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Effects of nonlocal dispersive interactions on self-trapping excitations
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A one-dimensional discrete nonlinear Schro¨dinger ~NLS! model with the power dependencer2s on the
distancer of the dispersive interactions is proposed. The stationary statescn of the system are studied both
analytically and numerically. Two types of stationary states are investigated: on-site and intersite states. It is
shown that fors sufficiently large all features of the model are qualitatively the same as in the NLS model with
a nearest-neighbor interaction. Fors less than some critical valuescr , there is an interval of bistability where
two stable stationary states exist at each excitation numberN5(nucnu2. For cubic nonlinearity the bistability
of on-site solitons may occur for dipole-dipole dispersive interaction (s53), while scr for intersite solitons is
close to 2.1. For increasing degree of nonlinearitys, scr increases. The long-distance behavior of the intrin-
sically localized states depends ons. Fors.3 their tails are exponential, while for 2,s,3 they are algebraic.
In the continuum limit the model is described by a nonlocal NLS equation for which the stability criterion for
the ground state is shown to bes,s11. @S1063-651X~97!12205-X#

PACS number~s!: 03.40.Kf, 42.65.Tg, 63.20.Pw, 87.10.1e
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I. INTRODUCTION

Recently, the determination of the dynamical properties
physical systems with competition between discreten
nonlinearity, and dispersion has attracted a growing inte
because of their wide applicability in various physical pro
lems. Examples are coupled optical fibers, arrays of coup
Josephson junctions, nonlinear charge and excitation tr
port in biological macromolecules, elastic energy transfe
anharmonic chains, and charge transport in hydrogen-bon
systems. It is well known that the balance between non
earity and dispersion in a weak nonlinearity~large disper-
sion! limit provides the existence of low-energy solitonlik
excitations. They are very robust and propagate without
ergy loss, and their collisions are almost elastic. Due to th
robust character the soliton excitations are important in
coherent excitation transport in biological macromolecu
@1,2# and charge transport in organic semiconductors@3,4#.

As a result of the interplay between discreteness, dis
sion, and nonlinear interactions, new nonlinear excitatio
namely, intrinsically localized oscillatory states, may appe
The properties of the localized modes have been intensi
studied during the past years@5–14#. For monatomic lattices
with a nearest-neighbor harmonic interaction and quartic
harmonic interaction the localized states were found@9–11#
to have frequencies lying above the phonon band. In the c
of a one-dimensional~1D! nonlinear Schro¨dinger~NLS! lat-
tice @15# a localized mode lying below the linear excitatio
band in the small-amplitude limit reduces to the one-soli
solution of the continuum NLS equation.

Recently, a discrete NLS equation with ‘‘tunable’’ diag
nal and off-diagonal nonlinearities that includes the in
grable Ablowitz-Ladik system@5# as a limit was introduced
in @16,17#. It was shown that reflection and translation
symmetries of the integrable NLS are broken by diago
nonlinearity and the properties of the Peierls-Nabarro po
551063-651X/97/55~5!/6141~10!/$10.00
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tial as a function of the tuning parameter were studied
further study of the stationary properties of these syste
was recently performed in@18#. The nonintegrable dynamic
of a 1D discrete NLS system with an arbitrary degree
nonlinearity was investigated in@19#. An analytical stability
criterion for solitons in the discrete NLS equation with a
arbitrary degree of nonlinearity was obtained in Ref.@20#. It
was shown that a process of quasicollapse may take p
when an unstable soliton transfers into an intrinsically loc
ized mode.

In the main part of the previous studies the dispers
interaction was assumed to be short ranged and a nea
neighbor approximation was used. However, there e
physical situations that definitely cannot be described in
framework of this approximation. The excitation transfer
molecular crystals@21# and the vibron energy transport i
biopolymers@2# are due to the transition dipole-dipole inte
action with a 1/r 3 dependence on the distancer . The DNA
molecule contains charged groups, with a long-range C
lomb interaction (1/r ) between them. In systems where th
dispersion curves of two elementary excitations are close
intersect, effective long-range transfer occurs. Such a si
tion arises for excitons and photons in semiconductors
molecular crystals~so-called polariton effects@21#!.

