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Secondary dark rings of internal conical refraction
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This paper treats the phenomenon of internal conical refraction, in which a narrow beam propagating along
an optical axis of a biaxial anisotropic medium spreads into a hollow cone. An expression is obtained for the
intensity distribution produced by conical refraction that predicts additional fringes concentric to the well-
known Poggendorf dark ring for certain propagation distances and beam Wigi¥63-651X%97)04005-1

PACS numbds): 42.25.Bs, 42.25.Lc, 78.20.Ci, 78.20.Fm

[. INTRODUCTION our treatment predicts secondary dark rings or fringes in the
interior of the cone of refraction. We specify the parameter
A narrow beam propagating along one of the optical axesanges for which this secondary oscillatory behavior of the
of a biaxial medium spreads into a hollow cone. This phedntensity pattern should appear, and demonstrate that even
nomenon, internal conical refraction, was predicted byallowing for large variation of the parameters the effect per-
Hamilton in 1832 and observed shortly thereafter by Lloyd.Sists. These secondary dark rings have apparently not been
A dark ring in the circular intensity pattern produced by Predicted by past theoretical treatments, nor have experimen-
conical refraction was observed by Poggendorf in 1839 anéfl results been given for parameter values lying within this
later explained by Voigt(These historical references and an oscillatory regime.
elementary treatment of conical refraction are found in Born Measurements by Schell and Bloemberdéh indicate
and Wolf[1].) Voigt's explanation of the Poggendorf dark the appearance of qualitatively similar secondary rings for
ring was made more precise by Portigal and Bursfejp ~ conical refraction by an optically active medium. Oscillatory
Lalor [3] and Juretschk§4] also analyzed internal conical behavior of the intensity pattern has been predicted for coni-
refraction. Schell and Bloembergéh] further refined the cal refraction in gyrotropic medil0,11], but the field has
analysis of Portigal and Burstein, achieving a result accurat@n Airy function dependence and is identically zero for cer-
to second order in an angle away from the optical axis. Defain distances from the cone of refraction. This behavior is
spite the improved accuracy, Schell and Bloembergen errg_uahtatlvely different from_ that reported here fpr biaxial me-
ployed numerical integration in order to obtain some of thedia. Other related work includes that of Naifia2], who
results given in the paper. Other theoretical treatments inconsiders conical refraction in an inhomogeneous, weakly
clude that of Uhlmanii6], who proves the existence of the biaxial medium. Belskii[13] obtains transmission coeffi-
dark ring but does not examine the structure of the intensitgients for a thin biaxial plate along the optical axes, and
pattern in detail. Belskii and KhapalyuK14] discuss the change in astigma-
Previous theoretical treatments amount to a two-lism of a Gaussian beam propagating along an optical axis.
dimensional stationary phase evaluation of an inverse FouShatkevich[15] shows that a conically refracted beam is not
rier transform integral for the refracted field intensity. Our confined to a particular generator of the cone, and plane
treatment employs the wave-vector representation of the dyvave solutions near the optical axis are discussed by Alex-
adic Green function for the electric field given by Lax andandroff[16]. Reference¢10,11,17 also investigate the ap-
Nelson[7]. A conical expansion for the wave surface near arplication of conical refraction in gyrotropic media to beam
optical axis given by Moskvin, Romanov, and Val'’K¢8] focusing. A recent experimental measurement for conical re-
yields a paraxial approximation for the Green function. Thefraction in potassium titanyl phosphate is found in R&8].
refracted fields can then be obtained by finding the inverse
Fourier transform of the product of the Green function and Il. PROPAGATION ALONG AN OPTICAL AXIS
the spectral representation of a Gaussian beam. We treat To evaluate the electric field intensity due to internal
asymptotically an integration in azimuthal angle about the . ; >Iy )
optical axis, and the remaining transverse integration can b onical refraction, we employ the Fourier representation of

evaluated analytically. The resulting simple characterizatior% i(tahtznrse(;rl Gsren?]rrhgﬂ(c::“Ogr:r?irtt?/itt)lat)gils’groqw:?igfélzgetﬂg?
of the intensity pattern in terms of special functions is one o?ge obtainéd 1¥rom the iﬁverse Fo):Jrier trénsform of the prod-
the primary contributions of this paper to the theory of inter- P

nal conical refraction. In order to demonstrate the validity ofUCt of the Green function and the spectral representation of a

