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Effects of nonlocal dispersive interactions on self-trapping excitations
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A one-dimensional discrete nonlinear Safirger (NLS) model with the power dependencé® on the
distancer of the dispersive interactions is proposed. The stationary stated the system are studied both
analytically and numerically. Two types of stationary states are investigated: on-site and intersite states. It is
shown that fors sufficiently large all features of the model are qualitatively the same as in the NLS model with
a nearest-neighbor interaction. Fotess than some critical valu®,, there is an interval of bistability where
two stable stationary states exist at each excitation numNbeE .| 4,|2. For cubic nonlinearity the bistability
of on-site solitons may occur for dipole-dipole dispersive interact®&n3), while s, for intersite solitons is
close to 2.1. For increasing degree of nonlineawitys;, increases. The long-distance behavior of the intrin-
sically localized states depends @rfFors>3 their tails are exponential, while for2s<3 they are algebraic.

In the continuum limit the model is described by a nonlocal NLS equation for which the stability criterion for
the ground state is shown to BeZo+1.[S1063-651X97)12205-X]

PACS numbsgs): 03.40.Kf, 42.65.Tg, 63.20.Pw, 87.10e

[. INTRODUCTION tial as a function of the tuning parameter were studied. A
further study of the stationary properties of these systems
Recently, the determination of the dynamical properties ofvas recently performed if18]. The nonintegrable dynamics
physical systems with competition between discretenes®f a 1D discrete NLS system with an arbitrary degree of
nonlinearity, and dispersion has attracted a growing interestonlinearity was investigated {i19]. An analytical stability
because of their wide applicability in various physical prob-criterion for solitons in the discrete NLS equation with an
lems. Examples are coupled optical fibers, arrays of coupledrbitrary degree of nonlinearity was obtained in R&D]. It
Josephson junctions, nonlinear charge and excitation trangvas shown that a process of quasicollapse may take place
port in biological macromolecules, elastic energy transfer inwhen an unstable soliton transfers into an intrinsically local-
anharmonic chains, and charge transport in hydrogen-bondezed mode.
systems. It is well known that the balance between nonlin- In the main part of the previous studies the dispersive
earity and dispersion in a weak nonlinearitarge disper- interaction was assumed to be short ranged and a nearest-
sion) limit provides the existence of low-energy solitonlike neighbor approximation was used. However, there exist
excitations. They are very robust and propagate without enphysical situations that definitely cannot be described in the
ergy loss, and their collisions are almost elastic. Due to theiframework of this approximation. The excitation transfer in
robust character the soliton excitations are important in thénolecular crystalg§21] and the vibron energy transport in
coherent excitation transport in biological macromoleculeddiopolymers[2] are due to the transition dipole-dipole inter-
[1,2] and charge transport in organic semiconducf8r4]. action with a 1/® dependence on the distanceThe DNA
As a result of the interplay between discreteness, dispemmolecule contains charged groups, with a long-range Cou-
sion, and nonlinear interactions, new nonlinear excitationslomb interaction (1) between them. In systems where the
namely, intrinsically localized oscillatory states, may appeardispersion curves of two elementary excitations are close or
The properties of the localized modes have been intensivelintersect, effective long-range transfer occurs. Such a situa-
studied during the past yedis—14]. For monatomic lattices tion arises for excitons and photons in semiconductors and
with a nearest-neighbor harmonic interaction and quartic anmolecular crystalgso-called polariton effect21]).
harmonic interaction the localized states were fo{@d11] Until recently there have been few theoretical and numeri-
to have frequencies lying above the phonon band. In the caswl studies of the effect of long-range interacti¢bRI's) on
of a one-dimensionallD) nonlinear Schirdinger(NLS) lat-  the properties of nonlinear excitations. Nonlinear waves in a
tice [15] a localized mode lying below the linear excitation one-dimensional1D) chain with a Lennard-Jones ii2n)
band in the small-amplitude limit reduces to the one-solitorinteratomic potential were studied [@2]. It was shown that
solution of the continuum NLS equation. the dynamics is governed by the Benjamin-Ono equation in
Recently, a discrete NLS equation with “tunable” diago- the casen=2 or by the Korteweg—de Vries equation for
nal and off-diagonal nonlinearities that includes the inte-n=4. The effective mass of solitons in the Frenkel-
grable Ablowitz-Ladik systenfi5] as a limit was introduced Kontorova model with a repulsive LRI, their shapes and
in [16,17. It was shown that reflection and translational Peierls barriers were investigated in RE23]. In [24] an
symmetries of the integrable NLS are broken by diagonalmplicit form of solitons was obtained in a sine-Gordon sys-
nonlinearity and the properties of the Peierls-Nabarro potentem with a LRI of the Kac-Baker typf25,26 and the de-
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pendence of the soliton width and energy on the radius of the

