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Analysis of stability of light beams in nonlinear photorefractive media
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Soltan Institute for Nuclear Studies, Hoz˙a 69, 00-681 Warsaw, Poland

T. Lenkowska-Czerwin´ska
IPPT, Polish Academy of Sciences, S´wiȩtokrzyska 21, 00-049 Warsaw, Poland

~Received 18 November 1996!

We investigate the stability of both bright and dark beams propagating in bulk media with a photorefractive
nonlinear response, such as crystals. The beams are seen to be unstable with respect to perturbations along the
initially homogeneous coordinate. Our analysis is based on ak expansion for the perturbation. Agreement with
recent numerical calculations is obtained. Growth rates obtained extend previous results into the small-k
region. In the case of bright beams the extension is straightforward, whereas for dark beams an interpretation
is needed. We suggest an improvement of dark-beam laser-crystal devices, resulting in better stability of the
beam. We comment on some recent experiments.@S1063-651X~97!06705-6#

PACS number~s!: 42.65. Tg, 42.65. Jx, 42.65. Hw,
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I. INTRODUCTION

This paper treats instabilities of light beams propagat
in nonlinear media. An example is the propagation of visi
laser light along an axis of a photorefractive crystal. Se
trapping of light beams in such media is often studied th
retically and numerically by looking at solitary-wave sol
tions to relevant nonlinear model equations. The nonlin
Schrödinger equation was derived for optical beams in Ke
type media some time ego. Exact (111)-dimensional
solitary-wave solutions were seen to be unstable with res
to perpendicular perturbations@1,2#. For a comprehensive
analysis, including nonlinear structures other than solit
and their stability, see@3,4#. The symmetry-breaking insta
bility, also known as a transverse modulational instabil
leads to a breakup of structure and has been investig
numerically and experimentally in many physical conte
@5–12#.

Here we will perform a stability analysis of the perpe
dicular instability described above in bulk photorefracti
media. Both bright stripe solitary solutions in focusing med
and dark ‘‘solitons’’ in defocusing media are considered
will transpire that, at least in the latter case, consider
solitary-wave solutions alone is not sufficient.

The photorefractive nonlinearity is due to the static el
tric field generated by the optical beam. A derivation of t
model equations that will be treated here can be found e
where@13#. They are for propagation of an optical beam w
amplitudeB(r ) along a crystal axis in the presence of
external field, the magnitude of which has been absorbe
the variables:

F ]

]x
2

i

2
¹'
2 GB5 is

]w

]z
B, ~1!

¹'
2w1¹'ln~11uBu2!¹'w5

]

]z
ln~11uBu2!. ~2!

Herew is the normalized electrostatic potential induced
the beam and¹'w(r→`)→0. The amplitude of the elec
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tromagnetic beam isB(r ). The operator¹' acts ony and
z. Normalizations are given in@13#. For a self-focusing me-
dium s511, whereass521 for a self-defocusing medium
such as a crystal of strontium barium niobate. The beam
propagating alongx and initially its profile depends onz
only. We will first look at possible shapes for the two fam
lies of beams and then at their stability with respect to lon
wavelength perturbations alongy. Our analysis will be linear
in the perturbation. Thus further developments after brea
of the beam, such as the formation of vortices@11–16#, will
not be included in our theory so far.

II. EXACT SOLUTIONS AS MODELS OF THE BEAMS

If both uBu andw are functions ofz only, Eq. ~2! can be
integrated to yield

]w

]z
5

uBu22B0
2

11uBu2
, ~3!

whereB0
2 is a constant. We can now obtain one equation

B(x,z):

S ]

]x
2

i

2

]2

]z2DB5 is
uBu22B0

2

11uBu2
B. ~4!

We will start by looking for solutions fors51, correspond-
ing to bright stripes. TakeB(x,z)5eiG0xb(z), B050. Here
G0 is the soliton propagation constant. It will prove conv
nient to writeG0512bm

22ln(11bm
2 ). We obtain~subscripts

denote differentiation andbz0 is the value ofbz at z50)

bz
25bz0

2 12F ln~11b2!2
b2

bm
2 ln~11bm

2 !G , ~5!

222 lna2
2

a
<bz0

2 ,`, a5
bm
2

ln~11bm
2 !
.

See@15# for the derivation. Soliton solutions correspond
bz0
2 50. They model a bright, symmetric beam with max
6101 © 1997 The American Physical Society
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FIG. 1. Parametricbz
2 as a function ofb2 for

the bright soliton andbm
2 51,2,4 ~continuous

lines!. Phase curves for the model function, d
fined in the text, are indicated as dashed lines.
this and following figures, all quantities are no
malized as in@13# and so the variables are dimen
sionless.
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mum intensitybm . For bz0
2 negative, in which case it cease

to have a physical interpretation and just becomes a par
eter in Eq.~5!, we haveb.0 for all z and the solution is
periodic. Forbz0

2 positive,b takes on both positive and neg
tive values andb(z) is once again periodic. Various cases f
the nonlinear Schro¨dinger equation, which is a limiting cas
of Eq. ~4! for small uBu, are described and illustrated i
Chap. 6 of Ref.@4#. The classification is similar here.

