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Secondary dark rings of internal conical refraction
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~Received 11 June 1996; revised manuscript received 4 November 1996!

This paper treats the phenomenon of internal conical refraction, in which a narrow beam propagating along
an optical axis of a biaxial anisotropic medium spreads into a hollow cone. An expression is obtained for the
intensity distribution produced by conical refraction that predicts additional fringes concentric to the well-
known Poggendorf dark ring for certain propagation distances and beam widths.@S1063-651X~97!04005-1#

PACS number~s!: 42.25.Bs, 42.25.Lc, 78.20.Ci, 78.20.Fm
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I. INTRODUCTION

A narrow beam propagating along one of the optical a
of a biaxial medium spreads into a hollow cone. This ph
nomenon, internal conical refraction, was predicted
Hamilton in 1832 and observed shortly thereafter by Lloy
A dark ring in the circular intensity pattern produced
conical refraction was observed by Poggendorf in 1839
later explained by Voigt.~These historical references and
elementary treatment of conical refraction are found in B
and Wolf @1#.! Voigt’s explanation of the Poggendorf dar
ring was made more precise by Portigal and Burstein@2#.
Lalor @3# and Juretschke@4# also analyzed internal conica
refraction. Schell and Bloembergen@5# further refined the
analysis of Portigal and Burstein, achieving a result accu
to second order in an angle away from the optical axis. D
spite the improved accuracy, Schell and Bloembergen
ployed numerical integration in order to obtain some of
results given in the paper. Other theoretical treatments
clude that of Uhlmann@6#, who proves the existence of th
dark ring but does not examine the structure of the inten
pattern in detail.

Previous theoretical treatments amount to a tw
dimensional stationary phase evaluation of an inverse F
rier transform integral for the refracted field intensity. O
treatment employs the wave-vector representation of the
adic Green function for the electric field given by Lax a
Nelson@7#. A conical expansion for the wave surface near
optical axis given by Moskvin, Romanov, and Val’Kov@8#
yields a paraxial approximation for the Green function. T
refracted fields can then be obtained by finding the inve
Fourier transform of the product of the Green function a
the spectral representation of a Gaussian beam. We
asymptotically an integration in azimuthal angle about
optical axis, and the remaining transverse integration can
evaluated analytically. The resulting simple characterizat
of the intensity pattern in terms of special functions is one
the primary contributions of this paper to the theory of int
nal conical refraction. In order to demonstrate the validity
our approach, we have also performed numerical integrat
for the field intensity at certain parameter values.

Our results agree with the theoretical and experime
results of Schell and Bloembergen@5# for a 1 cmAragonite
sample, a 34mm beam waist, and a wavelength of 0.63
mm. For a 10 cm sample length, however, their theoret
results are qualitatively similar to the 1 cm pattern, wher
551063-651X/97/55~5!/6092~5!/$10.00
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our treatment predicts secondary dark rings or fringes in
interior of the cone of refraction. We specify the parame
ranges for which this secondary oscillatory behavior of
intensity pattern should appear, and demonstrate that e
allowing for large variation of the parameters the effect p
sists. These secondary dark rings have apparently not b
predicted by past theoretical treatments, nor have experim
tal results been given for parameter values lying within t
oscillatory regime.

Measurements by Schell and Bloembergen@9# indicate
the appearance of qualitatively similar secondary rings
conical refraction by an optically active medium. Oscillato
behavior of the intensity pattern has been predicted for co
cal refraction in gyrotropic media@10,11#, but the field has
an Airy function dependence and is identically zero for c
tain distances from the cone of refraction. This behavior
qualitatively different from that reported here for biaxial m
dia. Other related work includes that of Naida@12#, who
considers conical refraction in an inhomogeneous, wea
biaxial medium. Belskii@13# obtains transmission coeffi
cients for a thin biaxial plate along the optical axes, a
Belskii and Khapalyuk@14# discuss the change in astigm
tism of a Gaussian beam propagating along an optical a
Khatkevich@15# shows that a conically refracted beam is n
confined to a particular generator of the cone, and pl
wave solutions near the optical axis are discussed by A
androff @16#. References@10,11,17# also investigate the ap
plication of conical refraction in gyrotropic media to bea
focusing. A recent experimental measurement for conical
fraction in potassium titanyl phosphate is found in Ref.@18#.

