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Solitons in coupled waveguides with quadratic nonlinearity

William C. K. Mak,* Boris A. Malomed?* and P. L. Chd'
1Optical Communications Group, School of Electrical Engineering, University of New South Wales,
Kensington, New South Wales 2052, Australia
2Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 27 November 1996

We consider a model of two linearly coupled second-harmonic-generating waveguides. The analysis is
focused on the case of no walkoff and full matching. We demonstrate existence of a bifurcation that transforms
obvious symmetric soliton states into nontrivial asymmetric ones. The bifurcation point is found exactly, while
a full analytical description of the asymmetric solutions is obtained by means of the variational approximation.
Comparing this with numerical results generated by the shooting method, we conclude that, in a part of the
range where the asymmetric states are predicted, the analytical approximation provides very good accuracy,
while in another part, the asymmetric solitons disappear. Whenever they exist, however, direct partial differ-
ential equation simulations demonstrate that they are stable, while the symmetric ones are not. We also
demonstrate that the asymmetric solitons remain stable if walkoff is added. The soliton states found here can
be used for optical switchingS1063-651X97)11105-9

PACS numbdrs): 42.65.Tg

I. INTRODUCTION 1
iUz, — 1 dUgy+ Euzxx_qU2+U302:_QU1, 3
The study of solitons in waveguides with quadratic non-
linearity has recently attracted a lot of attenti(see, e.g.,
[1-15)). The analogy with nonlinear optical fibers suggests 2iv.— 2i i Lo
. . , V2~ 2100 ¢+ SUxx— U2+ 5U= —Kuy, (4)
that essentially new soliton states may be expected in 2 2
parallel-coupled waveguides. Thus far, coupling effects were
considered in terms of cw propagation in a quadraticallywhere the subscripts 1 and 2 pertain to the first and second
nonlinear waveguide coupled to a linear dig]. Very re-  waveguidesz andx being, respectively, the propagation and
cently, some direct simulations of the pulse evolution in athe transverse coordinates in thefme refer to the more
pair of coupled waveguides with a mixed quadratic-cubicrealistic case of spatial solitonsnds is the walkoff param-
nonlinearity were reported ifil4], but solitary-wave states €ter. The second derivatives and the nonlinear terms in Egs.
were not considered there. (1)—(4) account for, respectively, diffraction and FH-SH
The objective of the present work is to initiate study of conversion. The parameter measures the phase mismatch
solitons in two linearly coupled second-harmonic-generatind’e€tween the two harmonics, the system being fully matched
(SHG two-dimensional waveguides. We will, chiefly, con- atq=1. The terms on the right-hand sides represent the lin-
fine ourselves to the simplest case, when the waveguides aé@r coupling between the waveguid@sandK being the FH
identical, and the beams in them are strictly parallel. How-and SH coupling constants.
ever, we will also demonstrate that stable solitons found in In this paper we will concentrate on the fully matched
this work survive if the spatial walkoff, produced by a mis- case,q=1, and, moreover, we will assume equal coupling
alignment between the beams, is added to the model, preonstantsK =Q (the latter may be justified if the separation
vided that it is not too strong. between the waveguides is sufficiently smakctually, it
Equations describing copropagation of the fundamentawill be seen below that the latter condition, alongside
harmonic(FH) u and second harmon{SH) v in the linearly =1, is necessary to achieve full matching of the two har-
coupled waveguides can be obtained as a straightforwarghonics in the coupled waveguides. A more general ¢ase
generalization of the well-known equations for the singleparticular, the cask =0, which corresponds to the case of a
waveguide[1]: large separation between the wavegujdel be considered
elsewhere. In this paper, we will consider mainly the no-
1 walkoff case,6=0.
iU, +idu+ Eulxx—qulvL ujv,=—Quy, (1) Thus we are dealing with the model controlled by the
single paramete®. First of all, we will consider stationary
solutions by dropping the-derivative terms and assuming

. . 1 1, all the variables real. The stationary version of Ed$—(4)
2012+ 2100t ZUp V1T ZUI=—Kog, () (with g=1, K=Q, and §=0) has an obvious symmetric
solution (corresponding to the classical solution obtained in
[16)),
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(where the sign is the same for both values of the subsgriptover a long propagation distance, we observe a trend to its

and rearrangement into the stable asymmetric soliton. To the
right of the bifurcation pointwhere the asymmetric solitons