) . narrow, Gaussian beam.
our approach, we have also performed numerical mtegrauong . o .
The tensor Green function for a biaxial, nonmagnetic ma-

for the field intensity at certain parameter values. L

Our results agree with the theoretical and experimentaﬁerlal IS
results of Schell and Bloemberggh] for a 1 cmAragonite G(k,0)=[K3(1—Af)— w?ue] L, (1)
sample, a 34um beam waist, and a wavelength of 0.6328
um. For a 10 cm sample length, however, their theoreticalvherew is the time frequencyk=kn is the wave vectory
results are qualitatively similar to the 1 cm pattern, whereass the permeability of the medium, ards the real, symmet-
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z T;=ky+A[cosp+(—1) "1k, —Bj($)k2, (6)

Bj(¢)=B[1+(—1)'D cosp][1—(—1)'E cosp], (7)

k, andk,=w+e;u. Thej=1 term corresponds to the external
k, part of the wave surface and=2 to the inner part. The
constants are

B 1 (53—62)(62_61)>1/2
X’ 2 €1€3 '
ky ks
(€3t €) (€1 €1)
B=—F7F—v————,
8€l€3k2
€3~ €
X D= ,
E3+ €
FIG. 1. Geometry of conical refraction. Thedirection is an
optical axis. Normals to the wave surface at the singular point gen- €— €1
erate the cone of refraction. E= .
62+ €1

ric permittivity tensor of the medium. The Green function

can be conveniently represented by a spectral decompositiol'€ @Pex angle of the cone of refraction i8.2
[7] Neglecting the nonpropagating term, the tensor Green

function for smallk, is
ViVi

2
G le u(RIC—T) 2 =S EZZVJVJz, @®
=1 k;—T;
where the polarization vectors; satisfy [k*(1—nn)
— wzﬂé]vj:o and are normalized, such that where thev; are in the principle coordinate system. The po-
_ larization vectorss; can be found using the geometric rela-
vievi=1. (3)  tionship between the electric displacement ve@aand the

) ] wave and ray vectors. The vectdds corresponding to the
Thek; are the porreszpozndlng solutions to the Fresnel equay, either lie in the plane containing the wave vector and the
tion defk”(1—nn) — w”°ue]=0. One of thek; is infinite; the 3y vector or are perpendicular to it. Foralong thez axis

associated term of Eq2) is the nonpropagating part @.  and ray vectors lying on the cone of refraction,
The wave surface defined by the Fresnel equation consists

of two sheets, corresponding to the two nonzero solutions for R ¢ . ¢

each wave-vector directiom. The external and internal D;=Xx cosx Ty sin 2

sheets of the wave surface meet at singular points along the

optical axes or binormals. Let_x@y’,z’) be the principle ;4 D,=D,(é+ ). Thev, are proportional t&~1D;, so
coordinate system of the permittivity tensor. If the e|genval—thalt J !

ues are ordered so thaf< e,< €3, then the optical axes lie

in thex’-z' plane, at angles v1=N[>?’el_10038 cog ¢/2)+9’eglsin(¢/2)
_ 1/2 A, 1
tan8=i(63(62 61)) @ — 7' €5 'sinB cod ¢/2)], 9)
€1(€3— €7)

with  the  normalization N=[e; ‘cogB co(¢/2)
from the z’ axis. Near these directions, the wave surfaceyt €, 'Sirf(¢2) + €5 'sirB cof(4/2)] Y2 The eigenvector
forms a cone. Lek, y, andz be the rotated coordinates Vs is Vy(p+ ).
The refracted electric field due to a Gaussian beam of
waist sizew, focused at one face of the biaxial medium is
then

x=x'cogB—2'sing,
y=y’,
=x'sinB+z’ 5 _iw,u k ik-r k k A
z=x'sinB+z' cosB, ) E= g3 | dk e¥'G(K)&o(k,)p, (10)
so that thez axis lies in the direction of one of the optical 25 .
axes. The geometry is depicted in Fig. 1. where &y(k,) = (2Eo/ 7,) mwie "o, 7,=\ule, andp
In cylindrical coordinates associated with the rotated co-specifies the polarization of the beam in the principle coor-

ordinate system, the wave surface has an expansion abadihate system. Integratirig, by a contour closing in the up-
k,=0 of the formk,=T;, where[8] per half plane yields
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k2E0 ik i
__ (X cosp+y sing)
E m kpd kpd ¢ (S fo( kp) x2)