II. PROPAGATION ALONG AN OPTICAL AXIS

To evaluate the electric field intensity due to intern
conical refraction, we employ the Fourier representation
the tensor Green function for a biaxial, nonmagnetic medi
with a real, symmetric permittivity tensor. The field can th
be obtained from the inverse Fourier transform of the pr
uct of the Green function and the spectral representation
narrow, Gaussian beam.

The tensor Green function for a biaxial, nonmagnetic m
terial is

G~k,v!5@k2~12n̂n̂!2v2me% #21, ~1!

wherev is the time frequency,k5kn̂ is the wave vector,m
is the permeability of the medium, ande% is the real, symmet-
6092 © 1997 The American Physical Society
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55 6093SECONDARY DARK RINGS OF INTERNAL CONICAL . . .
ric permittivity tensor of the medium. The Green functio
can be conveniently represented by a spectral decompos
@7#

G5(
j51

3 vjvj
v2m~k2/kj

221!
, ~2!

where the polarization vectorsvj satisfy @k2(12n̂n̂)
2v2me% #vj50 and are normalized, such that

vje%vj51. ~3!

The kj are the corresponding solutions to the Fresnel eq
tion det@k2(12n̂n̂)2v2me% #50. One of thekj is infinite; the
associated term of Eq.~2! is the nonpropagating part ofG.

The wave surface defined by the Fresnel equation con
of two sheets, corresponding to the two nonzero solutions
each wave-vector directionn̂. The external and interna
sheets of the wave surface meet at singular points along
optical axes or binormals. Let (x8,y8,z8) be the principle
coordinate system of the permittivity tensor. If the eigenv
ues are ordered so thate1,e2,e3 , then the optical axes lie
in the x8-z8 plane, at angles

tanb56S e3~e22e1!

e1~e32e2!
D 1/2 ~4!

from the z8 axis. Near these directions, the wave surfa
forms a cone. Letx, y, andz be the rotated coordinates

x5x8cosb2z8sinb,

y5y8,

z5x8sinb1z8cosb, ~5!

so that thez axis lies in the direction of one of the optica
axes. The geometry is depicted in Fig. 1.

In cylindrical coordinates associated with the rotated
ordinate system, the wave surface has an expansion a
kr50 of the formkz5Tj , where@8#

FIG. 1. Geometry of conical refraction. Thez direction is an
optical axis. Normals to the wave surface at the singular point g
erate the cone of refraction.
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Tj5k21A@cosf1~21! j11#kr2Bj~f!kr
2, ~6!

Bj~f!5B@11~21! jD cosf#@12~21! jE cosf#, ~7!

andk25vAe2m. The j51 term corresponds to the extern
part of the wave surface andj52 to the inner part. The
constants are

A5
1

2 S ~e32e2!~e22e1!

e1e3
D 1/2,

B5
~e31e2!~e21e1!

8e1e3k2
,

D5
e32e2
e31e2

,

E5
e22e1
e21e1

.

The apex angle of the cone of refraction is 2A.
Neglecting the nonpropagating term, the tensor Gre

function for smallkr is

G5(
j51

2
e2vjvj
kz
22Tj

2 , ~8!

where thevj are in the principle coordinate system. The p
larization vectorsvj can be found using the geometric rel
tionship between the electric displacement vectorD and the
wave and ray vectors. The vectorsDj corresponding to the
vj either lie in the plane containing the wave vector and
ray vector or are perpendicular to it. Fork along thez axis
and ray vectors lying on the cone of refraction,

D15 x̂ cos
f

2
1 ŷ sin

f

2

andD25D1(f1p). The vj are proportional toe% 21Dj , so
that

v15N@ x̂8e1
21cosb cos~f/2!1 ŷ8e2

21sin~f/2!

2 ẑ8e3
21sinb cos~f/2!#, ~9!

with the normalization N5@e1
21cos2b cos2(f/2)

1e2
21sin2(f/2)1e3

21sin2b cos2(f/2)#21/2. The eigenvector
v2 is v1(f1p).

