6`, Eq. ~8! can be solved by
means ofda;e6 iVt yielding the dispersion relations

l56 i S V2

2
11D ,

l56 i Fs2S V6
d

s D 21a2
d2

2sG . ~10!

From the above equations the limit of the continuous sp
trum is given by min$1,a2d2/(2s)%. For a5d2/(2s) the
gap of the continuous spectrum vanishes. This also marks
limit of existence for bright solitary waves~see dashed line
in Fig. 4!, which is due to the requirement that these so
tions have evanescent tails.

The linear problem has two localized or bound sta
with corresponding eigenvaluel50: dat5]a0 /]t and
c-

he

-

s

dap5(Ima10,2Ima20,2Rea10,22Rea20)
T, which corre-

spond to translational and phase invariance. Apart from th
two bound eigenstates we identified numerically a third, n
trivial bound statedab ~Fig. 5!. The corresponding square
eigenvaluelb

2 is always real. At a critical valuea5ac for
fixed d and s it changes its sign and the solitary wav
become unstable. Stability corresponds to a purely imagin
lb and instability to a positive reallb . The nonexistence o
a second nontrivial bound state, which always has a posi
real eigenvalue, is crucial for the following analysis. T
curve in parameter space that separates stable and uns
domains~see solid line in Fig. 4! is derived by a similar
asymptotic method as used in@11#. Our numerical analysis
suggests that at the critical point the bound statedab is a
linear combination of the two zero eigenmodes~i.e.,
dab5cdat1ddap). This is due to the fact that the number
basic symmetries with a corresponding zero eigenmode d
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not change and is not dependent on the soliton parame
Thus an expansion aroundac for fixed d and s is intro-
duced:

a5ac1a2e
2 , lb5l1e1l2e

21••• ,

dab5dab
~0!1dab

~1!e1dab
~2!e21••• , ~11!

with a2561 anddab
(0)5cdat1ddap . This and all the fol-

lowing a dependencies have to be taken atac . Substituting
the above expansion into the linear problem of Eqs.~8! we
get up to ordere2:

O~1!: L ~0!dab
~0!50 ,

O~e!: L ~0!dab
~1!5l1dab

~0! , ~12!

O~e2!: L ~0!dab
~2!2a2L

~0!
]dab

~0!

]a
5l2dab

~0!1l1dab
~1! .

HereL (0) is the operatorL taken atac . The first of Eqs.~12!
is trivially fulfilled sincedab

(0) is a linear combination of the
two zero eigenmodes. In the third of Eqs.~12! the relation

FIG. 2. Contour plot of the energyq in the (d,a) plane for
s50.8.

FIG. 3. Contour plot of the average frequencyv̄ in the (d,a)
plane fors50.8.
rs.
(]/]a)(Ldab

(0))50 was used. The inhomogeneous equat
at ordere in Eqs.~12! is solved by

dab
~1!5l1cS tdap22d

]a0
]a

2~2s21!
]a0
]d D

2l1dS a01 1

2
tdat1~22a!

]a0
]a

2
1

2
d

]a0
]d D .

~13!

Now from the third of Eqs.~12! a solvability condition is
derived. This arises from the fact that the adjoint opera
L1 of L has a nontrivial null space:

L1dat850 ,

dat85S 2
] Ima10

]t
,2

1

2

] Ima20
]t

,
] Rea10

]t
,
1

2

] Rea20
]t D T ,

L1dap850 , dap85a0 . ~14!

Calculating the scalar products betweendat8 , dap8 , and the
third of Eqs.~12! yields

FIG. 4. Domains of stability~above solid line! and instability
~between dashed and solid line! in the (d,a) plane fors50.8.

FIG. 5. Imaginary part of eigenvalueslb vs a for d50.6 and
s50.8. The dashed lines mark the limit of the continuous sp
trum.
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FIG. 6. Intensity of the fundamental and se
ond harmonics showing stable~a! and unstable
~b! propagation of a solitary wave a
a50.2, d50.33 ~a!, d50.39 ~b!, ands50.8.
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^dat8 ,dab
~1!&50 , ^dap8 ,dab

~1!&50 . ~15!