X > vi(vi-p)eT?, (1)
J

for z>0. The leading order phase as a functionpdbr both
the external and internal terms is

0(¢)=(x+Az)cosp+ysing. (12
FIG. 2. A circular cross section of the cone of refractibp.is
The phase is stationary at two angles; for each of the twahe distance fromx,y,z) to the cone in the-y plane.
terms one of the stationary points is nonphysical. The causal
stationary points are

b2
F(a,b)=e b¥4a r(1/2)F(5/4)L1,j’2(£)

(x+Az)

where the signs are chosen by noting tiatspecifies the
angle of the point on the external or internal sheet of the
wave surface at which the surface normal is in the directiorand Lg(x) is the associated Laguerre function. The internal

cosp;=(—1) (13

(20

b 112 b?
- —=TI(3T (/4L 7=

\/5 4a

of the ray to the pointX,y,z). Integrating Eq.(11) by the  and external terms combine since they differ only by the sign

method of stationary phase gives of b; and the phaser;. For largez, a; is approximately
iB,z, so that the asymptotic dependenceEds z~ >, which
k,W2Eo A matches the result reported by Moskvin, Romanov, and
E=- m e'k2Z; ajvj(v;-p) Val'skov [8] for the field due to a point source in directions

lying on the cone of internal conic refraction. For fixadthe
2 \12 ) leading behavior of Eq19) at large distances from the cone
XJ k,d ”<k|—”) e'oPi k3, (14)  of refraction in the x-y plane is the Gaussian term
pl9] ex;{—bi/(4a1)], whereb, is the distance from the circular

section of the cone with radiusz and center at{ Az0,z)

where as shown in Fig. 2. The polarization term(¢;)[Vi($1)
-p] modulates the intensity pattern as a function of angle
around the cone in the-y plane, as exhibited by Fig. 3 of

; (15 Ref.[5].

In order to verify our approach, the, integration of Eq.

v

_ H j+1
a]-—ex+(—1)l+ 3

(11) can be evaluated in terms of associated Laguerre func-

9i(6)=(~1"N(x+AD?+y*=—g/(4). (16  fions and theg integration performed numerically. Results
obtained in this manner for Aragonitén,=1.530, n,

w2 o =1.680, n,=1.685 [5]), z=10cm, beam waist 34um,
aj=— +iBj(¢)z, (17 vacuum wavelength 0.632@m, and incident polarization in

the x direction differ from the approximate expressiti®)

by less than 2% over most of the intensity pattern, as shown

bj=(—1)I"[Az— J(x+A2)*+Yy?], (18 in Fig. 3.

The oscillatory behavior of(a,b) includes the well-
and thev, are evaluated at the stationary poijt. The large ~ known Poggendorf dark ring, but for certain values of the
parameter ik, J(x+A2z)%+y?, so that the stationary phase beam_ waist size, propagation dl_stance, and permittivities of
condition becomes invalid a,=0. For typical parameter the biaxial medium, additional fringes appear on the inside

values, however, the resulting error is not significant sincéf the cone, as shown by the plot[6f(1+iq,b)| in Fig. 4.
the integrand vanishes &5— 0. There are two conditions which must be met in order for the

The remainingk, integration yields secondary oscillatory behavior of the field intensity pattern
P to appear. Firsta must be such thaf is oscillatory asb

