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Analysis of stability of light beams in nonlinear photorefractive media
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We investigate the stability of both bright and dark beams propagating in bulk media with a photorefractive
nonlinear response, such as crystals. The beams are seen to be unstable with respect to perturbations along the
initially homogeneous coordinate. Our analysis is basedloexpansion for the perturbation. Agreement with
recent numerical calculations is obtained. Growth rates obtained extend previous results into the small-
region. In the case of bright beams the extension is straightforward, whereas for dark beams an interpretation
is needed. We suggest an improvement of dark-beam laser-crystal devices, resulting in better stability of the
beam. We comment on some recent experimg®$063-651X97)06705-9

PACS numbeis): 42.65. Tg, 42.65. Jx, 42.65. Hw,

. INTRODUCTION tromagnetic beam i8(r). The operatoV, acts ony and
z. Normalizations are given ifiL3]. For a self-focusing me-
This paper treats instabilities of light beams propagatingfium s= + 1, whereas= —1 for a self-defocusing medium
in nonlinear media. An example is the propagation of visiblesuch as a crystal of strontium barium niobate. The beam is
laser light along an axis of a photorefractive crystal. Se|f-propaga_ting along and initially its profile depends om
trapping of light beams in such media is often studied theoonly. We will first look at possible shapes for the two fami-
retically and numerically by looking at solitary-wave solu- Jies of beams and then at their stability with respect to long-
tions_ to relevant nonlinear model equations. The nonlineagvavelength perturbations aloyg Our analysis will be linear
Schralinger equation was derived for optical beams in Kerr-jn the perturbation. Thus further developments after breakup
type media some time ego. Exact {1)-dimensional of the beam, such as the formation of vorti¢&gd—16, will
solitary-wave solutions were seen to be unstable with respeeiot be included in our theory so far.
to perpendicular perturbatiori4,2]. For a comprehensive
analySiS, inClUding nonlinear structures other than solitons II. EXACT SOLUTIONS AS MODELS OF THE BEAMS
and their stability, se¢3,4]. The symmetry-breaking insta-
bility, also known as a transverse modulational instability, If both |B| and ¢ are functions ofz only, Eq.(2) can be
leads to a breakup of structure and has been investigatdategrated to yield
numerically and experimentally in many physical contexts s 2
[5-12. de |B|*—Bg
Here we will perform a stability analysis of the perpen- 9z 1+|B|]*"
dicular instability described above in bulk photorefractive
media. Both bright stripe solitary solutions in focusing mediawhereBj is a constant. We can now obtain one equation for
and dark “solitons” in defocusing media are considered. ItB(X,2):
will transpire that, at least in the latter case, considering -
solitary-wave solutions alone is not sufficient. (i_ 1
The photorefractive nonlinearity is due to the static elec- ax 2 9z°
tric field generated by the optical beam. A derivation of the ) ) )
model equations that will be treated here can be found elsé//é will start by looking for solutions fos=1, correspond-
where[13]. They are for propagation of an optical beam with ing to bright stripes. Tak®(x,z)=€''®b(z), Bo=0. Here
amplitude B(r) along a crystal axis in the presence of anl'o is the soliton propagation constant. It will prove conve-
external field, the magnitude of which has been absorbed iAient to writeI'y=1—b.?In(1+b%). We obtain(subscripts

()

_.|B]*-B§

B—IS—1+|B|2 (4)

the variables: denote differentiation ant,, is the value otb, at z=0)
I 12 is O w—b2+2|m1+b%—95mu+b% (5)
&_EVL B:|SEB, (1) z— Mz0 brzn m/ |
V2e+V, In(1+|B|?)V —iln(1+|B|2) 2 2—2Ina—g<b2<oo a=b—§]
LT L7 0z ' a O In(1+b2)"

Here ¢ is the normalized electrostatic potential induced bySee[15] for the derivation. Soliton solutions correspond to
the beam and/, ¢(r—»)—0. The amplitude of the elec- b%=0. They model a bright, symmetric beam with maxi-
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FIG. 1. Parametrib? as a function ob? for
the bright soliton andb?=1,2,4 (continuous
lines). Phase curves for the model function, de-
fined in the text, are indicated as dashed lines. In
this and following figures, all quantities are nor-
malized as irf13] and so the variables are dimen-
sionless.