LRI was analyzed. It was postulated[i27] that the nonlin- T=§
ear term in the sine-Gordon equation has a nonlocal charac- n.m(n=m)
ter and different soliton states, of topological charge zerojs the dispersive energy of the excitation and

were found to exist at a large enough radius of the interac-

tion. In [28] the effects of a long-range harmonic interaction 1 2o+1)

in a chain with short-range anharmonicity were considered. Uy=- (U'Tl); A ()
It was demonstrated that the existence of two velocity-

dependent competing length scales leads to two types of solis the potential energy that describes a self-interaction of the
tons with characteristically different width and shapes forquasiparticle. In Eqs(1)—(3) n andm are site indices and
two velocity regions separated by a gap. The effects of longy, s the excitation wave function. We investigate the model
range interactions of the Kac-Baker type were studied iyt the following power dependence on the distance of the
static and dynamic nonlinear Klein-Gord¢3,29,39 and 4ty element of excitation transfdf,_,=J/|n—m|s. The
nonlinear Schrdllnge1 [31] contlnqumfmodels. Iri31] r‘:"? constant] characterizes the strength of the transfer aisla
proposed a nonlocal NLS equation for systems with 10ngyarameter that is introduced to cover different physical situ-
range dispersion effects. In contrast to the usual NLS equaijons from the nearest-neighbor approximaties &) and
tion, stationary solutions exist only for a finite interval of the the dipole-dipole interactionsi 3) to the long-range Cou-

excitatiqn number._ In the upper part of this interval two dif- lomb interactiors= 1. We shall show that this equation hav-
ferent kinds of stationary solutions were found. The kind thaﬁng tunable properties illuminates both the competition be-
Sheen nonlinearity and dispersion and the interplay of long-

pointed_ out that moving_solitons radiate with a Wavelengthrange interactions and lattice discreteness. The degree of
proport_lonal to the velocity. In Ref32] we proppsec_i anon- nonlinearityo is another parameter that we include for gen-
local discrete NLS model where the dispersive mteracnorbra"ty as it has been done in several previous works

had a power dependence on the distance. It was found th - ; ; )
there is an interval of bistability in the NLS models with a Eie?hze%a;?&?thheozvjéi&ihf) Tglsne part of this paper is con

long-range dispersive interaction. One of these states is a From the Hamiltoniar(1) we obtain the equation of mo-

continuumlike soliton and the other is an intrinsically local- . = " N o o
ized mode. ]E|on iyn=0H/ady; for the excitation wave function in the
form

