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Stability of temporal chirped solitary waves in quadratically nonlinear media
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A two-parameter family of moving solitary waves in nonlinear quadratic media is obtained and discussed in
different parameter spaces, where they are unstable in certain domains. The stability criterion is derived and
confirmed by means of a beam propagation meth8d063-651X97)14905-4

PACS numbe(s): 42.65.Tg, 42.65.Ky

I. INTRODUCTION This paper is organized as follows. In Sec. Il we introduce
the basic sets of equations and point out the number of pa-
Recently solitary waves based on a quadratically nonlinfameters of the family of solutions under investigation. We
ear interaction attracted a lot of attention in nonlinear opticgliscuss the solitary wave solutions with the emphasis on the
[1-14]. They were found to exist as self-guided beams intemporal case. Section Il deals in detail with their stability.
bulk materials[8] and planar waveguidg®]. Both spatial N Sec_:. IV the solitary wave solutions are discussed in terms
and temporal solitary waves are described by the same evf their parameters and Sec. V concludes the paper.
lution equations. Until recently only a one-parameter family
of such solutions has been identified. They can be calculated  Il. BASIC EQUATIONS AND SOLITARY WAVE
as real valued. For one value of the ratio of the diffraction or SOLUTIONS
dispersion coefficients of the fundamental and second har-

monics the evolution equations are invariant under a Certainui\(/jveevf/:i(t)rr]]Se{deJa%L:;?cglzopn%gnalitrI]%lr?ﬁgéailgma 'Cruing\%lm?c\)/r?-
transformation, thus yielding a two-parameter family of soli-9 q y ’

tary wave solutions that can be directly obtained from theequations for the slowly varying amplitudés andA; of the

real-valued one-parameter famifgee, e.g.[12]). With the fundamental and second harmonics in a reference frame

exception of one element of the family, which is known ana-T0Ving with the group velocity of the fundamental are
lytically [1,3,6], the solitary wave solutions have to be deter-

' 2A 7
mined numerically{5]. It was found that they exhibit a nar- ia_Al ﬂ (9—A1+X1A’*A’:0
row domain of instability[11]. The collision of two such gz' 2 T’ reE
waves shows that they merge for sufficiently small relative ) ) .
velocities [12]. This is due to the fact that the evolution .ﬁ_Aer. ,ﬁ_Aer&ﬁ_Az_ Ay AZ=0 (1
equations are not integrable. Gz Y Gt g Bt XA =0, ()

In the spatial case the real-valued family of solitary wave
solutions corresponds to the fundamental and second hawith
monics propagating in the same direction. No spatial walk- ,
off is induced, e.g., by birefringence. The spatial walk-off B'=2pB1(wo) — B2(2wo) ,
can be avoided in a planar waveguide, whereas in the tem-

poral case the situation is much more complicated. In this y,:ﬁ_IBZ _0_'81 @)
case the one-parameter family of solitary wave solutions cor- Jo| .  do| _. ’

responds to a certain carrier frequency where the group ve- 0 0

locities of the two pulse¢fundamental and second harmon- 2B, 7B,

ics) are equal. In most materials such a frequency does not Di=———= , Dy=——=

exist. Here we concentrate on the more common situation dw 0=y Jw w=2wg

where the two pulses tend to move away from each other due

to a group velocity difference. The family of solitary wave Here 8;(w) and B,(w) are the dispersion relations of the
solutions obtained is two-parametric and complex valued. ltwo guided modes corresponding to the fundamental and
has been identified independently very recently, focusing osecond harmonics ang, is the carrier frequency. The pro-
the spatial casgl4]. Here we concentrate on the temporal files of the two guided modes enter into the effective nonlin-
case using a different scaling frofa4] to employ a mini- ear coefficientsy; and x,. The quantities derived from the
mum number of parameters for clarity. But the central role indispersion relations are the phase misma@¢tbetween the
our analysis is the stability of the moving solitary wave so-fundamental and second harmonics, the negative difference
lutions, which is a crucial issue for potential applications.of their inverse group velocitieg’, and their dispersion co-
We derive the manifold in parameter space where the soliefficientsD,,, n=1,2. Positive and negativ@, correspond
tary waves destabilize. to anomalous and normal dispersion, respectively. The term
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proportional toy’ in the secqnd of Eq9l) is co_mmonly da; 1%, .
referred to as walk-off. Applying the transformation e + 52 a;+aja,=0,
T=T. z=5 A= boAl. A=xiloAp, 722 5982 0 8 2_
To Lp IE+I57+EW_aa2+a1_O' (6)
Y'Lp D, T Bright solitary waves are now calculated as stationary solu-

v Ty ' p=F'lo, o= D, I'D:|Dl| ) tions of Egs.(6), i.e., equating the derivatives to zero and