3 1 do not exist, the symmetric ones are stable. Thus this is

111:‘)225(1_(3)39(7H \ E(l_Q)X , (6)  similar to the situation in the dual-core optical fibers with the

cubic nonlinearity[17,18. Where the asymmetric solitary-
which exists provided thatQ<1. Since special exact Wave solutions do not exist f@@<—0.3, the mode of insta-
solitary-wave solutions to the SHG equations have alway®Iility of the symmetric solitons is oscillatory, showing a
been the focus of attentid], it may be relevant to mention  trend to their complete decay into dispersive radiation. Fi-
that, in the general casg 1 , K#Q), an exact sechsta- nally, we will also simulate the a_symmetrlc solitons in the
tionary solution to Eqs(1)—(4) exists only at the mismatch C€ase when the walkoff parametéris nonzero, but small.
values g=1+Q—K, when the solution is symmetric as
above, andj=1-Q—K, when the solution is antisymmetric
in its FH componentu; = — Uy, v1~ + v, Il. THE ANALYTICAL RESULTS

A nontrivial issue is the search for asymmetric solutions. AND NUMERICAL CHECK
Asymmetric SOlitary waves have been studied in detail in a In accordance with what was said above, we will concen-
similar problem for nonlinear dual-core optical fibédsrec-  trate on the most important case of full matchings 1 and
tional couplers with the cubic(Kerr) nonlinearity, see, e.g., K =Q (in this section, we will also saf=0). In this case, it
[17-24. It was found that(using notation similar to that s easy to see that the stationary version of Ed$—(4)

adopted _her)e _at large vall_Jes of the coupling cpnstant, the_allows the substitutiorltv12=u12/\/§, cf. Eq. (5). Then,
symmetric solitons are unique and stable solutions. There ig,ere remain two equationé ’

a critical value of the coupling constant, at which a bifurca-
tion takes place: below this value, the symmetric solution is
unstable, but there exist two nontrivial stable asymmetric 1 1
solutions(which are mirror images of each otherhe bifur- Eu’l’— u;+ —u§+Qu2=0 , @
cation was shown to be slightly subcriticAl8], i.e., the V2
asymmetric solutions appear at a value of the coupling con-
stant which is slightly larger than the above-mentioned criti-
cal one. In a tiny region between these two values, both the 1, 2 _
symmetric and asymmetric solutions are stafifethis re- U2t EuﬁQul—O, ®)
gion, there also exists an additional pair of intermediate un-
stable asymmetric solutions
In [18], it was shown that the bifurcation and the whole where the prime stands fal/dx.
parametric plane of the soliton solutions could be obtained, Equations(7) and(8) have an evident Lagrangian repre-
with a fairly high accuracyas compared to numerical re- sentation with the Lagrangian density
sulty, in an analytical form by means of the variational ap-
proximation (VA). It is necessary to mention that VA was

recently applied to description of stationary soliton solutions 1 .., P 1 5 3

in the single SHG waveguidg15]; the corresponding ana- L= 7[(up) "+ (uz)]+ 5 (uztuz) - ﬁ(ul"‘uz)
lytical results were very close to the numerical ones. Thus

the results of15] and[18] strongly suggest applying VA to —Quyu,. 9

the present problem too. This will be done below, parallel to

looking for stationary solitary-wave solutions by the shoot-

ing method. VA predicts asymmetric solitons in the regionTo apply VA, we adopt the following ansatrial form) for
—1<Q<3/8. On the other hand, the shooting produces suclthe solitary-wave solution, which is suggested by the special
solutions at(approximately —0.3<Q<0.35. The shape of exact solutior(6), and also by analogy with VA for the soli-
the numerically found asymmetric solitons is fairly close totons in the dual-core fiber with the cubic nonlinealfiy]:

the analytical prediction. However, f@< — 0.3, the shoot-

ing method fails to generate asymmetric solitary waves; in y

this region, we can find numerically only periodic waves. _ -~

As for the bifurcation point, it will be found both by ul_ACOS‘gseCH(W)’ (10
means of VA, which yields the bifurcatiofcritical) value
Q.=3/8, andexactly Q,=5/13. Thus the error of VA in
determining the bifurcation point is only 2.5%.