Until recently there have been few theoretical and num
cal studies of the effect of long-range interactions~LRI’s! on
the properties of nonlinear excitations. Nonlinear waves i
one-dimensional~1D! chain with a Lennard-Jones (2n,n)
interatomic potential were studied in@22#. It was shown that
the dynamics is governed by the Benjamin-Ono equation
the casen52 or by the Korteweg–de Vries equation fo
n>4. The effective mass of solitons in the Frenke
Kontorova model with a repulsive LRI, their shapes a
Peierls barriers were investigated in Ref.@23#. In @24# an
implicit form of solitons was obtained in a sine-Gordon sy
tem with a LRI of the Kac-Baker type@25,26# and the de-
6141 © 1997 The American Physical Society
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6142 55GAIDIDEI, MINGALEEV, CHRISTIANSEN, AND RASMUSSEN
pendence of the soliton width and energy on the radius of
LRI was analyzed. It was postulated in@27# that the nonlin-
ear term in the sine-Gordon equation has a nonlocal cha
ter and different soliton states, of topological charge ze
were found to exist at a large enough radius of the inter
tion. In @28# the effects of a long-range harmonic interacti
in a chain with short-range anharmonicity were consider
It was demonstrated that the existence of two veloc
dependent competing length scales leads to two types of
tons with characteristically different width and shapes
two velocity regions separated by a gap. The effects of lo
range interactions of the Kac-Baker type were studied
static and dynamic nonlinear Klein-Gordon@23,29,30# and
nonlinear Schro¨dinger @31# continuum models. In@31# we
proposed a nonlocal NLS equation for systems with lo
range dispersion effects. In contrast to the usual NLS eq
tion, stationary solutions exist only for a finite interval of th
excitation number. In the upper part of this interval two d
ferent kinds of stationary solutions were found. The kind t
contains a cusp soliton was shown to be unstable. It was
pointed out that moving solitons radiate with a wavelen
proportional to the velocity. In Ref.@32# we proposed a non
local discrete NLS model where the dispersive interact
had a power dependence on the distance. It was found
there is an interval of bistability in the NLS models with
long-range dispersive interaction. One of these states
continuumlike soliton and the other is an intrinsically loca
ized mode.

The goal of this paper is to investigate both types of s
ton states in the discrete NLS model, on-site and inter
states, and study the motion of solitons and Peierls-Nab
pinning. We develop also a quasicontinuum approach to
problem. In Sec. II we present the analytical theory and
results of numerical simulations of stationary states of
discrete NLS model with a long-range dispersive interacti
We discuss the bistability phenomenon for the two typ
~on-site and intersite! of soliton solutions and their stability
In the analytical part of this section we use a variatio
approach exploiting an exponential-like function as a tr
function. Then, in Sec. III we investigate the long-distan
behavior of the nonlinear excitations and show that intrin
cally localized states of the discrete NLS model with a d
persive interaction decaying slower than 1/r 3 have algebraic
tails. In Sec. IV we investigate the soliton states in a qua
continuum approximation and derive a continuum nonlo
NLS equation. We show that the degree of nonlocality
pends on the dispersion parameters. In particular, fors52
~inverse square dependence on the distance of excita
transfer! we obtain an equation, which we denote t
Hilbert-NLSequation, that has a form that is closely relat
to the Benjamin-Ono equation. The stability of the grou
state of the nonlocal NLS equation is studied. Section
presents the concluding discussion.

II. SYSTEM AND EQUATIONS OF MOTION

The model we study is described by the Hamiltonian

H5T1Us , ~1!

where
e
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T5
1

2 (
n,m~nÞm!

Jn2mucm2cnu2 ~2!

is the dispersive energy of the excitation and

Us52
1

~s11!(n ucnu2~s11! ~3!

is the potential energy that describes a self-interaction of
quasiparticle. In Eqs.~1!–~3! n andm are site indices and
cn is the excitation wave function. We investigate the mod
with the following power dependence on the distance of
matrix element of excitation transferJn2m5J/un2mus. The
constantJ characterizes the strength of the transfer ands is a
parameter that is introduced to cover different physical s
ations from the nearest-neighbor approximation (s5`) and
the dipole-dipole interaction (s53) to the long-range Cou
lomb interactions51. We shall show that this equation ha
ing tunable properties illuminates both the competition b
tween nonlinearity and dispersion and the interplay of lon
range interactions and lattice discreteness. The degre
nonlinearitys is another parameter that we include for ge
erality, as it has been done in several previous wo
@19,20,33,34#; however, the main part of this paper is co
cerned with the cubic (s51) case.