. . . applying the appropriate boundary conditions. They depend
where T, denotes the pulsewidth and, the dispersion on the rescaled phase mismatetand the rescaled walk-off

length, leads for anomalous dispersidioth waves to 5. The solitary wave solutions calculated in this way can be
5 considered as moving ones of E¢4) with propagation con-
i‘9_A1+E5_A1+A*A -0 stant « and velocityv, thus establishing a two-parameter
gz "2 g1 TR family of solutions. The scaling defined by EqS) reduces

5 the number of parameters from fouy,( 8, «, andv) to
i&—A2+i ﬂ_Az+z Ay A+ A2 0 7 two (a and ) without loss of generality. Note from Eq)
oz TV T T vz AR A the interplay between the velocity, the walk-off y, and the
dispersion coefficientr in the expression for the rescaled
The above equations describe the spatial case with walk-offialk-off . This indicates that the group velocity mismatch
as well. They are similar for the case of normal dispersionand the velocity of a solitary wave solution act similarly.
The solutions of Eqs(4) we are interested in are solitary This fact can be conveniently exploited, since a shift of the
waves with bright shapes. Due to their group velocity differ-yelocity v —v +v, [vo=— y/(20—1)] and of the propaga-
ence fundamental and second harmonic components of a sgon constantk— x+ (v +vo/2)v, allows the restriction to
lution tend to separate from each other. On the other hand},:o, provided that-# 1/2 and the phase mismatch is renor-
for a solitary wave to exist it is required that both constitu- mglized asB— B+ (20— 1).
ents move with a common velocity. Thus the question is For =0 the real-valued families of solitary wave solu-
whether the nonlinear interaction is able to prevent the sepaions are recovered. The one-parameter fanilgrameter
ration and which common velocity such a symbiotic objectK) corresponds too#1/2, ie., v=0 for y=0 or
attains. It is expected that the complex term introduced by, — _ yl(20—1) otherwise. It is just a limiting case within a
the walk-off in general leads to a chirped solution. Thusp,gader class of solutions. The two-parameter farfriram-
another parameter of the solutions is the average frequengyers, andv) is obtained in the case=1/2, i.e.,y=0. As
(or momentun _ , ~ can be seen from the transformation of E(®.the moving
Even if solitary waves are determined for a fixed carriergo|ytions of this family can be generated directly from the
frequency corresponding to a certain walk-off the resultingresting ones. The solitary wave solutions obtained for non-
solution need not be centered at this chosen frequency. Th‘\'/%mishingﬁ are complex-valued with a nontrivial phase; i.e.,
the whole frequency domain has to be considered. Solita%ey have a chirggsee Fig. 1 Obviously there is no limita-
waves are expected to be found in certain domains of thg,n with respect to the rescaled walk-off for solitary
velocity-average frequency plane. Though being an imporyaves to exist. The lower boundary of the rescaled phase

tant parameter the average frequency of a solitary wave igismatcha depends ord [a> 6%(20), see next sectidn
difficult to handle because it depends on the solution in a

nontrivial way. To obtain a coherent description of the soli-

: : 3
tary waves we introduce a wave number coming back to the |
more relevant average frequency later. Thus we are looking 5 |
for a two-parameter family of solutions with parametars N;g _
(wave numberanduv (velocity). To this end we introduce =1
the following transformation of Eqg4): -
0
02 02 0.0 ——\/—
t=\/k— ?(T—UZ) , Z= K—? Z, §o |
§ 05 —
a— 1 e i(k—vAZg=ivTp B S
k=022 b -1.0 T I T
-8 0 8
a,= 1 e—zi(x—vz)ze—zivTA (5) t
2 k=022 2
— _ 2
o= M = pr2xt2(o= Lo+ 2y FIG. 1. Intensities and time derivatives of the phases of a soli-

7 a L
V=022 k—v?[2 tary wave solution for6=0.6, «=0.5, and 0=0.8. Solid and
dashed lines correspond to the fundamental and second harmonics,
giving respectively.
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Equationg6) yield two conservation laws that play a cen- frequency is proportional to the velocity also increases
tral role in our analysis, the energyand the momenturq  with increasings, without giving rise to a strong additional

of a solitary wave solutiom,,, n=1,2: chirp. For a= 6%/(20), i.e., at the limit of existence, the
second of Egs.6) with the last term neglected yields

q:f dt (Jagd?+]|asd?) w=20/(20). This is h.alf the frequency of_a second harmonlc

wave that travels with the group velocity corresponding to

the scaled walk-offs. Another limit is the Schidinger case
(seg[5]) for a—ce. In this limit @=0 since in the stationary
case considered here the Sdalinger soliton has no fre-
guency.

