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Fragmentation of thin films bonded to solid substrates: Simulations and a mean-field theory

Kevin M. Crosby and R. Mark Bradley
Department of Physics, Colorado State University, Fort Collins, Colorado 80523

~Received 16 October 1996!

We perform simulations of crack growth in a brittle-elastic two-dimensional film bonded to a rigid substrate
and subjected to an isotropic tensile stress. We find that the resulting fracture patterns can be classified
according to the applied tensile stress. For a significant range of stresses, the crack interactions are extremely
short range. The resulting fracture patterns are independent of stress and depend only on the initial distribution
of crack nuclei. In this regime, the fracture process is well described by a fragmentation model in which a
random distribution of seeds nucleates pairs of oppositely directed rays which grow until encountering other
rays. Using a mean-field approach, we obtain approximate analytical results for this model which compare well
with both the simulations of the fragmentation model, and with the fracture simulation results. Our approach is
extensible to other models of fracture, and where numerical results exist in the literature, our mean-field
solutions agree well with them.@S1063-651X~97!02705-0#

PACS number~s!: 03.40.2t, 61.43.Bn, 62.20.Mk, 81.30.Kf
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I. INTRODUCTION

The process of fragmentation has been the subjec
much interest recently as a number of authors have obta
exact solutions for a class of fragmentation models@1–6#.
These models have been proposed in the context of m
important physical and chemical phenomena. These inc
explosions@7#, atomic collision cascades@8#, droplet breakup
@9#, and polymer degradation@10#. A basic premise of these
models is that as the fragmentation process proceeds
fragments split independently of one another. Fragme
continue to split independently in time. This permits the
troduction of linear rate equations to describe the evolut
of the fragment size distribution. Solutions to these ‘‘fra
mentation equations’’ for several fragmentation rules
now well established.

There are fragmentation phenomena, however, which
not well described by linear rate equations. Fracture of e
tic solids typically initiates from scattered defects in the m
dium which nucleate cracks upon exposure to a supercri
tensile stress. The nucleation of cracks is heterogeneou
this case. If the elastic solid is a thin film bonded to a so
substrate, the final structure resembles a patchwork of
lygonal islands of undamaged film bounded by cracks. If
film is a conductor and the substrate an insulator, the fi
undergoes a conductor-insulator transition upon suffic
fragmentation.

Tensile fracture of real thin film materials is a significa
obstacle to reliability engineering of many important tec
nologies. Very large scale integrated circuitry~VLSI! relies
in part on the integrity of thin metal and dielectric film
which are often under large tensile stresses applied by t
substrates. The deposition process is often responsible fo
high tensile stress. For example, metal-vapor deposition
quently produces films with high tensile stresses which
then used in optical applications@11#. Epitaxial alkaline earth
fluoride films are candidate materials for use as passiva
layers on semiconductors and these films are also under
intrinsic tensile stress@12#.

In this paper we present the results of computer simu
551063-651X/97/55~5!/6084~8!/$10.00
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tions of tensile fracture in thin films bonded to solid su
strates. The simulations show that a fragmentation mode
which the crack tip velocities are constant in time, is a go
approximation to the actual, more complicated dynamics
a significant range of stresses. This intermediate stress
gime is characterized by final film surface configuratio
which can be reproduced by application of a set of simp
stress-independent crack growth rules to the distribution
initial defects. We numerically investigate such a model a
find crack length distribution functions which compare w
with the analogous distribution functions obtained from t
fracture simulations.

For stresses above the intermediate regime, we find
creasingly complex crack interactions which lead to stre
dependent final states. We also propose a mean-field des
tion of a generic, heterogeneous fragmentation process
analyze its properties in the context of the tensile-fract
simulations. We show that our solution can be specialized
describe the properties of related models of fragmentat
and that where numerical estimates of fragment length
tributions exist in the literature, our solutions agree qu
well with them.

II. BRITTLE-ELASTIC THIN FILM MODEL

Our model is a deterministic central-force lattice mod
which consists of a triangular array of masses~the film! con-
nected by Hookean bonds to each other and to a planar
angular array representing the substrate. Each mass in
film is anchored to three substrate sites by a tripod of bon
The number of sites along an edge of the film defines
linear dimensionL of the lattice, where we have set th
initial lattice spacing to 1.0.