The goal of this paper is to investigate both types of soli
ton states in the discrete NLS model, on-site and intersite
states, and study the motion of s_olitor_13 and Peierls-Nabarro i+ 2 Jnem(m—thn) + | |27, =0, (4)
pinning. We develop also a quasicontinuum approach to the m(m#n)
problem. In Sec. Il we present the analytical theory and the . L :
results of numerical simulations of stationary states of thef[Nh.ere |_t|he %Vﬁ:dm degotesf the_:lr?e derivative. The Hamil-
discrete NLS model with a long-range dispersive interaction'oMNfan ™ and theé number of excitations
We discuss the bistability phenomenon for the two types
(on-site and intersifeof soliton solutions and their stability. N=> |2 (5)
In the analytical part of this section we use a variational n
approach exploiting an exponential-like function as a trial . . .
function. Then, in Sec. lll we investigate the Iong—distanceare conserve(_j quantities. Obviously, the Lagrangian for Eg.
behavior of the nonlinear excitations and show that intrinsi-\# ¢an be written via the Legendre transformtfas
cally localized states of the discrete NLS model with a dis- 1
pgrsive interaction dgcayipg slower tham31have algebraic . L=i>, 5(%%‘ - ,;y: ) —H. (6)
tails. In Sec. IV we investigate the soliton states in a quasi- n
continuum approximation and derive a continuum nonlocal . . . )
NLS equation. We show that the degree of nonlocality de\We are interested in stationary solutions of E4). of the
pends on the dispersion parameseiin particular, fors=2 ~ f0rm
(inverse square dependence on the distance of excitation
transfej we obtain an equation, which we denote the

Hilbert-NLS equation, that has a form that is closely relatedwith a real shape functiors, and a frequencyA (there
n

to the Benjamin-Ono equation. The stability of the groundgeems (o pe a rather great number of names for this param-

state of the nonloca! NL$ equgtion is studied. Section Veter; we have here chosen the term “frequency” since this
presents the concluding discussion.

appears to be the most common; see, €34J). This reduces
the Lagrangian6) to L=A3,¢2—H and the determining
Il. SYSTEM AND EQUATIONS OF MOTION equation for the functiong,, becomes

Jn7m| wm_ wnlz (2)

¥n= dnexp(iAt), )

The model we study is described by the Hamiltonian
Ago=3 > [n—m|"(¢n—n)+ 7. (8
H=T+U,, (1) mimen
Thus Eq.(8) is the Euler-Lagrange equation for the problem
where of minimizing H under the constrair¥l= const.
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To obtain an approximate solution of the problem we use * 2 _
an ansatz for a localized state in the form J(k)=232, n*Scoﬂmsze[F(e'k,s)}
n=1
N sinha s—1
- oxn — vln— 2J (1 (cok—2)[In(1/z)]
= ex aln—24|), 9 _
%= NoosHazo—pio® —aln=ah. O 9 )o% Z27co%r1 19

where « is a trial parameter and is the position of the where

center of the localized state, which, without loss of general-

ity, can be restricted to € §<1 for the infinite chain. The o

ansatz(9) is chosen to automatically satisfy the normaliza- F(z,5)= 2 (Z'/ns) (17)
tion condition n=1

is the so-called Jongie function(its properties are described

2_
% $n=N (10 in Ref.[36]) and
such that the problem of minimizing under the constraint |®(K)[2=N sinha / sinffa
N=const is reduced to the problem of satisfying the equation cosha(26—1)]\ (coshe—cok)?
dH/da=0. . .
Variational approaches similar to the one described above + Zsmr(ozﬁ)smr[a(a— 1)]) (18
have recently35,34 been used for the nearest-neighbor case coshw— cok ’

of Eq. (4) to analyze static and dynamical properties of the
solitions. In particular, the work of Malomed and Weinstein We obtain, for the kinetic energy,
[34] is based on the same ansatz, while the work of Aceves _
et al. [35] is based on an essentially different ansatz that is T=2N{ 1—3( F(e™ % s—1)sinha T+ E(e-" s))]
too complicated for analytical analysis. cosha(26—1)] '
It will be shown in Sec. Il that the long-distance behavior (19
of the excitation wave functio,, drastically depends on the
value of the dispersive parameter Only for s>3 are the Inserting Eq.(9) into Eqg.(3) we get
tails of ¢, exponential. However, a qualitative description of

the energy spectrum of the system can be obtained using the No*1

trial function in the form(9) at anys. Uo=— 77710 (20
To calculate the kinetic energlywe use the discrete Fou-

rier transform where

oK)= expikma,. Ik =3 explikn)d. . fa=( sint o cosli(o+1)a(26—1)]

cos " a(26—1)] sinf(o+1)«a]
(11) (21
which permits us to rewrite Eq2) in the form According to the variational principle, we should satisfy the
equationdH/da=0, which yields