2 ikez varies. Second, the radidsz of the cone of refraction must
€2W0e 2 EO

T a7l (x+Az)2+y? Ve Va( 1) the cone of refraction. The coefficierilsandE are typically
R much less than unity, so thB;=B, and we need only con-
X[vi(¢1)-pJF(as,bs), (19 sider they=0 section of the intensity pattern. The param-

etersa, and b, of Eq. (19) can be rescaled so that=1
where +i4Bz/w3 andb; = —2x/w,. As can be verified by exam-

be greater than the distance of the first secondary fringe from



55 SECONDARY DARK RINGS OF INTERNAL CONICA . .. 6095

140
120

100}

401

20

~0.5 ~0.4 ~0.3 0.2 ~o.f (om)

FIG. 3. M i fl E, for A i =1
G. 3. Magnitude of 18E/E, for Aragonite,z=10 cm, beam FIG. 5. Magnitude of 18E/E, for Aragonite, z=1 cm,

waist 34 um, and wavelength 0.6328m as given by numerical _ _ . .
integration of Eq.(11). On the same scale the percentage error OfWO_tlB ":rt]; and)\—(f).61:28,gm. The smgutlilr(l)t);;)fS Eq(lg? at_(;het
Eqg. (19 with respect to the numerical integration is shown as glenter ot the cone ot retraction appearsat—=u. mm. nciden

dashed line. Incident polarization is in tkedirection. The cone of polarization is in thex direction.

refraction intersects the axis atx=—23.5 mm. -
Bloemberger 5] would allow sufficient control of the pa-

rameters to remain well within the oscillatory regime of the
intensity pattern.

For a 10 cm crystal length and a beam waist of /34,
Bz our theory also predicts fringing in the intensity pattéffig.

0.33<—<3.8 (21)  6). This does not match the numerical results of Schell and
Wo Bloemberger(Fig. 7c of Ref.[5]). Although the shift of the
dark ring’s minimum towards the interior of the cone and the

for an additional dark ring of at least 10% variation. Thelarger amplitude of the inner peak agree qualitatively, the
second condition is satisfied if intensity pattern obtained by Schell and Bloembergen exhib-
its no additional fringing.

ining the behavior of (1+iq,b), the first of the above con-
ditions then yields

A2 2752430 22
w272 +30 (22)

0 Ill. CONCLUSION

N _ The intensity pattern due to internal conical refraction of a
These ranges are sufficiently large that for reasonable expefizrrow beam by a biaxial medium has a more complicated

mental values and parameter variations the oscillatory regircture than previously known. Our treatment predicts ad-
gime should easily be observed. Secondary dark rings shoulgtional dark rings on the interior of the cone for a range of
appear, for example, in the intensity pattern for an Aragonit a|yes of the anisotropy of the medium, beam waist size, and
crystal of length 1 cm, a wavelength of 0.63281, and @  prgpagation distance. We have given constraints on these
beam waist size of 1gm, as shown in Fig. 5. For these parameters for the oscillatory regime of the intensity pattern,
values Az/w,=9.7 andBz/w;=1.0, so that both conditions and demonstrated that these constraints are physically rea-
(21) and(22) are satisfied even with large error in the beamspnable and sufficiently large for experimental verification of
waist size, sample length, or permittivities of the medium.the effect. Apparently there do not exist, in the literature,
The experimental arrangement described by Schell angheasurements of the intensity pattern for beam and material
parameters for which secondary dark rings would be ex-
pected to appear, and so it seems desirable to further explore

x {(mm)

FIG. 6. Magnitude of 18E/E, for Aragonite,z=10 cm, w,

FIG. 4. Magnitude ofF(1+iq,b). The local minimum along =34 um, and\=0.6328um. Dashed lines are magnitudes of the
the x axis produces the dark ring in the intensity pattern of conicalinternal and external contributions taken separately and the solid
refraction.b>0 corresponds to the interior of the cone dd0 to line is total intensity as given by E@L9). Incident polarization is in
the exterior of the cone. they direction.
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conical refraction experimentally. Our result also contributeghose that appear in the intensity pattern for an optically
to the theory of internal conical refraction by characterizingactive medium, as reported in R¢€)].

the intensity pattern in terms of special functions which

make clear the leading behavior of the refracted fields. An ACKNOWLEDGMENTS
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