The refracted electric field due to a Gaussian beam
waist sizew0 focused at one face of the biaxial medium
then

E5
ivm

8p3 E dk eik•rG~k!j0~kr!p̂, ~10!

where j0(kr)5(2E0 /h2)pw0
2e2w0

2kr
2/4, h25Am/e2, and p̂

specifies the polarization of the beam in the principle co
dinate system. Integratingkz by a contour closing in the up
per half plane yields

n-
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E52
k2E0

8p2v E krdkrdf eikr~x cosf1y sinf!j0~kr!

3(
j
vj~vj•p̂!eiT jz, ~11!

for z.0. The leading order phase as a function off for both
the external and internal terms is

g~f!5~x1Az!cosf1ysinf. ~12!

The phase is stationary at two angles; for each of the
terms one of the stationary points is nonphysical. The ca
stationary points are

cosf j5~21! j
~x1Az!

A~x1Az!21y2
, ~13!

where the signs are chosen by noting thatf j specifies the
angle of the point on the external or internal sheet of
wave surface at which the surface normal is in the direct
of the ray to the point (x,y,z). Integrating Eq.~11! by the
method of stationary phase gives

E52
k2w0

2E0

4pvh2
eik2z(

j
s jvj~vj•p̂!

3E krdkrS 2p

krugj9u
D 1/2eikrbj2kr

2aj , ~14!

where

s j5expF i ~21! j11
p

4 G , ~15!

gj~f j !5~21! j11A~x1Az!21y252gj9~f j !, ~16!

aj5
w0
2

4
1 iB j~f j !z, ~17!

bj5~21! j11@Az2A~x1Az!21y2#, ~18!

and thev are evaluated at the stationary pointf j . The large
parameter iskrA(x1Az)21y2, so that the stationary phas
condition becomes invalid atkr50. For typical paramete
values, however, the resulting error is not significant sin
the integrand vanishes askr→0.

The remainingkr integration yields

E52
e2w0

2eik2zE0

4Ap@~x1Az!21y2#1/4a1
3/4

v1~f1!

3@v1~f1!•p̂#F~a1 ,b1!, ~19!

where
o
al

e
n

e

F~a,b!5e2b2/~4a!FG~1/2!G~5/4!L1/4
21/2S b24aD

2
b

Aa
G~3/2!G~3/4!L21/4

1/2 S b24aD G ~20!

andLq
p(x) is the associated Laguerre function. The intern

and external terms combine since they differ only by the s
of bj and the phases j . For largez, a1 is approximately
iB1z, so that the asymptotic dependence ofE is z25/4, which
matches the result reported by Moskvin, Romanov, a
Val’skov @8# for the field due to a point source in direction
lying on the cone of internal conic refraction. For fixedz, the
leading behavior of Eq.~19! at large distances from the con
of refraction in the x-y plane is the Gaussian term
exp@2b1

2/(4a1)#, whereb1 is the distance from the circula
section of the cone with radiusAz and center at (2Az,0,z)
as shown in Fig. 2. The polarization termv1(f1)@v1(f1)
•p̂# modulates the intensity pattern as a function of an
around the cone in thex-y plane, as exhibited by Fig. 3 o
Ref. @5#.

In order to verify our approach, thekr integration of Eq.
~11! can be evaluated in terms of associated Laguerre fu
tions and thef integration performed numerically. Resul
obtained in this manner for Aragonite~nx51.530, ny
51.680, nz51.685 @5#!, z510 cm, beam waist 34mm,
vacuum wavelength 0.6328mm, and incident polarization in
the x direction differ from the approximate expression~19!
by less than 2% over most of the intensity pattern, as sho
in Fig. 3.