From the Hamiltonian~1! we obtain the equation of mo
tion i ċn5]H/]cn* for the excitation wave function in the
form

i ċn1 (
m~mÞn!

Jn2m~cm2cn!1ucnu2scn50, ~4!

where the overdot denotes the time derivative. The Ham
tonianH and the number of excitations

N5(
n

ucnu2 ~5!

are conserved quantities. Obviously, the Lagrangian for
~4! can be written via the Legendre transform ofH as

L5 i(
n

1

2
~ ċncn*2ċn*cn!2H. ~6!

We are interested in stationary solutions of Eq.~4! of the
form

cn5fnexp~ iLt !, ~7!

with a real shape functionfn and a frequencyL ~there
seems to be a rather great number of names for this pa
eter; we have here chosen the term ‘‘frequency’’ since t
appears to be the most common; see, e.g.,@34#!. This reduces
the Lagrangian~6! to L5L(nfn

22H and the determining
equation for the functionsfn becomes

Lfn5J (
m~mÞn!

un2mu2s~fm2fn!1fn
~2s11! . ~8!

Thus Eq.~8! is the Euler-Lagrange equation for the proble
of minimizing H under the constraintN5const.
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55 6143EFFECTS OF NONLOCAL DISPERSIVE INTERACTIONS . . .
To obtain an approximate solution of the problem we u
an ansatz for a localized state in the form

fn5A N sinha

cosh$a~2d21!%
exp~2aun2du!, ~9!

wherea is a trial parameter andd is the position of the
center of the localized state, which, without loss of gene
ity, can be restricted to 0<d,1 for the infinite chain. The
ansatz~9! is chosen to automatically satisfy the normaliz
tion condition

(
n

fn
25N ~10!

such that the problem of minimizingH under the constrain
N5const is reduced to the problem of satisfying the equa
dH/da50.

Variational approaches similar to the one described ab
have recently@35,34# been used for the nearest-neighbor ca
of Eq. ~4! to analyze static and dynamical properties of t
solitions. In particular, the work of Malomed and Weinste
@34# is based on the same ansatz, while the work of Ace
et al. @35# is based on an essentially different ansatz tha
too complicated for analytical analysis.

It will be shown in Sec. III that the long-distance behavi
of the excitation wave functionfn drastically depends on th
value of the dispersive parameters. Only for s.3 are the
tails offn exponential. However, a qualitative description
the energy spectrum of the system can be obtained using
trial function in the form~9! at anys.

To calculate the kinetic energyT we use the discrete Fou
rier transform

F~k!5(
n

exp~ ikn!fn , J~k!5(
n

exp~ ikn!Jn ,

~11!

which permits us to rewrite Eq.~2! in the form

T5
1

M(
k
L~k!uF~k!u25

1

2pE2p

p

L~k!uF~k!u2, ~12!

where the spectrum function

L~k!5J~0!2J~k! ~13!

determines the linear dispersion of the excitations andM is
the number of sites in the system (M→`). For convenience
we shall use

J5
1

z~s!
, ~14!

with z(s) being Riemann’s zeta function

z~s!5 (
n51

`

n2s ~15!

to haveJ(0) independent ofs. Using
e

l-

-

n

e
e

s
is

he

J~k!52J(
n51

`

n2scoskn5
2

z~s!
Re$F~eik,s!%

5
2J

G~s!
E
0

1

dz
~cosk2z!@ ln~1/z!#s21

z222z cosk11
, ~16!

where

F~z,s!5 (
n51

`

~zn/ns! ~17!

is the so-called Jonqie`re function~its properties are describe
in Ref. @36#! and

uF~k!u25N
sinha

cosh@a~2d21!#S sinh2a

~cosha2cosk!2

12
sinh~ad!sinh@a~d21!#

cosha2cosk D , ~18!

we obtain, for the kinetic energy,

T52NH 12JS F~e2a,s21!sinha

cosh@a~2d21!#
1F~e2a,s! D J .