We work with L3L lattices, so that there areL2 sites in
the film layer. We choose the substrate to haveL11 sites
along an edge which ensures that the edge sites in the
are fully anchored to the substrate. There are (L21)(3L
21) bonds in the film and 3L2 adhesive bonds. Taken to
gether, the film and substrate form a rhombus consisting
two adjacent~111! planes of an fcc lattice~Fig. 1!.
6084 © 1997 The American Physical Society
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55 6085FRAGMENTATION OF THIN FILMS BONDED TO SOLID . . .
A film site i with massm obeys the equation of motion

mxẄ i52bxẆ i1(
jÞ i

FW ~xW i2xW j !, ~1!

where we consider nearest-neighbor interactions only, so
the sum onj is over nine neighbors~six in-plane neighbors
and three adhesively bonded substrate neighbors!. The dis-
placement from equilibrium for the sitei is xW i . The quantity
b is a phenomenological damping coefficient. The magnitu
of dissipative losses is characterized by the quantityh
[b/m. In the simulations reported here, we consider pur
dissipative dynamics whereh5`. The force term in Eq.~1!
represents the Hookean interaction with ‘‘spring consta
ki j , i.e., FW (xW i2xW j )52ki j (xW i2xW j ). We chooseki j to have
the same valuek for all unbroken bonds in the lattice, and w
setki j50 for broken bonds. The value ofk sets the scale fo
the elastic properties of the lattice and dictates the choic
the time step when Eq.~1! is integrated numerically.

The bonds which connect the masses to each other
temperature dependent natural lengths with thermal exp
sion coefficientsa i j . We set alla i j ’s for the film and adhe-
sive bonds to the same valuea f , and alla i j ’s for the sub-
strate bonds to zero. This results in a rigid substrate, whic
a plausible assumption if the film is much thinner than
substrate, as is usually the case. A state of tensile stre
introduced by requiring thata f.0 and reducing the tem
perature of the lattice incrementally to some final value.
this way, the film layer’s contraction is imposed by the rig
substrate. The bonds in the film layer break irreversi
when they bear a strain in excess of a threshold valueec
which we have chosen to be 0.02 for the simulations repo
here. The adhesive bonds are not permitted to break.
applied stress in the film in the absence of any broken bo
is given by

s05
E0

~12n!
a f uDTu, ~2!

whereE0 andn are, respectively, the Young’s modulus a
Poisson ratio of the undamaged film anduDTu is the tempera-
ture drop. It is straightforward to show thatE05(2/))k and
n51/3 for a two-dimensional triangular lattice subjected
plane stress. We set a convenient scale for the stress in
simulations by measuring the initial stress in units
E0 /(12n) and temperature in units of 1/a f . s0 is then nu-
merically equal to the depth of the temperature dropuDTu,
which is the quantity we control directly. Our simulation
span the range 15,s0<100.

FIG. 1. Geometry of film and substrate. The fixed substrate s
are not shown.
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III. SIMULATION RESULTS

Initially, a random distribution of defects in the form o
broken bonds is present in the film layer. Letg denote the
initial defect density. As the temperature is lowered, bon
contiguous to the initial defects begin to rupture, generat
cracks. We have also allowed the initial state to contai
small fraction of adhesive disorder through the presence
randomly placed, broken adhesive bonds. This is though
mimic the likely imperfect adhesion between real films a
their substrates. We observe no substantive change in
fracture dynamics when such dilute adhesive disorder is
cluded. In what follows, we will restrict our attention to th
simulations in which there is no adhesive disorder prese

There is ag-dependent threshold stresssm(g) for the
onset of cracking. Fors0>sm(g), the crack tips initially
propagate along lattice vectors. Figure 2 shows the film s
face after a short time on a lattice of sizeL5150 with g
50.01. An obvious feature of Fig. 2 is the appearance o
generic crosslike pattern common to most defects. This
ture is a consequence of the symmetries of the lattice. M
defects nucleate a crosslike crack pattern with branch an
of 60° and 120° relative to the initially broken bond.

The depth of the temperature quench dictates the su
quent evolution of the fracture pattern. From simulatio
over a wide range of stresses, one can identify three type
final states which we label ‘‘incipient,’’ ‘‘intermediate,’’ and
‘‘strongly interacting’’ in reference to the dominant crac
dynamics observed in each case. Lets i(g) represent the
values ofs0 that distinguish these final states, wherei51 or
2.