Jay, , dai 1

dal, dayg
Q105 Tq0 T T3 >

A0 5~ azo_(yt

1
p= ZJ dt
(7

It should be mentioned that there is a third conserved quan-
tity, a Hamiltonian, which is not given here.
Figure 2 shows a contour plot of the energyin the For the one-parameter family of solitary wave$<0) a
(8, ) plane. If the lower limit of existence is approached thenarrow instability region was identifiefd.1]. We show that
width of the solitary waves diverges. All the energy is car-this is the case for the moving solutions as well. To this end
ried by the second harmonic and an infinite power is requiredgs. (6) are linearized around a solitary wave solutiag
to maintain the balance within the solitary wat@mpare Here we introduced the real four-component vector
Fig. 6 for solitary waves close to the limit of existefce a=(Rea;,Rea,,Ima;,Ima,)’, where T denotes the trans-
More meaningful than the momentum itself is the scaledhosed and R®,, Ima,, n=1,2, the real and imaginary
average frequency = p/q, which is conserved as well. For parts of the fields, respectively. Substituting the ansatz
an unchirped pulse is the difference from the carrier fre- a=a,+ dae*? into Eqgs.(6) and linearizing with respect to
quency. Thus the excitation of a solitary wave withre-  5a yields an eigenvalue problem far;
guires an initial pulse with that frequency. The averaged fre-
guencyw changes only marginally witlx for fixed scaled Léa=\da, (8
walk-off § (Fig. 3) and is fairly small in terms of these pa-
rameters. As in the case of the Sdtlirmer soliton, where the where the operatdr is defined as

Ill. STABILITY ANALYSIS

1 52
— Imazo |ma10 — E W +1+ Rmzo - R%lo
—2Ima 57 —2Re g ‘92+
10 at 10 22 ¢
L=| | » C)

E W — 1+ Rmzo Rwlo Imazo Imalo
o &P d
2Rea P —— —2lma —5—
10 292 ¢ 10 O

Asymptotically, i.e., fort— o, Eq. (8) can be solved by  sa,=(Imayo,2Ima, — Reay, ~2Reay) ', which corre-
means ofsa~e™'*" yielding the dispersion relations spond to translational and phase invariance. Apart from these
two bound eigenstates we identified numerically a third, non-

N Q_2+1 trivial bound stateda, (Fig. 5. The corresponding squared
2 ’ eigenvalue)xﬁ is always real. At a critical valuer= « for
fixed § and o it changes its sign and the solitary waves
o 5\ 5 become unstable. Stability corresponds to a purely imaginary
A=Zi E(Qi;) + “_%} . (10 A\, and instability to a positive real,. The nonexistence of

a second nontrivial bound state, which always has a positive

From the above equations the limit of the continuous spect€al eigenvalue, is crucial for the following analysis. The
trum is given by mifil,a— 52/(20)}_ For a=6%/(20) the  curve in parameter space that separates stable and unstable
gap of the continuous spectrum vanishes. This also marks tr#omains(see solid line in Fig. #is derived by a similar
limit of existence for bright solitary wavesee dashed line asymptotic method as used [ihl]. Our numerical analysis
in Fig. 4), which is due to the requirement that these solu-suggests that at the critical point the bound stédg is a
tions have evanescent tails. linear combination of the two zero eigenmodése.,

The linear problem has two localized or bound statesda,=cda;+déay). This is due to the fact that the number of
with corresponding eigenvalue.=0: da,=dag/dt and  basic symmetries with a corresponding zero eigenmode does
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FIG. 2. Contour plot of the energy in the (6,a) plane for
o=0.8.
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FIG. 4. Domains of stabilityabove solid ling¢ and instability

(between dashed and solid ljnia the (8,«) plane fore=0.8.

(9lda)(LsalY)=0 was used. The inhomogeneous equation

not change and is not dependent on the soliton parameter@t ordere in Egs.(12) is solved by

Thus an expansion around, for fixed § and o is intro-
duced:

a=qa.+t e’ , )\bz)\le+)\262+ cee

Sap=oay)+ s e+ saP €2+ - - - (11)

with a,=+1 andsa{”’=césa+dda,. This and all the fol-
lowing o dependencies have to be takerngat Substituting
the above expansion into the linear problem of E§$.we

get up to ordere?:

0(1): L9s®=0,

O(e): LO@saM=x,5a, (12

(0)

J
O(€%): LOsa?—a,L© =N,8a + Ny dat .