The oscillatory behavior ofF(a,b) includes the well-
known Poggendorf dark ring, but for certain values of t
beam waist size, propagation distance, and permittivities
the biaxial medium, additional fringes appear on the ins
of the cone, as shown by the plot ofuF(11 iq,b)u in Fig. 4.
There are two conditions which must be met in order for
secondary oscillatory behavior of the field intensity patte
to appear. First,a must be such thatF is oscillatory asb
varies. Second, the radiusAz of the cone of refraction mus
be greater than the distance of the first secondary fringe f
the cone of refraction. The coefficientsD andE are typically
much less than unity, so thatBj.B, and we need only con
sider they50 section of the intensity pattern. The param
etersa1 and b1 of Eq. ~19! can be rescaled so thata151
1 i4Bz/w0

2 andb1522x/w0 . As can be verified by exam

FIG. 2. A circular cross section of the cone of refraction.b1 is
the distance from (x,y,z) to the cone in thex-y plane.
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ining the behavior ofF(11 iq,b), the first of the above con-
ditions then yields

0.33,
Bz

w0
2,3.8 ~21!

for an additional dark ring of at least 10% variation. The
second condition is satisfied if

Az

w0
.2.7

Bz

w0
2 13.0. ~22!

These ranges are sufficiently large that for reasonable expe
mental values and parameter variations the oscillatory r
gime should easily be observed. Secondary dark rings sho
appear, for example, in the intensity pattern for an Aragoni
crystal of length 1 cm, a wavelength of 0.6328mm, and a
beam waist size of 18mm, as shown in Fig. 5. For these
values,Az/w059.7 andBz/w0

251.0, so that both conditions
~21! and~22! are satisfied even with large error in the beam
waist size, sample length, or permittivities of the medium
The experimental arrangement described by Schell a

FIG. 3. Magnitude of 103E/E0 for Aragonite,z510 cm, beam
waist 34mm, and wavelength 0.6328mm as given by numerical
integration of Eq.~11!. On the same scale the percentage error o
Eq. ~19! with respect to the numerical integration is shown as
dashed line. Incident polarization is in thex direction. The cone of
refraction intersects thex axis atx523.5 mm.

FIG. 4. Magnitude ofF(11 iq,b). The local minimum along
thex axis produces the dark ring in the intensity pattern of conic
refraction.b.0 corresponds to the interior of the cone andb,0 to
the exterior of the cone.
ri-
e-
ld
e

.
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Bloembergen@5# would allow sufficient control of the pa-
rameters to remain well within the oscillatory regime of th
intensity pattern.

For a 10 cm crystal length and a beam waist of 34mm,
our theory also predicts fringing in the intensity pattern~Fig.
6!. This does not match the numerical results of Schell an
Bloembergen~Fig. 7c of Ref.@5#!. Although the shift of the
dark ring’s minimum towards the interior of the cone and th
larger amplitude of the inner peak agree qualitatively, th
intensity pattern obtained by Schell and Bloembergen exh
its no additional fringing.

III. CONCLUSION

The intensity pattern due to internal conical refraction of
narrow beam by a biaxial medium has a more complicat
structure than previously known. Our treatment predicts a
ditional dark rings on the interior of the cone for a range o
values of the anisotropy of the medium, beam waist size, a
propagation distance. We have given constraints on the
parameters for the oscillatory regime of the intensity patter
and demonstrated that these constraints are physically r
sonable and sufficiently large for experimental verification o
the effect. Apparently there do not exist, in the literature
measurements of the intensity pattern for beam and mate
parameters for which secondary dark rings would be e
pected to appear, and so it seems desirable to further expl

f
a

l

FIG. 5. Magnitude of 103E/E0 for Aragonite, z51 cm,
w0518mm, andl50.6328mm. The singularity of Eq.~19! at the
center of the cone of refraction appears atx520.175 mm. Incident
polarization is in thex direction.

FIG. 6. Magnitude of 103E/E0 for Aragonite,z510 cm, w0

534mm, andl50.6328mm. Dashed lines are magnitudes of the
internal and external contributions taken separately and the so
line is total intensity as given by Eq.~19!. Incident polarization is in
the y direction.
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conical refraction experimentally. Our result also contribu
to the theory of internal conical refraction by characterizi
the intensity pattern in terms of special functions whi
make clear the leading behavior of the refracted fields.
extension of this work would be to determine the relations
between the secondary fringes predicted by our theory
o-

.

.

s

n
p
d

those that appear in the intensity pattern for an optica
active medium, as reported in Ref.@9#.
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