Here the scalar product is defined aŝda1 ,da2&
5*2`

` dt da1*
T
•da2 with the dot denoting matrix multiplica

tion. Equations~15! establish a system of linear equations f
the constantsc andd. The requirement thatc andd should
be nontrivial~or that the determinant of the coefficients va
ishes! finally yields the solvability condition

S 32 q1~22a!
]q

]a
2

d

2

]q

]d D S 12 q2d
]p

]a
2
1

2
~2s21!

]p

]d D
1S 2p1~22a!

]p

]a
2

d

2

]p

]d D S d
]q

]a
1
1

2
~2s21!

]q

]d D
50 , ~16!

whereq is the energy andp the momentum of a solitary
wave solutionan0 , n51,2 as defined in Sec. II. Note tha
the above procedure applied to the second of Eqs.~12! leads
to a trivial result sincê dat8 ,dab

(0)&5^dap8 ,dab
(0)&50. The

solvability condition of Eq.~16! describes the manifold in
parameter space where the squared eigenvaluelb

2 of the non-
trivial bound state changes its sign. Since there is only
nontrivial bound state, the stability changes at this manifo

Finally, the stable and unstable propagation of the solit
wave solutions was confirmed by means of a beam prop
tion method~Fig. 6!. In this example the unstable solitar
wave decays with decreasing amplitude and increasing w
while it moves away from the center.

IV. PHYSICAL INTERPRETATION OF SOLITARY
WAVES „SOLITARY WAVE PARAMETERS …

In the two previous sections the solitary wave solutio
and their stability have been characterized in terms of
~mathematically! convenient system parametersa and d.
Now we interpret our results by means of more access
e
.
y
a-

th

s
e

le

parameters (v andk). The velocityv, the propagation con-
stantk, the energyQ, and the momentumP with respect to
a solution An0 , n51,2, and the average frequenc
V̄5P/Q are related to the scaled quantitiesa, d, q, p,
and v̄ in the following way:

k5m1
1

2SAmd2g

2s21 D 2 , v5
Amd2g

2s21
,

Q5m3/2q , P5m2p , V̄5AmS v̄2
d

2s21D1
g

2s21
,

~17!

m5k2
v2

2
52

b~2s21!2g2

~22a!~2s21!1d2
.

Note that the scaling factorm has to be positive@cf. Eqs.~5!#
and that we may assumeg50 as pointed out previously. As
to the average frequencies the transformation defined by
~5! introduces a frequency shift. The relation between th
frequencies in Eqs. ~17! may be also written as
V̄5v̄Am2v. In terms of parametersa and d there are no
discontinuities, whereas for parametersk and v there is a
divergence ata521d2/(2s21) that separates domains o
positive @a.21d2/(2s21)# and negative phase mismatc
b @a,21d2/(2s21)# (g50). Here the limitation to
b561 is sufficient.

We first express the stability criterion of Eq.~16! by
means of the conserved quantities referring to Eqs.~4!. In
terms of the energyQ and the momentumP and the param-
etersk and v of the family of solitary wave solutions i
becomes much simpler:

]Q

]k

]P

]v
2

]Q

]v
]P

]k
50 . ~18!

The meaning of the above relation is that the vector funct
„Q(k,v),P(k,v)… is not invertible at a critical point. In this
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work the relation of Eq.~18! derives from the fact that eac
solitary wave parameter is connected to a fundamental s
metry of the evolution equations, namely, the velocityv to
translational invariance and the wave numberk to a phase
invariance. The fundamental symmetries in turn are reflec
in corresponding bound states of the linearized problem. T
may be compared with the case of vectorial second harm
interaction where also a two-parameter family of solita
wave solutions exists. The manifold in parameter sp
where the solitary waves destabilize can be expressed
similar way on the basis of conserved quantities@15#.