2

b2

mum intensityb,, . Forbf0 negative, in which case it ceases

to have a physical interpretation and just becomes a param-

eter in Eqg.(5), we haveb>0 for all z and the solution is
periodic. Forbf0 positive,b takes on both positive and nega-
tive values and(z) is once again periodic. Various cases for
the nonlinear Schinger equation, which is a limiting case
of Eq. (4) for small |B|, are described and illustrated in
Chap. 6 of Ref[4]. The classification is similar here.

The dependence df? on b? for the soliton case can be
seen in Fig. 1$2,=0, three values ob?). This parametric
dependence is illustrated by continuous lines in the figure.

For the defocusing cass=-1, we take By=b,,,
I'p=0, and integrate Eq4) to obtain(see[15])

b2=b2,+ 2[b?— (1+b2)In(1+b?)], (6)

0=<b2%=2[(1+b2)In(1+b2)—b2]. )
Here b,y is always thez derivative ofb at z=0. Taking
I'y to be zero is not a serious restriction, as E).can be
reobtained for nonzerd', by redefining constants and re-

scaling variables. There is a general arbitrariness in the

choices of constants for both light and dark beams. Ou

choices are such as to facilitate comparisons with the nudb= b

merical results of Ref{11]. Soliton solutions correspond to
strict equality on the right-hand side of E), yielding

2
2_ K2 _ 2
b bm (1+bm)|n1Tme .

bs= ®

This equation describes an antisymmetric beam with finite

intensity at infinity and a narrow dark region in the middle.
The more general solutions, such that the constgpnis

lll. STABILITY

To study the stability of any of the solutions of Sec. II, we
consider superimposing periodic modulationsyiron them
such that

B(x,y,z)=[b(z) + &b(x,z)sin(ky)]e'ToX. 9

Here b is assumed to be small. We obtain a system of
equations linear irdb,

|

9 1 8

X232 ST

1
=— E|<25b+sb¢+ c.c., (10)
i k2 +a al 1+b?
3?¢— ¢ 7 ¢E n( )
1+bg 9 (b(sb+ob*) o "
C1+b%9z\  1+Db2 e (19

here ¢=0d6¢/dz. We look for solutions such that

(Mer 4 5h@e? . As the above equations involve
both §b and sb*, just takinge* terms, as some authors do,
would be too restrictive(Results so obtained would only be
valid for y?>0.) Wheny>0, perturbations will grow along

x and the ground-state solution is unstable. It will break up.
Here we will find y(k) for smallk, in which parameter we
will expand all perturbed quantities and

less than its soliton value, once again correspond to periodic

structures. We will consider them in what follows. When the
cons’[an1b§0 is only slightly smaller than its soliton value in
either Eq.(5) or (6), the solutions look like corresponding
solitons locally, but are periodic on a larger scéeliton
traing.

y=y1K+ yok2+ -, (129
d=potKpi+---. (129

Equations simplify for 7= 6b®+ sb@* and y= bV
—6b®* At each stage of the calculation we eliminate
¢, . It can be seen by inspection that there will be two dis-
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tinct perturbed modes:(i) xg.71.x2:73, ... and all

Xon+1,M2n 2€ro and (i) 7o, x1, 72, X3, ... With
X2n: Mon+1 2€r0. These modes couple for more gendral
(not alongy); see[3,4]. From now on, we will consider the
two classes of light beans=+1 ands= —1, separately.

A. Bright beams

For bright beamss=1, by,=0, andbf is given by Eq(5).
We now takeb§0=0 and expand Eq910) and (11), ex-
pressed in terms of, x, ¢, in k. In zeroth order we have

L’Y]O:O, L’XOZO, (13)
. 2p? 1P b
L=L +(1+—b2)2’ L =§F+W—Fo. (19

These equations are solved hy= ab, and y,= B8b, where
a,B= const. As mentioned above, the two modesO0, 8
#0 anda+#0, B8=0 decouple. It transpires that the type-2
mode (3=0) is stable,y><0. For type 1, due to lineariza-
tion, we can takeB=1. For solitons, for which perturbed
guantities vanish at infinity, we have in first order

L7i=—ivy1x0, )

. zp?
7= _lylbzf FdZ, (16)

z

b,
¢1_(1+—b2)2' (17)
Here the integral inyp, is a principal value.
In second order we obtain

L' x2=—iyim+ 3b. (18

Multiplying Eq. (18) by xo=Db, the eigenfunction of.’, on
the left and integrating over atl using the self-adjoint prop-
erty of L', and reinstatink, we obtain

(b%)

2
Y
— = — —7>—>0,
(o703 °

k2

19
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amplitude will of course bé,,. The other parameter will be
chosen such that the shape near the maximum is preserved.
Thusb?/(bZ—b?) will be taken to be a perfect fit for small
b2 —b?. Next we must check to see how good a fit the model
so constructed is over the whole rangebofor given bﬁq.