1 1 T
-3 cleor=5 | cwleml a2

N=87+1] (1—$+ 26-1
B cosha(26—1)] ( )
where the spectrum function
sinhatani (26— 1)] .
£(k)=3(0) (k) (13 X cosha(zo-1)] | & STY
determines the linear dispersion of the excitations khés sinha Ca o7t
the number of sites in the systeri (~). For convenience +cosﬁ[a(25— 1)] F(e™%s=2) da| (22)

we shall use
As a direct consequence of E@), the frequency\ can be

obtained as
J=—o, 14
{(s) 19
1
with £(s) being Riemann’s zeta function A=— N(T+2U,), (23
{(s)= i n-s (15) with T andU , being defined by Eq$19) and(20). We shall
A=1 study in detail the stationary states of the system for the case

o=1. The two types of stationary states, on-si#e=0) and
to haveJ(0) independent o§. Using intersite (6= 1/2) states, will be considered separately.
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FIG. 1. Number of excitationdl versus frequency\\. A com-
parison between analytical dependence &4) for s=2.1 (long-
dashed ling 2.5 (short-dashed line and numerical dependence

FIG. 3. Shapes of the three stationary statessfer2.5 and
N=3.1: the stable state& =0.21 (long-dashed lineand A=0.74
(full line) and the ustable stat®= 0.57 (short-dashed line

from Eq. (4) for s=2.1 (dash-dotted lingand 2.5(full line). [N,(s),Ny(s)] three stationary states with frequencies
A1(N)<A,(N)<A3(N). In particular, this means that in the
A. On-site localized states:6=0 case of the dipole-dipole interactios=€3) multiple solu-

tions exist. The observed bistability is very similar to the
bistability observed in Ref$20] and[34], where the nearest-
neighbor case with an arbitrary degree of nonlineasityvas
studied. The bistability appears in this case formbove a
certain critical value.

Figure 3 shows that the shapes of these solutions differ
significantly. The low-frequency states are wide and continu-
umlike, while the high-frequency solutions represent intrin-
sically localized states with a width of a few lattice spacings.
For s=2 we can expand Eq22) in the limits «—0 and

Figures 1 and 2 show the dependehifé\) obtained ana-
lytically from Egs.(22) and (23) for =1 and from direct
numerical solution of Eq(8). A monotonic dependence is
obtained fors>s,,. Fors,>s>2 the dependence becomes
nonmonotonidof A/ type) with a local maximum and a local
minimum. These extrema coalesce st s;,=2.72 [from
Egs. (22) and (23)] and s=s,=3.03 [from the numerical
solution of Eq.(8)]. Fors< 2 the local maximum disappears.
Thus the main features of all discrete NLS models with dis
persive interactiond,_, decreasing faster tham—m|"% 1, 4 444 obtain that the inverse widths of these two stable
coincide qualitatively with the features obtained in the states are
nearest-neighbor approximation where only one on-site sta-
tionary state exists for any excitation number. However, in
the case of the long-range nonlocal NLS equaiidn i.e., ap~
2<s<s,, there exist for eachN in the interval

N 1/(s—2) N Inl/(1—2Inl)
() s

8J 8J

N
, a3%|n j

where | =exp(156) is the characteristic length scale of the

59 dispersive interaction. It is seen from these expressions that
N the existence of two so different soliton states for one value

of the excitation numbeN is due to the presence of two
different length scales in the system: the usual scale of the
NLS model, which is related to the competition between
nonlinearity and dispersiofexpressed in terms of the ratio
N/J), and the range of the dispersive interaction

Exploiting that, for <, the Jongiee function
F(e™¢,s) can be represented in the form

(—a)f

rt’

F(e‘“,s)=F(1—s)a5‘1+r§O L(s—r) (25)