Jda
HereL(® is the operatot. taken ata, . The first of Eqs(12)

is trivially fulfilled since 5a{” is a linear combination of the
two zero eigenmodes. In the third of Eq42) the relation

2.0

1.5

3 1.0

0.5+

FIG. 3. Contour plot of the average frequensayin the (5,a)
plane foro=0.8.

d d
5a§,1)=)\1c(t5ap—25%—(20'—1)(9—?)

1
a+ §t5a{+(2—a’)£—§5%

1% 109

(13

Now from the third of Eqs(12) a solvability condition is
derived. This arises from the fact that the adjoint operator
L* of L has a nontrivial null space:

L*sa/ =0,
sal dlmay,, 1dImay, d Reayy 1 d Reay| "
&= gt 2 gt gt 2 gt ’
L*6a)=0, oa)=a. (14)

Calculating the scalar products betwedsj , da,, and the
third of Egs.(12) yields

1.5 —

Im(%,)

FIG. 5. Imaginary part of eigenvalues, vs « for §=0.6 and
0=0.8. The dashed lines mark the limit of the continuous spec-
trum.



55 STABILITY OF TEMPORAL CHIRPED SOLITARY ... 6159

lap

FIG. 6. Intensity of the fundamental and sec-
ond harmonics showing stabl@) and unstable
(b) propagation of a solitary wave at
a=0.2, §=0.33(a), 6=0.39(b), andoc=0.8.

200

(58] ,5a§)1>>=O , <6a"),5a§)1)>=0 . (15)  parametersy and ). The velocityv, the propagation con-
stantk, the energyQ, and the momentur® with respect to
Here the scalar product is defined a&da;,da,) a_ solution Ao, n=1,2, and the average frequency
=[*_dt 5a’l*T-5a2 with the dot denoting matrix multiplica- Q=P/Q are related to the scaled quantities 5, g, p,
tion. Equationg15) establish a system of linear equations forand w in the following way:
the constantg andd. The requirement that andd should

be nontrivial(or that the determinant of the coefficients van- B 1 Jus—vy\? _ Jus—y
ishes finally yields the solvability condition K=pt 2\ 20—-1 ] - 20—-1"
3 Jdq d64q9\(1 ap 1 ap _ 8 ¥
PR Es)(i “95a 227 V5; Q=p¥q, P=p’p, 0= @(w——20_1)+ 201"
17)
p 6dp g 1 &q) (
+ 2p+(2—a)£—§ %)(654—5(20—_1)&_5 ) 1)2_ ,3(20—1)—y2
—0. (16) by T 2~ (2e-1)+ 8

where q is the energy ang the momentum of a solitary Note that the scaling factqr has to be positivécf. Egs.(5)]
wave solutiona,q, n=1,2 as defined in Sec. Il. Note that and that we may assume=0 as pointed out previously. As
the above procedure applied to the second of Fifd.leads 10 the average frequencies thg transformatjon defined by Eqgs.
to a trivial result since(da; ,6ak()°))=<5ar’,,5aﬁ,°)>=0. The (9 introduces a frequency shift. The relation between these
solvability condition of Eq.(16) describes the manifold in fréquencies in Egs.(17) may be also written as
parameter space where the squared eigenvejd the non- (=@ —v. In terms of parametera and & there are no
trivial bound state changes its sign. Since there is only onéliscontinuities, whereas for parametersand v there is a
nontrivial bound state, the stability changes at this manifolddivergence atr=2+ 6%/(20—1) that separates domains of
Finally, the stable and unstable propagation of the solitary?0Sitive[ @>2+ 6%/ (20— 1)] and negative phase mismatch
wave solutions was confirmed by means of a beam propag# [@<2+6°/(20—1)] (y=0). Here the limitation to
tion method(Fig. 6). In this example the unstable solitary 8= =1 is sufficient.
wave decays with decreasing amplitude and increasing width We first express the stability criterion of E¢L6) by
while it moves away from the center. means of the conserved quantities referring to Edk. In
terms of the energ® and the momentur® and the param-
etersk and v of the family of solitary wave solutions it