Stability of both asymmetric and symmetric solitons will
be tested by direct simulations of Eq4)—(4). We will see
that, whenever the asymmetric solitons exist, they are stable.
The symmetric solitons are always found to be unstablevhereA, W, and@ are arbitrary amplitude, width, and asym-
when they coexist with the asymmetric ones, which is a natumetry parameter of the soliton sought.
ral consequence of the bifurcatiph8]. Moreover, by simu- The next step is to insert EqEL0) and (11) into Eq. (9),
lating development of the instability of the symmetric soliton and calculate the effective Lagrangian,

u,=Asinfsec ik (11
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- §QA2Wsin(20). (12 '
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0.6
Finally, equations that determine the unknown parameters

A, W, and# are obtained by demanding that variations of the
Lagrangian with respect to each of them are zero.

After some algebra, we arrive at the following results.
The variational equations have two different solutions, one 04~ o P o oz o3 oa
of which exists at allQ<1 and hasf=w/4. It is easy to a
check that this solution coincides with the exact symmetric

soliton (6). The other, asymmetric solution is

0.5

FIG. 1. The bifurcation diagram of the systeff), (8). The
continuous line shows the analytical approximation, while the dots
T 1 are results generated by the shooting method.
6=— —+ =cos ¢, (13
42 azero modg du, dv) at this value ofQ. One can easily find

that a nontrivial zero mode of the form

A sin( 0+ 7/4) 14
Su=— sv=asech| —x |, (18
5 I V13
w= \/—gé‘lQ(l—o 1+ 54), (19
wherea is an infinitesimal perturbation amplitude, exists at
where the auxiliary parameter Q=>5/13. It is noteworthy that this zero mode, in contrast
with the unperturbed symmetric solution, is antisymmetric,
hich indeed implies a transition to asymmetric solutions as
—6+ —20Q-5Q? w . :
[=—sin(26)= 5Q—6+y3(12-200-5Q°) (16) a result of the bifurcation.
2Q One can now compare the approximate and exact values

) . ) ) of Q, i.e., respectively, 3/80.3750 and 5/13 0.3846. The
Further stra_|ghtforwar_d conslderatlon shows that this asymye|ative error of our simple VA in predicting the bifurcation
metric solution exists in the interval of the coupling constantpoint is 2.5%, which is quite acceptable.

values Proceeding to numerical analysis of the bifurcation and

asymmetric soliton states, we solved E@#) and (8) by
_ 1<Q<§ (17) means of the well-known shooting method, which was
8 implemented in terms of the fourth-order Runge-Kutta nu-
merical scheme. The analytical prediction and numerical re-
[this limitation is imposed by the conditiofsin(20)|<1], sults are summarized in Fig. 1, which representsifarca-
which should be compared to the existence range of the symion diagram i.e., a plot of the effective asymmetry
metric soliton (6), Q<<1. It is also easy to check that at parameter cos@ [18] vs the control paramete® [the
Q=0, when Egs(7) and (8) become decoupled, the varia- branch of the solution corresponding to the symmetric soli-
tional solution goes over into the exact one for the singleton is cos(#)=0; it is not specially marked in Fig.]J1As
waveguide[16], while in the other waveguide the field is one sees, the agreement between VA and the numerical re-
absent. At small values ¢| the solution is strongly asym- sults is fairly good in the intervat-0.3<Q<0.35, cf. Eq.
metric. In contrast with this, at the bifurcation point (17).
Q=3/8 the solution coincides with the exact symmetric so- Very close to the bifurcation point, the shooting method
lution (6) for the same value d, and in the opposite limit, becomes unstable because of large numerical fluctuations,
Q— —1 (though we will show below that this limit does not but there is no doubt that the bifurcation takes place as pre-
really exis}, the variational solution describes an almost an-dicted by VA (incidentally, this bifurcation is clearly super-
tisymmetric soliton with a vanishing amplitude and a di-  critical, unlike the slightly subcritical one in the dual-core
verging widthW. fiber with the cubic nonlinearity[18]). However, for
The valueQ, of the control paramete® at the bifurca- Q< —0.3, the shooting method has never produced solitary-
tion point can be founexactly Indeed, the bifurcation as- wave solutions. Instead, it generated periodic waves. We do
sumes the appearance of an unstable mode in the spectrumnadt consider them here at large, as the subject of this work is
small perturbations around the exact symmetric solu®n the soliton, and periodic waves are usually unstable.
whenQ becomes smaller tha@,, [18]. The change of sta- We have also directly compared dependences of the peak
bility of this mode atQ=Q,, , in turn, suggests existence of values of the variables;(x) andu,(x) on the control pa-
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25 . . lll. STABILITY OF THE ASYMMETRIC SOLITONS