The model so defined is

b=bcosh %(oz), (203

o’= ! In(1+b2)— (20b)
b2, m1+b2’

b2=40%b?—b,'b%). (200

Figure 1 gives a comparison of exact and model soliton
shapes in phase spaté(bz). Agreement on the right is
exact. Otherwise it is seen to be very good lhﬁ,{=l, rea-
sonable forbZ =2, but its usefulness seems to end just be-
fore or atbfn=4. Figure 1 thus tells us just how good our
model (20) is and just how well we are justified in using it.
In a subsequent paper, we plan to perform the stability cal-
culation for the exact profile and compare results. However,
Fig. 1 leads us to expect reasonable results of our stability
analysis for 0.5:b2<4. With all this in mind, we substitute
Eq. (20) into Eq.(19) to obtain an approximate equation for
v/k in the bright soliton case

y 2 — —
= ﬁmezln(H b2)—(1+b2) 1, (219
0.5<bz=<4 (21b

(in arriving at this result we use the principal value equality
P .sinh 2zdz=—2). The formula obtained from the exact
profile would not be so simple. If an experimentalist needs a
quick check, Eq(21@ may prove useful.

Figure 2 illustrates this dependence bﬁq. There is a
saturation as compared with the nonlinear Sdimger equa-
tion (Kerr medium, for which y/k~b,, [3]. In Ref.[11(b)],

a numerical calculation was performed ayk) deduced for
k>0.05 (small k cannot be treated numerically, as simula-
tions must be performed in boxes, the lengths of which are
limited by practical consideratiopsin Ref. [11], bﬁ1 was

The integral in the denominator is a principal value integralaken to be 0.5, 1, 2, and 4, thus coinciding with the region

and will be seen to be negative.

of applicability of our model. In Fig. 1 of Refl1], y(k) is

Objections have been raised about the rigor of solitorhot extended into the smaklregion. However, it is possible
stability calculations such as the above. These objectiong, find the range of values of/k that would continue their
concern the behavior of higher-order perturbed quantities &jispersion curves smoothly into this smillregion. This

infinity [17]. Various remedies have been sugge$@&d8—
20]. One of these remedi¢4$8] involves performing the sta-
bility analysis for periodic nonlinear waves, for which the
calculation is rigorous, and then finding the soliton limit of
v. In our caseb§0<0 should be taken in Eq(5) and
b§0—>0 in the limit. This has been done by us. Equatidr®)
is reobtained. The calculation is fairly complicated and will
not be included here. Chapter 8 of Ref] illustrates how to
do the calculatiorithough in a different context

Instead of calculating/k from Eqgs.(5) and(19), we will

range is indicated in our Fig. 2 as a rectangle. We see that
our result(21) is consistent with and complementary to ex-
isting numerical results.

Only approximate agreement with numerical results can
be expected for a second reason, other than the use of a
model for the soliton shape. As mentioned above, numerical
calculations are always performed in finite boxes, usually
with periodic boundary conditions. Thus the results of Ref.
[11] are really found for a soliton train rather than for one
soliton, stretching out to plus and minus infinity. We will

use a model for the soliton shape. This model will be areturn to this point in the next section, where it will play an

hyperbolic secans squared fit to E&) with b%,=0. The

important role.
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FIG. 2. Growth ratey/k for smallk as a func-
tion of bZ for the bright soliton. The rectangle
embraces values that could follow from the nu-
merical simulations of Ref.11] when continued
smoothly into the smalk region.

b2

m

B. Dark beams

When we substitute Eq25) in Eq. (26b) and multiply by

For dark beams, Eq8), type-1 perpendicular perturba- 770 ON the.left a_nd then perform the integrations by parts, we
tions are stable. However, type-2 perturbations are unstabfPtain, reinstating,

for nonlinear periodic and soliton structures: H@), b2,
smaller than or equal to the soliton value. We now treat these

structures.
Now Egs.(10) and(11) yield (s=—1, by=b,, I'9=0)
2(1+b7)
BRENCET UL 22
, 18 bi-b?
L=z 1 @39
L7o=0, 7o=b,, xo=0. (24
In first order ink we have
_ [
L' x1=—ivyib,, X1:_|71bf sz
(25