IV. PHYSICAL INTERPRETATION OF SOLITARY becomes much simpler:
WAVES (SOLITARY WAVE PARAMETERS ) 50 9P 90 9P

In the two previous sections the solitary wave solutions oK E_Eﬂ_o : (18)

and their stability have been characterized in terms of the
(mathematically convenient system parametess and §.  The meaning of the above relation is that the vector function
Now we interpret our results by means of more accessibléQ(«,v),P(«,v)) is not invertible at a critical point. In this
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work the relation of Eq(18) derives from the fact that each 20
solitary wave parameter is connected to a fundamental sym-
metry of the evolution equations, namely, the velocityo
translational invariance and the wave numbeto a phase
invariance. The fundamental symmetries in turn are reflected
in corresponding bound states of the linearized problem. This
may be compared with the case of vectorial second harmonic
interaction where also a two-parameter family of solitary
wave solutions exists. The manifold in parameter space
where the solitary waves destabilize can be expressed in a 7
similar way on the basis of conserved quantifis].

We describe now the family of solitary wave solutions in 20 '
the space of velocity and average frequency. We find that the
entire space between the straight lidggy / 9Q)= —Q (group
velocity of fundamental harmonic as a function @j and
dB,190=—2a) (group velocity of second harmonic as a
function of 2Q)) is filled with solitary wave solutions. Here o 10—
the linear dispersion relations of Edg) (y=0),

Q=-04

BUQ)=—0%2, B(Q)=—0022—8, (19

were used. There is no general restriction due to the walk- 20

off. The allowed range of velocities even increases with in-
creasing average frequencies.

Figure 7 shows the enerdy of the solitary waves versus .
the parameterv for various() and o>1/2. Foro<1/2 the
behavior is similar. The Schdinger limit (the phase mis- o 10 —
match is positive corresponds to wide low-energy pulses
traveling with the velocity of the fundamental wave
(v=-—9Q). If the energy is increased the pulses become nar-
rower changing their velocity, but do not approach the ve- ;
locity of the second harmonic. The residual part of the ve- ,
locity space is filled with solitary wave solutions f
corresponding to a negative phase mismatch. Above a certain 0.3 05 07
threshold two different solutions exist for a given energy.
One is stable, the other is unstable. If the energy is increased
the widt_h diverges and all the energy @s carried by t_he second FIG. 7. EnergyQ of solitary waves vs velocity for different
harmonic. Thus' the pulse travels with the velocity o'f the, . ues of the average frequen€y for y=0 ando=0.8. Dashed
second harmonicu(= —20(2). It follows that the velocity jines refer tog=1 and solid lines tg8=—1.

domain where solitary waves exist is given by
Av=(20-1)Q. Figure 9 displays the energy threshold of Fig. 8 versus the

Comparing the results for different average frequencieyelocity differenceAv keeping B¢y fixed. Now the energy
we find that the energy threshold decreases if the absoluigcreases for sufficiently large absolute values of the velocity
value ofQ is increasedFig. 8(@)] and thus if the walk-off is  difference, as expected. But for small velocity differences a

increased. The same is true for the corresponding total peglecrease of the energy is observed. Thus the walk-off can be

power[Fig. 8(b)]. The reason for this unexpected behavior isfavorable.

that a deviation from the carrier frequency changes the

propagation constants for both field components. This leads V. CONCLUSIONS
to a new effective phase mismatg@yy, which, with respect To conclude, we identified a two-parameter family of
to Egs. (4, is given by Bes=2B1(0)—p2(20)  solitary wave solutions. The results describe the experimen-
=(20—1)Q2+ B. The rapid decrease of the energy is foundtal fact of walk-off. A finite group-velocity difference be-
where the effective phase mismatch changes its sig.df tween the fundamental and second harmonics does not
is kept constant the phase mismajghiat wy) of the under- prevent the formation of solitary waves, but induces a

lying dispersion relation varies according to chirp. Solitary waves are found to move with velocities
between those of the fundamental and second harmonics,

where the respective velocity is power dependent. We de-
rived the critical manifold in parameter space where the soli-
tary waves destabilize. The domain of instability was

Beil (2= @)(20—1) + 6]

p= (Z_CY)(ZO'— 1)+52—[(H20-_1)_5)]2 ' (20)
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FIG. 9. Energy(a) and total peak powetb) of solitary waves
FIG. 8. Energy(a) and total peak poweb) of solitary waves vs  versus velocity differencév at the local minima of Fig. 7 for
the average frequendy at the local minima of Fig. 7. Beti=—1.

found to be rather narrow. The stability behavior wasduring propagation. It was found that the energy required
confirmed by a beam propagation method. Using differento excite a solitary wave can be reduced by a small walk-
scalings the solutions are adequately described in termsff. But eventually the energy diverges with increasing
of their energy and momentum, which are conservedvalk-off.
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