For stressess0 in the rangesm(g)<s0,s1(g) ~the in-
cipient regime!, there is not enough strain energy in the fil
to support full fragmentation of the film surface. Most cra
tips stop before intersecting other cracks. The film surfac
characterized by a scattering of small, isolated cross
cracks with a small number of longer cracks. Thats1 is a
function of g can be understood in terms of the decreas
mean distance between defects with increasingg. Larger de-
fect densities result in a smaller mean distance between c
tips, and therefore, an increased probability of intersectio

For s1(g)<s0<s2(g) ~the intermediate regime!, we
find long-time configurations like that shown in Fig. 3. Th
value ofs0 for this simulation is 26.5. A significant featur
of the pattern shown in Fig. 3 is the absence of intersec

s

FIG. 2. Film surface shortly after onset of fracture. The simu
tion parameters areL5150,g50.01 ands0527.0.
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6086 55KEVIN M. CROSBY AND R. MARK BRADLEY
cracks. Propagating crack tips move in straight lines u
they are arrested as they approach other cracks. The crac
velocities are approximately uniform throughout the film f
this choice ofs0 . Crack propagation typically initiates be
fore the targets0 is reached. As a result, crack tip velocitie
increase with time. However, they do so uniformly throug
out the film as we show below.

The direct determination of crack tip velocities poses
technical challenge since we must determine the cr
branch to which a given broken bond belongs. This pro
dure is particularly ambiguous in the high density or hi
stress simulations. For a dilute network, i.e., one in which
defects initially present are far apart on average, a sim
algorithm can be implemented which will reliably measu
crack lengths. The procedure we adopt is to assign f
‘‘crack paths’’ to each defect based on the defect’s orien
tion in the lattice. These paths consist of lists of bonds wh
lie along the likely paths of the crack branches. As bon
break sequentially along these paths, the crack length
path is recorded as the number of adjacent breaks along
path. In Fig. 4, we show the time evolution of the lengths
100 randomly chosen crack branches. The simulation par
eters areg50.01 ands0527.5. The lattice size isL580.

FIG. 3. Final configuration of the film surface fors0526.5 and
g50.1 on a lattice of sizeL5150. This pattern is typical of thos
obtained in the intermediate regime.

FIG. 4. Crack lengths vs time for 100 randomly selected defe
in a film with dilute disorder (g50.01). The lattice size isL580
ands0527.5.
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Many of the crack branches represented in Fig. 4 evo
identically, resulting in the appearance of a smaller num
of trajectories. The near coincidence of all the trajector
before arrest indicates that the cracks propagate with a c
mon velocity. In fact, the variance is everywhere less th
0.5.

This procedure is adequate forg,0.2. Forg greater than
about 0.2, the defects are sufficiently close on average
cracks form by bridging the gaps between defects w
straight crack segments. The resulting pattern is not a
lygonal network of cracks bounding patches of undama
film, but instead contains long, winding cracks surround
by inactive defects~Fig. 5!.

Sufficiently energetic cracks, however, interact in a co
plicated way; the velocity of the propagating crack tip d
tates whether or not it is arrested by another crack in its p
The tip velocity and direction are complicated functions
the stress field ahead of the crack tip which is modified
the presence of other nearby cracks. These effects are
served in the simulations fors0 larger thans2(g) ~the
strongly interacting regime!. Figure 6 shows a final stat
fracture pattern withs0536.0. This pattern reflects the mor
complicated crack interactions of branching and crossing

There is, of course, some ambiguity in the choice of
s i ’s. While the essential observation is the existence of
three regimes, there are no sharp boundaries in stress

ts

FIG. 5. Final configuration of the film surface fors0526.0 and
g50.30.

FIG. 6. Final configuration of the film surface fors0536.0 and
g50.1 on a lattice of sizeL5150. This pattern is typical of those
obtained in the strongly interacting regime.
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55 6087FRAGMENTATION OF THIN FILMS BONDED TO SOLID . . .
tween them. What is important is the width of the interm
diate regime,s2(g)2s1(g), which we have chosen to de
fine in the following way. We choose this width to represe
the range ofs0 for which all crack tips terminate upon firs
encountering another crack tip or boundary. This width
also characterized by the uniformity of the crack tip velo
ties. Forg<0.20, the width is approximately 18, a signifi
cant portion of the total stress range of 15<s0<100 we
have examined. The lower boundary roughly correspond
sm for the range of seed densityg we have explored. Fo
s0.100, the crack density is too high to resolve separ
cracks in lattices of a reasonable size (L<250).