0 | | | |

0.0 0.5 1.0 L5 2.0

A we obtain, for the discrete lattice from Eq22) and(23) in

the limit of small excitation numbeN,

FIG. 2. Number of excitation®l versus frequencyA numeri-
cally from Eq. (7) for s=« (full line), 4 (dotted ling, 3 (short- a= {(s) N. H=-— {(s) N3
dashed ling 2.5 (long-dashed ling 2 (short-dash—long-dashed 8/(s—2) "’ 64{(s—2)

line), 1.9 (dash-dotted ling (26)

for s>3;
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0.0 0.5 Lo L5 2.0 20 22 24

FIG. 5. End points of the histability interval fd¥ versus the
dispersion parameta: Fors=s, the end points coalesce. Analyti-
cal dependencédashed ling s,,=2.72 and numerical dependence
(full line) s,~=3.03.

FIG. 4. Number of excitationdl versus frequencyA numeri-
cally from Eq. (7) for s=c0 (full line), 4 (dotted ling, 3 (short-
dashed ling 2.5 (long-dashed ling 2 (short-dash—long-dashed
line), and 1.9(dash-dotted ling

(iii) The interval ofs where the two stable intersite states
can exist, 2.s<<s/,, is very narrow. Thus intersite localized
states are much less sensitive to the long-range character of
the dispersion than the on-site states.

_ ( N§(S)F(s)sin(7,-s)) 1U(s—2)
| 8m(s=1)(s-2)

N(25-3)/(s-2)

To investigate the stability properties of the different sta-
tionary states we use the approach developg@Ghand find
for s<3. (27) that the positive definiteness of the dispersion tdrmgiven
' by Eqg. (2) and the form of the nonlinear terrd permit
The particular values=2 separates two different kinds of 9eneralization of the theorem given by Laedke, Spatschek,
behavior: fors>2, H—0, while for 1<s<2, H— when and Turitsyn[20] to this nonlocal case. According to this
N—0 and the stable continuumlike soliton disappears. Thidheorem, the necessary and sufficient stability criterion for

__2°s /((S)F(s)sin(ws))lks—b
H_4(S—1)\87T(s—1)(s—2)

is confirmed by our simulatiofsee Fig. 2 on-site stationary states is
B. Intersite localized states:6=1/2 d_N = 12 2>0 (30
dA dAS5 $n=0.

In Fig. 4 we plot the excitation numbét as a function of
the frequencyA for intersite localized states obtained from therefore

the numerical solution of Eq8). The analytical results ob- [N(s),N,(s)] there are only two linearly stable stationary

tained from Eqs(22) and (23) for o=1 and6=1/2 are in  ga1eq4 A, (N) and A5(N)]. The third state is unstable since
qualitative agreement with the numerical results, but thejn/ga <o atA=A,.

quantitative agreement is not as good as in the on-site soliton s (e pointsA (N,) and A (N
case. It is seen from Fig. 4 that this dependence is similar Wiolated since IN/oA)
the dependenc®l(A) obtained for on-site localized states >
(see Figs. 1 and)2but with the following distinctions.

we can conclude that in the interval

w) the stability condition is
vanishes. Constructing the locus of
the end points, we obtain the curve that is presented in Fig. 5.
This curve bounds the region of bistability. It is analogous to

(i) While theN(A) curves for on-site states with different the critical curve in van der Waals’ theory of liquid-vapor
dispersion parametesstend to coincide at high, the same Phase transitiori37]. Thus, in the present case we have a
curves for intersite states become parallehat «. The rea- similar phase transitionlike behavior where the two phases
son for this difference is seen from the definition of the fre-areé the continuum states and the intrinsically localized states,
quency given by Eq€19), (20), and (23): for 5=1/2 respectively. The analog of temperature is the paranseter
For the parity-conservingeven perturbations the stability
condition of intersite stationary states is the same ag3),
N:2A+4—@ (A=), (28)  put these excitations are unstable with respect to parity-

nonconserving perturbations. A typical evolution of these ex-

while for §=0 citations is presented in Fig. 6. It is seen that by choosing as
an initial condition the intersite state it transforms into an

N=A+2 (A—x). (29)  intrinsically localized on-site state with a time-dependent

width.