~19!

Inserting Eq.~9! into Eq. ~3! we get

Us52
Ns11

s11
f s , ~20!

where

f s5S sinhs11a

coshs11@a~2d21!#

cosh@~s11!a~2d21!#

sinh@~s11!a# D .
~21!

According to the variational principle, we should satisfy t
equationdH/da50, which yields

N58s11JH S 12
cosha

cosh@a~2d21!#
1~2d21!

3
sinhatanh@a~2d21!#

cosh@a~2d21!# DF~e2a,s21!

1
sinha

cosh2@a~2d21!#
F~e2a,s22!J S d fsda D 21

. ~22!

As a direct consequence of Eq.~8!, the frequencyL can be
obtained as

L52
1

N
~T12Us!, ~23!

with T andUs being defined by Eqs.~19! and~20!. We shall
study in detail the stationary states of the system for the c
s51. The two types of stationary states, on-site (d50) and
intersite (d51/2) states, will be considered separately.
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A. On-site localized states:d50

Figures 1 and 2 show the dependenceN(L) obtained ana-
lytically from Eqs. ~22! and ~23! for s51 and from direct
numerical solution of Eq.~8!. A monotonic dependence i
obtained fors.scr . For scr.s.2 the dependence becom
nonmonotonic~of N type! with a local maximum and a loca
minimum. These extrema coalesce ats5scr.2.72 @from
Eqs. ~22! and ~23!# and s5scr.3.03 @from the numerical
solution of Eq.~8!#. Fors,2 the local maximum disappear
Thus the main features of all discrete NLS models with d
persive interactionJn2m decreasing faster thanun2mu2scr

coincide qualitatively with the features obtained in t
nearest-neighbor approximation where only one on-site
tionary state exists for any excitation number. However,
the case of the long-range nonlocal NLS equation~4!, i.e.,
2,s,scr , there exist for eachN in the interval

FIG. 1. Number of excitationsN versus frequencyL. A com-
parison between analytical dependence Eq.~21! for s52.1 ~long-
dashed line!, 2.5 ~short-dashed line!, and numerical dependenc
from Eq. ~4! for s52.1 ~dash-dotted line! and 2.5~full line!.

FIG. 2. Number of excitationsN versus frequencyL numeri-
cally from Eq. ~7! for s5` ~full line!, 4 ~dotted line!, 3 ~short-
dashed line!, 2.5 ~long-dashed line!, 2 ~short-dash–long-dashe
line!, 1.9 ~dash-dotted line!.
-

a-
n

@Nl(s),Nu(s)# three stationary states with frequenci
L1(N),L2(N),L3(N). In particular, this means that in th
case of the dipole-dipole interaction (s53) multiple solu-
tions exist. The observed bistability is very similar to th
bistability observed in Refs.@20# and@34#, where the nearest
neighbor case with an arbitrary degree of nonlinearitys was
studied. The bistability appears in this case fors above a
certain critical value.

Figure 3 shows that the shapes of these solutions d
significantly. The low-frequency states are wide and conti
umlike, while the high-frequency solutions represent intr
sically localized states with a width of a few lattice spacing
For s*2 we can expand Eq.~22! in the limits a→0 and
1/a→0 and obtain that the inverse widths of these two sta
states are

a1'S N8JD
1/~s22!

5S N8JD
lnl /~122lnl !

, a3' lnSNJ D , ~24!

where l5exp(1/s) is the characteristic length scale of th
dispersive interaction. It is seen from these expressions
the existence of two so different soliton states for one va
of the excitation numberN is due to the presence of tw
different length scales in the system: the usual scale of
NLS model, which is related to the competition betwe
nonlinearity and dispersion~expressed in terms of the rati
N/J), and the range of the dispersive interactionl .

Exploiting that, for a,p, the Jonqie`re function
F(e2a,s) can be represented in the form

F~e2a,s!5G~12s!as211(
r50

`

z~s2r !
~2a!r

r !
, ~25!

we obtain, for the discrete lattice from Eqs.~22! and~23! in
the limit of small excitation numberN,

a5
z~s!