The crosslike cracks we observe in our fracture simu
tions arise from the symmetries of the triangular lattice. W
can eliminate this multiple nucleation effect by nucleati
correlated defects as follows. For each of the broken bo
initially present in lattice, we break an adjacent bond who
orientation defines the incipient crack’s subsequent propa
tion direction. In this way, defects generate single cra
which grow with equal probability along any of the thre
lattice vectors.

IV. A HETEROGENEOUS FRAGMENTATION MODEL

For stresses in the intermediate regime, we find o
straight, nonintersecting cracks in our simulations. Furth
in this intermediate range ofs0 , crack branching is rela
tively rare and the spread in crack tip velocities is quite sm
throughout the evolution of the pattern. We can draw
important conclusion from these observations: In the in
mediate regime, the final configuration of the film is, to
good approximation, independent of the stress and is a fu
tion of the initial distribution of defects alone.

This leads naturally to the description of the fracture p
cess in terms of a fragmentation model which we define b
set of simple rules: Cracks nucleate simultaneously from r
domly scattered defects and propagate with constant ve
ity, stopping upon contact with other cracks. That fractu
might be modeled in such a way has been proposed be
@13–15#. That it is a fair approximation~at least for a range
of tensile stresses!, has to our knowledge never before be
confirmed. In what follows, we discuss simulations of th
fragmentation model and obtain crack length distribut
functions which agree well with those obtained from the th
film fracture simulations.

We have carried out simulations on the fragmentat
model defined above for the case in which each defect nu
ates a pair of oppositely directed crack branches. The or
tation of the cracks on the lattice is chosen with equal pr
ability to be one of the three allowed orientations on t
triangular lattice. In Fig. 7, we show the crack length dist
butions obtained from both the fracture simulations~with
correlated defects! in the intermediate regime and simul
tions of the fragmentation model. For both simulations,
initial defect densityg is 0.20. The agreement between t
fragmentation and fracture simulations is quite good over
entire range of crack lengths.

We expect that fracture~in the intermediate regime! on
the square lattice and off-lattice fracture can be simila
modeled by the fragmentation model. In fact, fragmentat
by randomly oriented cracks has been numerically stud
-
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before @14#. Another variation of the fragmentation mod
has been used to describe martensite growth@16#, a phenom-
enon which bears similarities to square lattice fracture in r
materials@12#. In the following sections, we develop a mea
field theory for a general, heterogeneous fragmenta
model and compare its properties to these fragmenta
simulations and to our own thin film fracture simulations.

V. A MEAN-FIELD THEORY OF HETEROGENEOUS
FRAGMENTATION

In this section we obtain approximate expressions for
crack length distribution functions of a generic heterog
neous fragmentation model. We show that our results
applicable to any fragmentation process in which random
scattered seeds simultaneously nucleate single pairs of o
sitely directed rays which propagate with constant veloc
until they are stopped by other rays. By appropriate choice
the ray pair orientations, the solutions we obtain can be s
cialized to describe a variety of previously studied mode
as well as the thin film fracture model of Sec. II.

We begin by considering seeds distributed randomly o
plane with seed densityg. At t50, each seed nucleates a pa
of oppositely directed rays each of which grows with t
same speed~and with the same speed as all other rays on
plane!. The orientation of the ray pair is described by
angular distribution functionD(u), where 0<u<p, which
specifies the orientation of the ray pair relative to thex axis.
D(u)du is the probability of finding a ray with orientation
betweenu andu1du. A coordinate system is placed with it
origin lying on a seed and with its axes oriented so that
ray pair lies along thex axis. Letx denote the length of the
ray lying on the positivex axis after all rays have stoppe
growing. We now ask for the ray-length distribution fun
tion, P̃(x).