The dependence ofbz
2 on b2 for the soliton case can b

seen in Fig. 1 (bz0
2 50, three values ofbm

2 ). This parametric
dependence is illustrated by continuous lines in the figur

For the defocusing cases521, we take B05bm ,
G050, and integrate Eq.~4! to obtain~see@15#!

bz
25bz0

2 12@b22~11bm
2 !ln~11b2!#, ~6!

0<bz0
2 <2@~11bm

2 !ln~11bm
2 !2bm

2 #. ~7!

Here bz0 is always thez derivative of b at z50. Taking
G0 to be zero is not a serious restriction, as Eq.~6! can be
reobtained for nonzeroG0 by redefining constants and re
scaling variables. There is a general arbitrariness in
choices of constants for both light and dark beams. O
choices are such as to facilitate comparisons with the
merical results of Ref.@11#. Soliton solutions correspond t
strict equality on the right-hand side of Eq.~7!, yielding

bz
252Fb22bm

2 2~11bm
2 !ln

11b2

11bm
2 G . ~8!

This equation describes an antisymmetric beam with fin
intensity at infinity and a narrow dark region in the middl

The more general solutions, such that the constantbz0
2 is

less than its soliton value, once again correspond to peri
structures. We will consider them in what follows. When t
constantbz0

2 is only slightly smaller than its soliton value i
either Eq.~5! or ~6!, the solutions look like correspondin
solitons locally, but are periodic on a larger scale~soliton
trains!.
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III. STABILITY

To study the stability of any of the solutions of Sec. II, w
consider superimposing periodic modulations iny on them
such that

B~x,y,z!5@b~z!1db~x,z!sin~ky!#eiG0x. ~9!

Here db is assumed to be small. We obtain a system
equations linear indb,

S 2 i
]

]x
2
1

2

]2

]z2
2s

b22b0
2

11b2
1G0D db

52
1

2
k2db1sbf1 c.c., ~10!

]2

]z2
f2k2f1

]

]z Ff
]

]z
ln~11b2!

2
11b0

2

11b2
]

]z S b~db1db* !

11b2 D G50, ~11!

where f5]dw/]z. We look for solutions such tha
db5db(1)egx1db(2)eg* x. As the above equations involv
bothdb anddb* , just takingegx terms, as some authors d
would be too restrictive.~Results so obtained would only b
valid for g2.0.! Wheng.0, perturbations will grow along
x and the ground-state solution is unstable. It will break
Here we will findg(k) for small k, in which parameter we
will expand all perturbed quantities andg:

g5g1k1g2k
21•••, ~12a!

db5db01kdb11•••, ~12b!

f5f01kf11•••. ~12c!

Equations simplify for h5db(1)1db(2)* and x5db(1)

2db(2)* . At each stage of the calculation we elimina
fn . It can be seen by inspection that there will be two d
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55 6103ANALYSIS OF STABILITY OF LIGHT BEAMS IN . . .
tinct perturbed modes:~i! x0,h1,x2,h3 , . . . and all
x2n11 ,h2n zero and ~ii ! h0, x1, h2, x3 , . . . with
x2n , h2n11 zero. These modes couple for more generak
~not alongy); see@3,4#. From now on, we will consider the
two classes of light beam,s511 ands521, separately.

A. Bright beams

For bright beams,s51, b050, andbz
2 is given by Eq.~5!.

We now takebz0
2 50 and expand Eqs.~10! and ~11!, ex-

pressed in terms ofh,x,f, in k. In zeroth order we have

Lh050, L8x050, ~13!

L5L81
2b2

~11b2!2
, L85

1

2

]2

]z2
1

b2

11b2
2G0 . ~14!

These equations are solved byh05abz andx05bb, where
a,b5 const. As mentioned above, the two modesa50, b
Þ0 andaÞ0, b50 decouple. It transpires that the type
mode (b50) is stable,g2,0. For type 1, due to lineariza
tion, we can takeb51. For solitons, for which perturbe
quantities vanish at infinity, we have in first order

Lh152 ig1x0 , ~15!

h152 ig1bzEzb2

bz
2dz, ~16!

f15
bh1

~11b2!2
. ~17!

Here the integral inh1 is a principal value.
In second order we obtain

L8x252 ig1h11
1
2 b. ~18!

Multiplying Eq. ~18! by x05b, the eigenfunction ofL8, on
the left and integrating over allz, using the self-adjoint prop
erty of L8, and reinstatingk, we obtain

g2

k2
52

^b2&

^b4/bz
2&

.0. ~19!