2 —(b?)+ o(In(1+b?)(b?>—(b?)))
e

As before,(b~?) is a principal value integral. By manipulat-
ing Egs.(4) and (6), we can find its value in terms of non-
singular integrals

(b2 =b <b§>+2<b2>+2<1+b?n>(<w> —1”_

b2
(28)
In the soliton limit we obtain ¢=1)
1+b?
> —(b)+({In| === |(b*~bp)

v 1+by, 0 29
- = > .
k? (b?—b7)?

b2

(the second term in the integral has been added so as to
remove the secularity The angular brackets now denote an Now integration is over the wholeaxis. It is easy to see that

average over a period of the nonlinear structure.
In second order we find

1+b?2, o :

¢2:(1+b2)2b’72+ 2(1+b2)f (b*—(b%))dz, (269
. 1 ob z 5 )

L7]2:—I71X1+§7]o+—1+b2f (b*—(b%))dz, (26b)

where

¥?1k?>0 for the soliton, as the integrand of the numerator is
everywhere negative, and the denominatar principal
valug is also negative. To see that Eg9) follows from Eg.
(27), we write the latter in an equivalent form

1+b?
: —<b§>+o<ln 1+b2)<b2—<bZ>>>
= z_m -1 - (30
el

We calculatedy?/k? for five values ofb?. Figure 3
shows this ratio as a function of, the wavelength of the
nonlinear structure. This wavelength is given by

<

N
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finite boxes, normally with periodic boundary conditions, we
Vi propose to explain the disparity by assuming that the simu-
lations of Ref.[11] really correspond to nonlinear, periodic
solutions(soliton traing. Furthermore, Fig. 3 strongly sug-
gests that the value fob§1=4 should be larger than for
bfn=2, contrary to Ref[11]. We contacted one of the au-
thors of Ref.[11] and suggested that perhaps they had con-
fused the two labels. This was indeed confirmed after con-
sultation with a second authg21].

0.7
0.6
0.5
0.4
0.3
0.2

IV. CONCLUSION

0.1

It is hoped that our two main results, Eq21) and (27),
will prove useful when designing optical beams to propagate
along photorefractive media. Stability properties can be im-
proved by moving to the right on a constdny curve (this

FIG. 3. Squared growth ratg?/k* for dark stripes in periodic  would involve narrowing the dark center and broadening the
nonlinear structure@ark soliton trains Here the ordinate denotes light envelopg or else decreasing,, for constant\ (de-
t_he wavelength\. Soliton values foih —« are indicated by dashed creasing the brightness of the envelope while keeping its
lines. length fixed. Presumably it would be worthwhile to confirm
these propositions experimentally.

Experimental observations of Rdfl1] do point at per-

\/— a db pendicular instability of the beams. Other scientists, how-
A=24/2 f ST - — (1) ever, find the beams to be stable with respeqt ferturba-
\/b —(1+bp)In(1+b%)+ 3 by, tions. This has been observed for both dg2R] and bright

) i [23] solitons. Just why the instability appears in some experi-
wherea is the first zero of the square root. Values of  ments and not in others is so far an open question.

extend from2m/by, in the linear limit to infinity in the We can, however, confirm at least one experimental find-
soliton limit. The amplitudea increases monotonically with jng. We can see from Fig. 3 that structures that do not fit into
A for by, fixed. the soliton profile(wrong ratio of width to height, curves to

As y*/k*>0, one root is positive and we have instability the left of soliton limit3 are much more unstable with re-

for all A. We see from Fig. 3 that growth rates for solitons spect to symmetry breaking than the solitons. This is indeed
are much smaller than for nonlinear wave structures in thevhat was found in Refg22,23.

displayed range ok. Two dispersion curves, based on Eq.
(27), were seen to tend to limits given by E(9) when
continued beyond the range of Fig. 3. This is an additional
check on the calculations.

In Ref.[11(a)], numerical calculations for nonlinear struc-  The authors would like to thank Dr. Saffman and Dr.
tures that the authors labsblitonsare performed. Instability Zozulya for helping clear up the apparent discrepancy de-
is obtained and growth rates are calculatedl:fﬁltz and 4. scribed in Sec. lll. Dr. Skorupski was most helpful in pre-
Their growth rates, when extrapolated into the srkaie-  paring the manuscript. Professor Rowlands’ comments were
gion, would be at least three times larger than ours, as showmost useful. This research was supported by the KBN Sci-
in Fig. 3. As numerical simulations are always performed inentific Committee, Grant No. 2P03B-114-11.
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