(iil) The critical value of the dispersion parameter Now we turn to discuss stationary states of the discrete
s,=2.1 is much less than the value obtained for on-site loNLS model given by Eq(4) with an arbitrary degree of
calized states. nonlinearity. The main properties of the system remain un-
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a5 - approach the bistability in the nonlinear energy spectrum
w2 4 occurs even fos<6.
3.5
2_2 ’ ‘ ll. TAILS OF INTRINSICALLY LOCALIZED STATES
12 Investigating the asymptotic behavior of the excitations, it
’ ‘ is convenient to rewrite Eq:8) (we consider here the case
05 o=1) in the form
3
n=2 Go-m(A) 1, (3D
time
(@) where
4 1 (= cogkn)
¥ Gn(A) = EJL 71_d kA‘f'—E(k) (32)
3 is the Green’s function. For larda|, the main contribution
R ! to the integral on the left-hand side of E@2) is due to
.l 2 smallk. Hence we can extend the integration over the whole
axis and taking into account properties of the Joregfenc-
tion [36] in the k— 0 limit, write the Green’s functior{32)
1- ':‘ for |n|~>oo as
Gn(A)= ! fw dk—cos(kn) 33
O owrgaeey poeey )=o) K e (33
-15 -10 -5 10 15
where
(b)
. . . 2 for s>3
FIG. 6. (a) Evolution of an intersite state=2.57,N=4.53.(b) v(s)=
The intersite state used as the initial condition and the resulting s—1 for 2<s<3,

on-site state at=40 whereN=3.99.

and
changed, but the critical value of the dispersion parameter 2
S¢r IS now a function ofo. The results of the analytical con- {(s=2) for s>3
sideration confirmed by simulatio(see Fig. 7 show that )24
s increases whem increases. In particular, far=1.4 (the as= -
value at which the discrete symmetric ground state can be T T(s)Z(s)cos 75/2) for 2<s<3.
unstable in the nearest-neighbor approximatia]; Mal- ™
omed and Weinsteir{34]. fognd the critical valug t.o Applying Jordan’s lemma we get
o=1.32 due to the approximative character of the variational
Gh(A)= e VANl 53 (34)
" 2VAag
1
Gn(A)=P|n|’S, 2<s<3, (35

so the Green’s functioii32) decays exponentially only for
s>3. Fors<3 the exponential decay is replaced by an al-
gebraic decay.
From Egs.(31), (34), and (35) we see that the leading
term in the asymptotic expansion of the excitation wave
function ¢, in |n| is given by
1 |

0.6 0.8 1.0 1.2 1.4 $n~A(A)Gp(A), (36)

with
FIG. 7. Critical dispersion parametsg, versus the degree of
nonlinearityo: analytical dependenaéull line) and numerical de- A(A)= E ¢3_ (37)
pendencécircles. L
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105-‘ 8X10'8_.
6x1078—
3
£ 4x1078
3
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2x1078-}
10" | I | 0x10° I I I o
1 10 100 1000 0.2 0.4 0.6 0.8 1.0 1.2
n A
FIG. 8. Shape of the stationary stétiashed lingfor s=2.5 and FIG. 9. Amplitude in the tail of the stationary state for2.5
A=0.7 and the result of Ed41) (full line) on a log-log scale. andn=450. Numerical result&ircles and Eq.(41) (full line).

It is seen from Eqs(34)—(36) that for all s>2, bn is a  predicted by Eq(42) is in good agreement with the results of
rapidly decaying function ofi. Hence, being interested in the numerical simulations. Moreover, Fig. 9 shows that the
long-distance behavior of the intrinsically localized statesdependence predicted by H42) agrees rather well with the