We describe now the family of solitary wave solutions
the space of velocity and average frequency. We find that
entire space between the straight lines]b̄1 /]V̄52V̄ ~group
velocity of fundamental harmonic as a function ofV̄) and
]b̄2 /]V̄522sV̄ ~group velocity of second harmonic as
function of 2V̄) is filled with solitary wave solutions. Here
the linear dispersion relations of Eqs.~4! (g50),

b̄1~V̄!52V̄2/2 , b̄2~V̄!52sV̄2/22b , ~19!

were used. There is no general restriction due to the w
off. The allowed range of velocities even increases with
creasing average frequencies.

Figure 7 shows the energyQ of the solitary waves versu
the parameterv for variousV̄ ands.1/2. Fors,1/2 the
behavior is similar. The Schro¨dinger limit ~the phase mis-
match is positive! corresponds to wide low-energy puls
traveling with the velocity of the fundamental wav
(v52V̄). If the energy is increased the pulses become n
rower changing their velocity, but do not approach the
locity of the second harmonic. The residual part of the
locity space is filled with solitary wave solution
corresponding to a negative phase mismatch. Above a ce
threshold two different solutions exist for a given energ
One is stable, the other is unstable. If the energy is increa
the width diverges and all the energy is carried by the sec
harmonic. Thus the pulse travels with the velocity of t
second harmonic (v522sV̄). It follows that the velocity
domain where solitary waves exist is given b
Dv5(2s21)V̄.

Comparing the results for different average frequenc
we find that the energy threshold decreases if the abso
value ofV̄ is increased@Fig. 8~a!# and thus if the walk-off is
increased. The same is true for the corresponding total p
power@Fig. 8~b!#. The reason for this unexpected behavior
that a deviation from the carrier frequency changes
propagation constants for both field components. This le
to a new effective phase mismatchbeff , which, with respect
to Eqs. ~4!, is given by beff52b̄1(V̄)2b̄2(2V̄)
5(2s21)V̄21b. The rapid decrease of the energy is fou
where the effective phase mismatch changes its sign. Ifbeff
is kept constant the phase mismatchb ~at v0) of the under-
lying dispersion relation varies according to

b5
beff@~22a!~2s21!1d2#

~22a!~2s21!1d22@~v̄~2s21!2d!#2
. ~20!
-

d
is
ic

e
a

e

k-
-

r-
-
-

in
.
ed
d

s
te

ak

e
ds

Figure 9 displays the energy threshold of Fig. 8 versus
velocity differenceDv keepingbeff fixed. Now the energy
increases for sufficiently large absolute values of the velo
difference, as expected. But for small velocity difference
decrease of the energy is observed. Thus the walk-off ca
favorable.

V. CONCLUSIONS

To conclude, we identified a two-parameter family
solitary wave solutions. The results describe the experim
tal fact of walk-off. A finite group-velocity difference be
tween the fundamental and second harmonics does
prevent the formation of solitary waves, but induces
chirp. Solitary waves are found to move with velocitie
between those of the fundamental and second harmon
where the respective velocity is power dependent. We
rived the critical manifold in parameter space where the s
tary waves destabilize. The domain of instability w

FIG. 7. EnergyQ of solitary waves vs velocityv for different
values of the average frequencyV̄ for g50 ands50.8. Dashed
lines refer tob51 and solid lines tob521.
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found to be rather narrow. The stability behavior w
confirmed by a beam propagation method. Using differ
scalings the solutions are adequately described in te
of their energy and momentum, which are conserv

FIG. 8. Energy~a! and total peak power~b! of solitary waves vs
the average frequencyV̄ at the local minima of Fig. 7.
or

B

d
et
t
s
d

during propagation. It was found that the energy requi
to excite a solitary wave can be reduced by a small wa
off. But eventually the energy diverges with increasi
walk-off.

FIG. 9. Energy~a! and total peak power~b! of solitary waves
versus velocity differenceDv at the local minima of Fig. 7 for
beff521.
v.

ev.
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