To verify the stability of the stationary solitons found in
the preceding section, we directly simulated the full system
of partial differential equation$PDE’s) (1)—(4). The split-
step Fourier methodalso called the beam propagation
method was employed. The method was implemented using
the third-order Runge-Kutta scheme, together with the so-
called transparent boundary condition algoritf25], which,
effectively, allows dispersive waves emitted by a perturbed
soliton to be radiated away through the edges of the integra-
05l | tion domain, and thus eliminates the aliasing problem, i.e.,
distortion of the picture by waves reflected from the edges.
M In order to control the accuracy of the simulations, selected
% % i 2 0 2 i A s runs (especially those which produced unexpected results

X were repeated with a smaller step size in the propagation
direction, and/or with a larger number of the points imple-
menting the fast Fourier transform in the transverse direc-
tion. These changes in the numerical scheme never produced
any conspicuous difference in the results.

The initial conditions used in the PDE simulations of the
rameterQ, as predicted by VA and as given by the shootingasymmetric solitons were slightly different from the station-
method. Within the same intervat 0.3<Q<0.35, they ary solutions found by the shooting method: the peak values
prove to be fairly close. The worst case error is about 8%of the waves were taken as given by the shooting method,
which happens at the smaller of the peak valuesiodnd  but for the pulse shapes, the VA analytical expressid@s
u, when they are strongly asymmetric; i.©.js closeto 0.1t and (11) were plugged in. The aim in choosing the initial
is interesting to add that, in this case, the larger peak valueonditions in this mixed form was twofold: first, it is much
achieves the best agreement between VA and the shootirgasier to insert the initial conditions into the numerical code
method; the error is less than 0.04%. Finally, as a particulawhen they are known in an analytical form; second, a small
example, we display in Fig. 2 the analytically predicted anddeviation of the initial conditions from thgractically exact
numerically found shapes of the asymmetric soliton atsolitary-wave shape generated by the shooting seeds a small
Q=0.1. perturbation which is necessary to observe the dynamics.

It remains unclear if another bifurcation is amenable for In all the cases in which the asymmetric stationary soli-
termination of the numerically found branch of the asymmettons were found by the shooting method, the PDE simula-
ric soliton solution atQ close to —0.3. Nevertheless, the tions have demonstrated their stability. A typical example is
above results furnish a sufficiently complete description ofdisplayed, forQ=0.1, in Fig. 3. In this figure, two well
the stationary asymmetric solitons in the underlying modekeparated solitons are seen. The first one is the largem-
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are the FH components, ,: the analytical predictioicrossesand
the results obtained by means of the shooting metsotid).
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represented by the small, component of essentially the single SHG nonlinear waveguide demonstrate similar prop-
same solutior(recall that atQ=0.1 the solution is strongly erties[1,26).
asymmetric, see Fig.)2The peak values of the components We also checked numerically the stability of the exact
of the perturbed soliton undergo minor fluctuatiqmsthin symmetric solutiong6). First of all, one should expect that,
1%). The fluctuations show no sign of decay, but they are nofor Q<Q,,, the symmetric soliton must be destabilized by
growing either(to check this, we made some runs muchthe bifurcation producing the stable asymmetric solitons. As
longep. Thus we conclude that all the stationary asymmetrids illustrated by Fig. 4, this is indeed the case. Moreover, the
solitons are, in effect, neutrally stable. instability evolution illustrated by Fig. 4 demonstrates a
We also ran simulations with large initial perturbations oftrend to rearrange the unstable symmetric soliton into a
the asymmetric solitons. Without displaying ponderous fig-stable asymmetric one existing at the same valu® .ot his
ures, we can formulate an inference that strongly perturbegrocess is, though, quite slow, because it gives rise to strong
solitons demonstrate persistent internal vibrations, withouinternal vibrations of the solitary wave, for which, in accord
being destroyed by the perturbations, but also without emitwith a rather general property of the SHG systems mentioned
ting conspicuous amounts of radiation. From a number ofbove, the damping is very weak.
numerical simulations, it is known that stable solitons in the At Q>Q,,, the symmetric solitons are stable. An ex-
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ample, shown in Fig. 5 foQ=0.4, shows that the initially considered in detail the most important special case of no
introduced perturbations trigger internal vibrations of thewalkoff and fully matched harmonics, when the only control
solitary wave around the stationary symmetric solution. Veryparameter is the coupling constant, the same for both har-
little damping can be seen, but the vibrations are not growingnonics. It was demonstrated that, alongside the obvious
either. Thus we conclude that the symmetric solitons here arymmetric solitons, the model supports asymmetric solitary
also, effectively, neutrally stable, as the asymmetric solitongyaves. A bifurcation point at which the asymmetric solutions