with large frequencied, we obtain from Eq(31) numerical results.
3 3
0=GodpT2G1 41, (38) IV. QUASICONTINUUM APPROXIMATION
¢1=Gl¢8+ ZGquf, Now we turn to discuss the quasicontinuum limit of the
discrete NLS model given by Eq$1)—(3) with arbitrary
where dispersion parametes and arbitrary degree of nonlinearity
o. We are here interested in the case where the characteristic
Go= 1 10 1 (39) size of the excitations is much bigger than the lattice spacing
A+1 (A+1)%) (which we choose to be equal to upitylt permits us to
replacey,(t) by the functioni(x,t) of the continuous vari-
G.— 40 able x and using the Euler-Maclaurin summation formula
72(A+1)° (A+1)3)° [38] to obtain instead of Eq3) the expression for the po-

tential self-trapping energy
Using Eqgs.(38) and(39), we then get

1 o
po=ATT, @0) V== =g | axpocole . @

_ ﬂ [ 1 Under the above-mentioned assumption the most important
b= 2 VA+T role in the expressiofil2) for the kinetic energyl is played
by components with small wave numbeks{1). Therefore,
Inserting Eqs(17) and(40) into Eq.(36), we obtain that the we can safely extend the integration interval to the whole
tails of intrinsically localized states are given by the expresaxis and get

sions
1 (=
(A+1)°(s) p(_ 2A4(9), |) s T=gjﬂcdkﬁ(k)l\lf(k,t)l2
PN 2A (s~ 2) 2" ®
“ :f de dy[o " (x,D]a(x=y)ay(y,t), (44)
(A+1)3%2 s o T
$n= A? In[™% 2<s<3 (42) where d,=d/9x and the Fourier transforr®(k) of the ker-

nel q(x) is given by
for [n|—cc. Thus we can conclude here that only in the case
of the short-range dispersios>* 3) do the tails of intrinsi-
cally localized states have a usual exponential form. In the
systems with long-range dispersive interactions these states
have algebraic tails. Figure 8 shows the long-distance beha¥rom Egs.(43) and (44) we obtain that the dynamics of the
ior of intrinsically localized states for different values of the excitation is governed by the integro-differential NLS equa-
dispersive parametes. It is seen that the form of the tails tion

1
QK= 2L (k). (45
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i 9+ 0 (Qdth) + | ]2 =0, 46 and the perturbed NLS equation that arises from the descrip-
WO Aa) + I (46) tion of Landau damping in a plasntaee, e.g., Ref.39)).
Now we want to discuss the stability of the ground states
of Eg. (46) with the inverse mass given by E¢1). The

(qu) (K)=Q(K) W (K). (47) stationary solutions in the form

whereq is the Fourier multiplier operator defined by

The kernelg(x) in Egs.(44) and(46) can be considered as a D= p00e™ (59
generalized inverse effective mass of excitation. From Eqsy¢ Eq. (46) are stationary points of the Hamiltonian
(13) and (45) we obtain that its Fourier transform can be H=T+U _ for the fixed excitation numbex

represented in the form 7 ’

" d4(H—AN)=0, (56)
2 F(e'%,s)
Q(k)= E?R 1- (s) |’ (48) where s, denotes functional variation with respectd#oand
where the Jongfe function F(z,s) is given by Eq.(17). zf” 2
Applying Eq.(25) for the Jongiee function, we obtain in the N _wdx| YO0 7

long-wavelength limit(that is, for k<1) that the inverse
mass functiorQ(k) can be expressed as is the continuum analog of E¢p). Let ¢(x,A) be a solution
of Eq. (56) and use the scaling transformation

{(s—2) _
)= s TOKT) >3 (49) (X, A) =P 2p(px,A) (59)
1 with the scaling factop. The transformatiori58) conserves
Q(k)= 27(3) 3+In el i O(k?), s=3, (50 N.For thistransformation the functionsl becomes a func-
{(3) tion of the parametep, so that the functional variation

changes into a variation gb. The functionH(p) has an
extremum afp=1 and we must determine whether it corre-
sponds to a maximum or a minimum. Inserting the function

and finally, for 2<s<3,

Qk)=— 7 - [k|S73+0(k%. (51 (58) into Egs.(43) and(48) we get
F(s)g(s)cos(T) 1 "
Up(p==—7| | M)*7 Pdx=p"U,(p=1),
It is seen from EQq(49) that for s>3 the effective mass is (59)

constant and Eq46) takes a common form characteristic of
the NLS models with a short-range dispersive interaction:

o= ax| " dyiag,001a0-)a)