8z~s22!
N, H52

z~s!

64z~s22!
N3 for s.3;

~26!

FIG. 3. Shapes of the three stationary states fors52.5 and
N53.1: the stable statesL50.21 ~long-dashed line! andL50.74
~full line! and the ustable stateL50.57 ~short-dashed line!.
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55 6145EFFECTS OF NONLOCAL DISPERSIVE INTERACTIONS . . .
a5SNz~s!G~s!sin~ps!

8p~s21!~s22! D 1/~s22!

,

H5
22s

4~s21!S z~s!G~s!sin~ps!

8p~s21!~s22! D
1/~s22!

N~2s23!/~s22!

for s,3. ~27!

The particular values52 separates two different kinds o
behavior: fors.2, H→0, while for 1,s,2, H→` when
N→0 and the stable continuumlike soliton disappears. T
is confirmed by our simulation~see Fig. 2!.

B. Intersite localized states:d51/2

In Fig. 4 we plot the excitation numberN as a function of
the frequencyL for intersite localized states obtained fro
the numerical solution of Eq.~8!. The analytical results ob
tained from Eqs.~22! and ~23! for s51 andd51/2 are in
qualitative agreement with the numerical results, but
quantitative agreement is not as good as in the on-site so
case. It is seen from Fig. 4 that this dependence is simila
the dependenceN(L) obtained for on-site localized state
~see Figs. 1 and 2! but with the following distinctions.

~i! While theN(L) curves for on-site states with differen
dispersion parameterss tend to coincide at highL, the same
curves for intersite states become parallel atL→`. The rea-
son for this difference is seen from the definition of the f
quency given by Eqs.~19!, ~20!, and~23!: for d51/2

N52L142
2

z~s!
~L→`!, ~28!

while for d50

N5L12 ~L→`!. ~29!

~ii ! The critical value of the dispersion paramet
scr8 .2.1 is much less than the value obtained for on-site
calized states.

FIG. 4. Number of excitationsN versus frequency,L numeri-
cally from Eq. ~7! for s5` ~full line!, 4 ~dotted line!, 3 ~short-
dashed line!, 2.5 ~long-dashed line!, 2 ~short-dash–long-dashe
line!, and 1.9~dash-dotted line!.
is

e
on
to

-

-

~iii ! The interval ofs where the two stable intersite state
can exist, 2,s,scr8 , is very narrow. Thus intersite localize
states are much less sensitive to the long-range charact
the dispersion than the on-site states.

To investigate the stability properties of the different s
tionary states we use the approach developed in@20# and find
that the positive definiteness of the dispersion termT given
by Eq. ~2! and the form of the nonlinear termU permit
generalization of the theorem given by Laedke, Spatsch
and Turitsyn@20# to this nonlocal case. According to thi
theorem, the necessary and sufficient stability criterion
on-site stationary states is

dN

dL
5

d

dL(
n

fn
2.0. ~30!

Therefore, we can conclude that in the interv
@Nl(s),Nu(s)# there are only two linearly stable stationa
states@L1(N) andL3(N)#. The third state is unstable sinc
dN/dL,0 atL5L2.

At the pointsL(Nl) andL(Nu) the stability condition is
violated since (]N/]L)s vanishes. Constructing the locus o
the end points, we obtain the curve that is presented in Fig
This curve bounds the region of bistability. It is analogous
the critical curve in van der Waals’ theory of liquid-vapo
phase transition@37#. Thus, in the present case we have
similar phase transitionlike behavior where the two pha
are the continuum states and the intrinsically localized sta
respectively. The analog of temperature is the parametes.
For the parity-conserving~even! perturbations the stability
condition of intersite stationary states is the same as Eq.~30!,
but these excitations are unstable with respect to par
nonconserving perturbations. A typical evolution of these
citations is presented in Fig. 6. It is seen that by choosing
an initial condition the intersite state it transforms into
intrinsically localized on-site state with a time-depende
width.