that exist beyond the bifurcation point. appear was found exactly. A full description of these solu-

As was said above, the asymmetric solitons had not beegyns in an analytical form was based on a simple variational
found forQ<—0.3. In this regioridetailed simulations were = 555roximation. Comparison with numerical results obtained

performed, e.g., &= —0.9), the symmetric solitons always ' the shooting method has demonstrated that this approxi-
demonstrate amscillatory instability. At sufficiently large mation provides a fairly good accuracy in a part of the range

negatweQ,. S|mullat|on ShOW.S that_ the l.mStabI? _symmetncwhere existence of the stationary asymmetric solitons was
solitons quite quickly decay into dispersive radiation.

In all the above consideration. we considered onl eDredicted, while in another part of this range, asymmetric
, y the . . o
P . solitary-wave solutions were not found, although periodic
no-walkoff case,5=0 in Egs. (1)—(4). Because a spatial . . . X . .
walkoff will always be present in an experiment, it is cru- solutlons, can be easily obtained. Direct §|mulgt|ons of the
cially important to test the robustness of the asymmetric solifull PDE's hgve shown that the asymmetric solitons, when-
tons against adding walkoff into the model. ever they ex!st, are always neutrally §table. On the contrary,
The investigation of this walkoff effect is now being un- the symmetric solitons are Stakﬂg‘fectn_/ely, also neutrally
dertaken, using direct PDE simulations. Preliminary result®nlYy to the right of the bifurcation point, where the asym-
showed that both asymmetric and symmetric solitons, if theynetric solitons do not exist. To the left of the bifurcation
were stable in the absence of walkoff, remained stable, pra?0int, the symmetric soliton is found to be unstable, demon-
vided & was not too large. For example, as shown in Fig. g strating a trend to rearrange itself into the stable asymmetric
the solitons are still stable whe#=0.1, which corresponds Soliton that exists at the same value of the coupling constant
to a misalignment of about 10°. At larg& say, 0.6, the Q . For negative values &, where the asymmetric solitons
solitons have been shown, from numerical simulations, to béo not exist, the symmetric ones demonstrate a very different
destroyed, for all values o). A detailed account of the oscillatory instability mode, sometimes quickly decaying
walkoff effects will be presented elsewhere, when the invesinto radiation. Finally, some preliminary results, also by
tigation is completed. means of direct PDE simulations, demonstrate that the asym-
metric solitons survive and remain stable after adding
walkoff to the model, provided that the new terms are not too
IV. CONCLUSION large.

Thus the results obtained in this work point to the exis-
We have formulated and analyzed a model describing twéence of novel stable soliton states in the parallel-coupled
linearly coupled gquadratically nonlinear waveguides. Thesecond-harmonic-generating waveguides. As the next step, it
model includes two equations for the fundamental harmonis necessary to consider effects of a mismatch between the
ics, and two equations for the second harmonics. We havkearmonics, and to analyze, in more detail, influence of
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walkoff between the beams in the two waveguides. In any ACKNOWLEDGMENTS
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