"9—‘”+i&—2w+|wlz"w—o (52
ot 2m gx? ' =pS T(p=1). (60)

wherem={(s)/{(s—2). Whens=3 the dipole-dipole dis- Note that 6—1)T(p=1)=—0oU,(p=1) since dH(p)/
persive interaction makes the mass nonlocal, but this nonlqqp| . =0 and
cality is rather weak since the inverse-mass functig(k) P

given by Eq.(50) is a smooth(logarithmig function ofk. In d?H(p)
contrast to this, for 2s<3 the long-range effects make the ap? | (s—1)(s—o—1)T(p=1). (61)
dispersion essentially nonlocal and, e.g., in the limiting case p=1
s=2 when, according to Eq51), L=(6/m)[K| the integro-  gjnce the quantity(p=1) is always positive, we may con-
differential equatiorn(46) can be rewritten as clude from Eq.(61) that for
dY 6 [dY 201 s<o+1 (62
IE‘F;H{&—X +|lﬁ| lﬂ—o, (53)

the functionH(p) at p=1 has a maximum and the ground
where the notatioft{{f(x)} denotes the Hilbert transform of state ¢(x,A) is unstable. In particular, the continuum NLS
f(x) given by models with the degree of nonlinearity=1 and dispersive
‘) interactions that decrease slower tham?1have unstable
* y round states.
H{f(x)}:wadyH’ (54 7 As it was discussed above, the ground state of the NLS
model with the degree of nonlinearity=1 ands=2 is un-
where the integral is a Cauchy principal value. Thus the dystable, while it is stable whet<<1 [40]. Therefore, we may
namics of self-interacting particles in the systems where theonclude that for the degree of nonlinearity=1 the low-
dispersive interaction decrease as?lis governed by Eq. frequency(continuumlike stationary states of the NLS mod-
(53), which can be called &LS-Hilbert equation. At this els are exponential-like f{a>2 and only fors<2 they have
point it is worth mentioning the formal similarity of Eqg4)  algebraic tailfsee Sec. )l
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V. CONCLUSION cal dispersion depends drastically on the value of the disper-

. sive parameters. The excitation wave functions decay
In summary, we have proposed a nonlocal discrete non-

linear Schrdinger model for self-interacting excitations with exponentially only for short-range dispersions. The nonlinear

power dependence on the distancé of the matrix element excitations have algebraic tails in the systems where the ma-

of the excitation transfer. We have shown that the behaviogllgwe;??:g:]t ng excitation transfer depends on the distance

of all NLS models with a dispersion interaction decreasing We have also presented the guasicontinuum version of
fa_ster tharr e is_qualitative_ly t_he same as the NLS model_ our model. The d)rl)namics of self?interacting excitations in
with a nearest-neighbor excitation transfer. In contrast to thl?he continﬁum aoproximation is described by a nonlocal
there is an excitation number interval of bistability in the NLS equation In?ﬁe case of the inverse squa?/e dependence
NLS model_s .W'th a_long-range d_|sper5|ve mtera_ctlon(r_z) of the matrix element of the excitation transfer this
S<Ser- In_ th!s interval two stable stationary SFateS ex'.St altequation reduces to an equation that is a close analog of the
each excitation numbeX. One of these states is a continu- Benjamin-Ono equation in the theory of deep water waves

umlike soliton and the other one is an intrinsically localized _ | may be referred to as the Hilbert-NLS equation. Finally,

mode. The existence of the bistability phenomenon in th%he stability condition for the ground state of this equation
NLS models with a nonlocal dispersion is a result of thewas derived

competition of two length scales that exist in the system: the
scale related to the competition between nonlinearity and
dispersion, and the scale related to the d_lsperS|on mterachqn. ACKNOWLEDGMENTS
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