Now we turn to discuss stationary states of the discr
NLS model given by Eq.~4! with an arbitrary degree o
nonlinearity. The main properties of the system remain

FIG. 5. End points of the bistability interval forN versus the
dispersion parameters. For s5scr the end points coalesce. Analyt
cal dependence~dashed line! scr.2.72 and numerical dependenc
~full line! scr.3.03.
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changed, but the critical value of the dispersion param
scr is now a function ofs. The results of the analytical con
sideration confirmed by simulation~see Fig. 7! show that
scr increases whens increases. In particular, fors>1.4 ~the
value at which the discrete symmetric ground state can
unstable in the nearest-neighbor approximation@20#; Mal-
omed and Weinstein@34# found the critical value to
s.1.32 due to the approximative character of the variatio

FIG. 6. ~a! Evolution of an intersite states52.57,N54.53.~b!
The intersite state used as the initial condition and the resul
on-site state att540 whereN53.99.

FIG. 7. Critical dispersion parameterscr versus the degree o
nonlinearitys: analytical dependence~full line! and numerical de-
pendence~circles!.
er

e

l

approach! the bistability in the nonlinear energy spectru
occurs even fors<6.

III. TAILS OF INTRINSICALLY LOCALIZED STATES

Investigating the asymptotic behavior of the excitations
is convenient to rewrite Eq.~8! ~we consider here the cas
s51) in the form

fn5(
m

Gn2m~L!fn
3 , ~31!

where

Gn~L!5
1

2pE2p

p

dk
cos~kn!

L1L~k!
~32!

is the Green’s function. For largeunu, the main contribution
to the integral on the left-hand side of Eq.~32! is due to
smallk. Hence we can extend the integration over the wh
axis and taking into account properties of the Jonqie`re func-
tion @36# in the k→0 limit, write the Green’s function~32!
for unu→` as

Gn~L!5
1

2pE2`

`

dk
cos~kn!

L1ask
n~s! , ~33!

where

n~s!5H 2 for s.3

s21 for 2,s,3,

and

as5H z~s22!

2z~s!
for s.3

2
p

G~s!z~s!cos~ps/2!
for 2,s,3.

Applying Jordan’s lemma we get

Gn~L!5
1

2ALas
e2AL/asunu, s.3 ~34!

Gn~L!5
1

L2 unu2s, 2,s,3, ~35!

so the Green’s function~32! decays exponentially only fo
s.3. For s,3 the exponential decay is replaced by an
gebraic decay.

From Eqs.~31!, ~34!, and ~35! we see that the leading
term in the asymptotic expansion of the excitation wa
functionfn in unu is given by

fn;A~L!Gn~L!, ~36!

with

A~L!5(
n

fn
3 . ~37!

g
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It is seen from Eqs.~34!–~36! that for all s.2, fn
3 is a

rapidly decaying function ofn. Hence, being interested in th
long-distance behavior of the intrinsically localized sta
with large frequenciesL, we obtain from Eq.~31!

f0.G0f0
312G1f1

3 , ~38!

f1.G1f0
312G0f1

3 ,

where

G05
1

L11
1OS 1

~L11!3D , ~39!

G15
1

2~L11!2
1OS 1

~L11!3D .
Using Eqs.~38! and ~39!, we then get

f0.AL11, ~40!

f1.
J

2
A 1

L11
.

Inserting Eqs.~17! and~40! into Eq. ~36!, we obtain that the
tails of intrinsically localized states are given by the expr
sions

fn→A~L11!3z~s!

2Lz~s22!
expS 2A2Lz~s!

z~s22!
unu D , s.3

~41!

fn→
~L11!3/2

L2 unu2s, 2,s,3 ~42!

for unu→`. Thus we can conclude here that only in the ca
of the short-range dispersion (s.3) do the tails of intrinsi-
cally localized states have a usual exponential form. In
systems with long-range dispersive interactions these s
have algebraic tails. Figure 8 shows the long-distance be
ior of intrinsically localized states for different values of th
dispersive parameters. It is seen that the form of the tail

FIG. 8. Shape of the stationary state~dashed line! for s52.5 and
L50.7 and the result of Eq.~41! ~full line! on a log-log scale.
s

-

e

e
tes
v-

predicted by Eq.~42! is in good agreement with the results
numerical simulations. Moreover, Fig. 9 shows that theL
dependence predicted by Eq.~42! agrees rather well with the
numerical results.