The integral in the denominator is a principal value integ
and will be seen to be negative.

Objections have been raised about the rigor of soli
stability calculations such as the above. These object
concern the behavior of higher-order perturbed quantitie
infinity @17#. Various remedies have been suggested@3,18–
20#. One of these remedies@18# involves performing the sta
bility analysis for periodic nonlinear waves, for which th
calculation is rigorous, and then finding the soliton limit
g. In our casebz0

2 ,0 should be taken in Eq.~5! and
bz0
2 →0 in the limit. This has been done by us. Equation~19!
is reobtained. The calculation is fairly complicated and w
not be included here. Chapter 8 of Ref.@4# illustrates how to
do the calculation~though in a different context!.

Instead of calculatingg/k from Eqs.~5! and~19!, we will
use a model for the soliton shape. This model will be
hyperbolic secans squared fit to Eq.~5! with bz0

2 50. The
l

n
ns
at

l

a

amplitude will of course bebm . The other parameter will be
chosen such that the shape near the maximum is prese
Thusbz

2/(bm
2 2b2) will be taken to be a perfect fit for sma

bm
2 2b2. Next we must check to see how good a fit the mo
so constructed is over the whole range ofb for givenbm

2 .
The model so defined is

b5bmcosh
22~sz!, ~20a!

s25
1

bm
2 ln~11bm

2 !2
1

11bm
2 , ~20b!

bz
254s2~b22bm

21b3!. ~20c!

Figure 1 gives a comparison of exact and model soli
shapes in phase spacebz

2(b2). Agreement on the right is
exact. Otherwise it is seen to be very good forbm

2 51, rea-
sonable forbm

2 52, but its usefulness seems to end just b
fore or atbm

2 54. Figure 1 thus tells us just how good ou
model ~20! is and just how well we are justified in using i
In a subsequent paper, we plan to perform the stability c
culation for the exact profile and compare results. Howev
Fig. 1 leads us to expect reasonable results of our stab
analysis for 0.5<bm

2<4. With all this in mind, we substitute
Eq. ~20! into Eq. ~19! to obtain an approximate equation fo
g/k in the bright soliton case

g

k
5

2

A3
Abm22ln~11bm

2 !2~11bm
2 !21, ~21a!

0.5<bm
2<4 ~21b!

~in arriving at this result we use the principal value equal
P*2`

` sinh22zdz522). The formula obtained from the exac
profile would not be so simple. If an experimentalist need
quick check, Eq.~21a! may prove useful.

Figure 2 illustrates this dependence onbm
2 . There is a

saturation as compared with the nonlinear Schro¨dinger equa-
tion ~Kerr medium!, for which g/k;bm @3#. In Ref. @11~b!#,
a numerical calculation was performed andg(k) deduced for
k.0.05 ~small k cannot be treated numerically, as simul
tions must be performed in boxes, the lengths of which
limited by practical considerations!. In Ref. @11#, bm

2 was
taken to be 0.5, 1, 2, and 4, thus coinciding with the reg
of applicability of our model. In Fig. 1 of Ref.@11#, g(k) is
not extended into the small-k region. However, it is possible
to find the range of values ofg/k that would continue their
dispersion curves smoothly into this small-k region. This
range is indicated in our Fig. 2 as a rectangle. We see
our result~21! is consistent with and complementary to e
isting numerical results.

Only approximate agreement with numerical results c
be expected for a second reason, other than the use
model for the soliton shape. As mentioned above, numer
calculations are always performed in finite boxes, usua
with periodic boundary conditions. Thus the results of R
@11# are really found for a soliton train rather than for on
soliton, stretching out to plus and minus infinity. We w
return to this point in the next section, where it will play a
important role.
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FIG. 2. Growth rateg/k for smallk as a func-
tion of bm

2 for the bright soliton. The rectangle
embraces values that could follow from the n
merical simulations of Ref.@11# when continued
smoothly into the small-k region.
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B. Dark beams

For dark beams, Eq.~8!, type-1 perpendicular perturba
tions are stable. However, type-2 perturbations are unst
for nonlinear periodic and soliton structures: Eq.~6!, bz0

2

smaller than or equal to the soliton value. We now treat th
structures.

Now Eqs.~10! and ~11! yield (s521, b05bm , G050)

L5L82
2~11bm

2 !

~11b2!2
b2, ~22!

L85
1

2

]2

]z2
1
bm
2 2b2

11b2
, ~23!

Lh050, h05bz , x050. ~24!

In first order ink we have

L8x152 ig1bz , x152 ig1bEzb22^b22&21

b2
dz

~25!

~the second term in the integral has been added so a
remove the secularity!. The angular brackets now denote
average over a period of the nonlinear structure.