IV. QUASICONTINUUM APPROXIMATION

Now we turn to discuss the quasicontinuum limit of th
discrete NLS model given by Eqs.~1!–~3! with arbitrary
dispersion parameters and arbitrary degree of nonlinearit
s. We are here interested in the case where the characte
size of the excitations is much bigger than the lattice spac
~which we choose to be equal to unity!. It permits us to
replacecn(t) by the functionc(x,t) of the continuous vari-
able x and using the Euler-Maclaurin summation formu
@38# to obtain instead of Eq.~3! the expression for the po
tential self-trapping energy

Us52
1

s11E2`

`

dxuc~x,t !u2~s11!. ~43!

Under the above-mentioned assumption the most impor
role in the expression~12! for the kinetic energyT is played
by components with small wave numbers (k!1). Therefore,
we can safely extend the integration interval to the wholek
axis and get

T5
1

2pE2`

`

dkL~k!uC~k,t !u2

5E
2`

`

dxE
2`

`

dy@]xc* ~x,t !#q~x2y!]yc~y,t !, ~44!

where]x[]/]x and the Fourier transformQ(k) of the ker-
nel q(x) is given by

Q~k!5
1

k2
L~k!. ~45!

From Eqs.~43! and ~44! we obtain that the dynamics of th
excitation is governed by the integro-differential NLS equ
tion

FIG. 9. Amplitude in the tail of the stationary state fors52.5
andn5450. Numerical results~circles! and Eq.~41! ~full line!.
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i ] tc1]x~ q̂]xc!1ucu2sc50, ~46!

whereq̂ is the Fourier multiplier operator defined by

~ q̂c!~k!5Q~k!C~k!. ~47!

The kernelq(x) in Eqs.~44! and~46! can be considered as
generalized inverse effective mass of excitation. From E
~13! and ~45! we obtain that its Fourier transform can b
represented in the form

Q~k!5
2

k2
ReS 12

F~eik,s!

z~s! D , ~48!

where the Jonqie`re function F(z,s) is given by Eq.~17!.
Applying Eq.~25! for the Jonqie`re function, we obtain in the
long-wavelength limit~that is, for k!1) that the inverse
mass functionQ(k) can be expressed as

Q~k!5
z~s22!

2z~s!
1O~ks23!, s.3 ~49!

Q~k!5
1

2z~3!F31 lnS 1k2D G1O~k2!, s53, ~50!

and finally, for 2<s,3,

Q~k!52
p

G~s!z~s!cosS ps

2 D ukus231O~k0!. ~51!

It is seen from Eq.~49! that for s.3 the effective mass is
constant and Eq.~46! takes a common form characteristic
the NLS models with a short-range dispersive interaction

i
]c

]t
1

1

2m

]2

]x2
c1ucu2sc50, ~52!

wherem5z(s)/z(s22). Whens53 the dipole-dipole dis-
persive interaction makes the mass nonlocal, but this no
cality is rather weak since the inverse-mass functionQ(k)
given by Eq.~50! is a smooth~logarithmic! function ofk. In
contrast to this, for 2<s,3 the long-range effects make th
dispersion essentially nonlocal and, e.g., in the limiting c
s52 when, according to Eq.~51!, L.(6/p)uku the integro-
differential equation~46! can be rewritten as

i
]c

]t
1
6

p
HH ]c

]x J 1ucu2sc50, ~53!

where the notationH$ f (x)% denotes the Hilbert transform o
f (x) given by

H$ f ~x!%[PE
2`

`

dy
f ~y!

y2x
, ~54!

where the integral is a Cauchy principal value. Thus the
namics of self-interacting particles in the systems where
dispersive interaction decrease as 1/r 2 is governed by Eq.
~53!, which can be called aNLS-Hilbert equation. At this
point it is worth mentioning the formal similarity of Eq.~54!
s.

o-

e

-
e

and the perturbed NLS equation that arises from the desc
tion of Landau damping in a plasma~see, e.g., Ref.@39#!.

Now we want to discuss the stability of the ground sta
of Eq. ~46! with the inverse mass given by Eq.~51!. The
stationary solutions in the form

c~x,t !5f~x!eiLt ~55!

of Eq. ~46! are stationary points of the Hamiltonia
H5T1Us for the fixed excitation numberN,

df~H2LN!50, ~56!

wheredf denotes functional variation with respect tof and

N5E
2`

`

dxuc~x,t !u2 ~57!

is the continuum analog of Eq.~5!. Letf(x,L) be a solution
of Eq. ~56! and use the scaling transformation

fp~x,L!5p1/2f~px,L! ~58!

with the scaling factorp. The transformation~58! conserves
N. For this transformation the functionalH becomes a func-
tion of the parameterp, so that the functional variation
changes into a variation ofp. The functionH(p) has an
extremum atp51 and we must determine whether it corr
sponds to a maximum or a minimum. Inserting the functi
~58! into Eqs.~43! and ~48! we get

Us~p![2
1

s11E2`

`

ufp~x,L!u2~s11!dx5psUs~p51!,

~59!

T~p![E
2`

`

dxE
2`

`

dy@]xfp~x!#q~x2y!]yfp~y!

5ps21T~p51!. ~60!

Note that (s21)T(p51)52sUs(p51) since dH(p)/
dpup5150 and

d2H~p!

dp2 U
p51

5~s21!~s2s21!T~p51!. ~61!

Since the quantityT(p51) is always positive, we may con
clude from Eq.~61! that for

s,s11 ~62!

the functionH(p) at p51 has a maximum and the groun
statef(x,L) is unstable. In particular, the continuum NL
models with the degree of nonlinearitys51 and dispersive
interactions that decrease slower than 1/r 2 have unstable
ground states.

As it was discussed above, the ground state of the N
model with the degree of nonlinearitys>1 ands52 is un-
stable, while it is stable whens,1 @40#. Therefore, we may
conclude that for the degree of nonlinearitys51 the low-
frequency~continuumlike! stationary states of the NLS mod
els are exponential-like fors.2 and only fors,2 they have
algebraic tails~see Sec. II!.
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V. CONCLUSION

In summary, we have proposed a nonlocal discrete n
linear Schro¨dinger model for self-interacting excitations wit
power dependence on the distancer2s of the matrix element
of the excitation transfer. We have shown that the beha
of all NLS models with a dispersion interaction decreas
faster thanr2scr is qualitatively the same as the NLS mod
with a nearest-neighbor excitation transfer. In contrast to
there is an excitation number interval of bistability in th
NLS models with a long-range dispersive interacti
s,scr . In this interval two stable stationary states exist
each excitation numberN. One of these states is a contin
umlike soliton and the other one is an intrinsically localiz
mode. The existence of the bistability phenomenon in
NLS models with a nonlocal dispersion is a result of t
competition of two length scales that exist in the system:
scale related to the competition between nonlinearity
dispersion, and the scale related to the dispersion interac

We have considered two types of stationary states: on
and intersite states. We found that the critical value of
dispersion parameterscr for the intersite standing state
slightly above 2, while for the on-site stationary state it e
ceeds 3. This means that the bistable behavior may occ
the case of self-interacting excitations with the dipole-dip
excitation transfer.

We have shown that the long-distance behavior of intr
sically localized states in discrete NLS models with a non
v.

v.

ys
-

n-

r
g

is

t

e

e
d
n.
ite
e

-
in
e

-
-

cal dispersion depends drastically on the value of the dis
sive parameters. The excitation wave functions deca
exponentially only for short-range dispersions. The nonlin
excitations have algebraic tails in the systems where the
trix element of excitation transfer depends on the dista
slower than 1/r 3.

We have also presented the quasicontinuum version
our model. The dynamics of self-interacting excitations
the continuum approximation is described by a nonlo
NLS equation. In the case of the inverse square depend
(r22) of the matrix element of the excitation transfer th
equation reduces to an equation that is a close analog o
Benjamin-Ono equation in the theory of deep water wa
and may be referred to as the Hilbert-NLS equation. Fina
the stability condition for the ground state of this equati
was derived.
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