In second order we find

f25
11bm

2

~11b2!2
bh21

s

2~11b2!E
z

~b22^b2&!dz, ~26a!

Lh252 ig1x11
1

2
h01

sb

11b2E
z

~b22^b2&!dz, ~26b!

where

s5
11bm

2

11^b2&
.

le

e

to

When we substitute Eq.~25! in Eq. ~26b! and multiply by
h0 on the left and then perform the integrations by parts,
obtain, reinstatingk,

g2

k2
5

2^bz
2&1sŠln~11b2!~b22^b2&!‹

^b2&2^b22&21 . ~27!

As before,̂ b22& is a principal value integral. By manipulat
ing Eqs.~4! and ~6!, we can find its value in terms of non
singular integrals

^b22&5bz0
22F ^bz2&12^b2&12~11bm

2 !S K ln~11b2!

b2 L 21D G .
~28!

In the soliton limit we obtain (s51)

g2

k2
5

2^bz
2&1K lnS 11b2

11bm
2 D ~b22bm

2 !L
K ~b22bm

2 !2

b2 L .0. ~29!

Now integration is over the wholez axis. It is easy to see tha
g2/k2.0 for the soliton, as the integrand of the numerator
everywhere negative, and the denominator~a principal
value! is also negative. To see that Eq.~29! follows from Eq.
~27!, we write the latter in an equivalent form

g2

k2
5

2^bz
2&1sK lnS 11b2

11bm
2 D ~b22^b2&!L

K ~b22bm
2 !S b22^b22&21

b2 D L . ~30!

We calculatedg2/k2 for five values ofbm
2 . Figure 3

shows this ratio as a function ofl, the wavelength of the
nonlinear structure. This wavelength is given by



ty
ns
th
q

na

c-

ow
in

e
u-

ic
-
r
-
on-
on-

ate
im-

the

its

w-

eri-

nd-
nto

-
eed

r.
de-
e-
ere
ci-

s
d

55 6105ANALYSIS OF STABILITY OF LIGHT BEAMS IN . . .
l52A2E
0

a db

Ab22~11bm
2 !ln~11b2!1 1

2 bz0
2
, ~31!

where a is the first zero of the square root. Values ofl
extend fromA2p/bm in the linear limit to infinity in the
soliton limit. The amplitudea increases monotonically with
l for bm fixed.

As g2/k2.0, one root is positive and we have instabili
for all l. We see from Fig. 3 that growth rates for solito
are much smaller than for nonlinear wave structures in
displayed range ofl. Two dispersion curves, based on E
~27!, were seen to tend to limits given by Eq.~29! when
continued beyond the range of Fig. 3. This is an additio
check on the calculations.

In Ref. @11~a!#, numerical calculations for nonlinear stru
tures that the authors labelsolitonsare performed. Instability
is obtained and growth rates are calculated forbm

2 52 and 4.
Their growth rates, when extrapolated into the small-k re-
gion, would be at least three times larger than ours, as sh
in Fig. 3. As numerical simulations are always performed

FIG. 3. Squared growth rateg2/k2 for dark stripes in periodic
nonlinear structures~dark soliton trains!. Here the ordinate denote
the wavelengthl. Soliton values forl→` are indicated by dashe
lines.
d
g-

tt
e
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l

n

finite boxes, normally with periodic boundary conditions, w
propose to explain the disparity by assuming that the sim
lations of Ref.@11# really correspond to nonlinear, period
solutions~soliton trains!. Furthermore, Fig. 3 strongly sug
gests that the value forbm

2 54 should be larger than fo
bm
2 52, contrary to Ref.@11#. We contacted one of the au
thors of Ref.@11# and suggested that perhaps they had c
fused the two labels. This was indeed confirmed after c
sultation with a second author@21#.

IV. CONCLUSION

It is hoped that our two main results, Eqs.~21! and ~27!,
will prove useful when designing optical beams to propag
along photorefractive media. Stability properties can be
proved by moving to the right on a constantbm curve ~this
would involve narrowing the dark center and broadening
light envelope! or else decreasingbm for constantl ~de-
creasing the brightness of the envelope while keeping
length fixed!. Presumably it would be worthwhile to confirm
these propositions experimentally.

Experimental observations of Ref.@11# do point at per-
pendicular instability of the beams. Other scientists, ho
ever, find the beams to be stable with respect toy perturba-
tions. This has been observed for both dark@22# and bright
@23# solitons. Just why the instability appears in some exp
ments and not in others is so far an open question.

We can, however, confirm at least one experimental fi
ing. We can see from Fig. 3 that structures that do not fit i
the soliton profile~wrong ratio of width to height, curves to
the left of soliton limits! are much more unstable with re
spect to symmetry breaking than the solitons. This is ind
what was found in Refs.@22,23#.
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