We proceed by definingF(x0) to be the probability that
the ray nucleated at the origin and directed along the posi
x axis grows to a lengthx>x0 . In order for this to occur,
there can be no ‘‘blocker’’ rays which pass through thex
axis betweenx50 and x5x0 . For each orientationu, we

FIG. 7. Ray length probability distributions obtained from fra
ture~d! and fragmentation~s! simulations withg50.20. The frac-
ture simulations were carried out withs0526.5 on a lattice of size
L5150.
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6088 55KEVIN M. CROSBY AND R. MARK BRADLEY
identify a region of areaA(u)5x0
2sinu symmetric about the

x axis and spanned by the line segment 0<x<x0 . All rays
originating within this region which have orientationu will,
if unblocked, intersect the line segment 0<x<x0 beforethe
ray propagating along thex axis does so. To make the con
struction clear, we consider the special caseD(u)5 1

2@d(u)
1d(u2p/2)# so that each seed nucleates a ray pair with
of two perpendicular orientations with equal probabilit
A(u5p/2) is then the area enclosed by the right trian
symmetric about thex axis, with a vertex at the origin, an
with base length 2x0 ~Fig. 8!. Any ray which originates
within A(p/2) andwhich has the orientationu5p/2 has the
potential to prevent the ray at the origin from reachingx
5x0 and is termed a ‘‘blocker’’ ray. Whether it does s
depends on the absence of ‘‘blocker-blocker’’ rays which
this case must have orientationu50 or p and lie within a
right triangle with its vertex at the origin of the blocker ra

For arbitraryu, A(u) is the area enclosed by the dash
lines in Fig. 9. This shape, which is a chevron foru.p/2
and a diamond foru,p/2, has an opening angle 2v with v
given by

tanv5
sinu

12cosu
,

where the principal branch of the tangent function is tak
In what follows, we consider this general case.

We consider a blocker defect with orientationu nucleated
at the point (x,y) to be potent if it grows to a lengthx8
>y/sinu and has a ray which intersects the line segmen
,x<x0 . The geometry is illustrated in Fig. 9.

Let us now make an assumption which amounts to
mean-field type approximation. To proceed with the calcu
tion it is necessary to assume that the blocker defects
statistically independent of one another. That is, giv
knowledge of the length of one potential blocker, nothi
can be said about the lengths of other blockers. This assu
tion is clearly not valid in general. However, it does appe
that the ray length correlations are small, and in fact, van
in the high density limit. Ultimately, the justification for thi
approximation will come from the surprising accuracy of t
crack length statistics obtained from the theory. We w

FIG. 8. The region enclosingA(p/2) for the special case
D(u)5 1

2@d(u)1d(u2p/2)# is outlined with dotted lines.
e
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therefore decomposeF(x0) into a product over all points
(x,y) and possible orientationsu within the areaA(u). Each
factor in the product then represents the probability tha
potent blocker does not exist at the point (x,y). F(x0) can be
formally written as

F~x0!5 )
~x,y,u!

@12G~y,u!#. ~3!

G(y,u) is the probability that a ray nucleates in the ar
elementdx dy at (x,y) with orientationu and is a potent
blocker. It is straightforward to show thatG(y,u)
5g dx dy du D(u)F(uyucscu). The product in Eq.~3! is to
be taken over allx, y, andu satisfying the potency condi
tions

uyu<x0sinu,

uyu~cscu2cotu!<x<x02uyucotu,

and

0<u<p.

Taking the natural logarithm of both sides of Eq.~3!,
using the relation ln(12x)'2x for small x, and converting
the resulting triple sum to integrals yields

lnF~x0!52gE
0

p

duE
2x0sinu

x0sinu

dyE
uyu~cscu2cotu!

x02uyucotu
dx D~u!

3F~ uyucscu!

522gE
0

p

duE
0

x0sinu

dy D~u!~x02y cscu!

3F~y cscu!,

where we have made use of reflection symmetry about
x axis. A change of variablez[y cscu results in

FIG. 9. The region enclosingA(u) is outlined with dashed lines
Also shown is the geometry of the ray interactions.
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55 6089FRAGMENTATION OF THIN FILMS BONDED TO SOLID . . .
lnF~x0!522gI E
0

x0
dz~x02z!F~z! ~4!

where we have definedI[*0
pdu(sinu)D(u).

Equation ~4! permits an exact solution. Differentiatin
twice with respect tox0 , we obtain the nonlinear differentia
equation

F~x0!F9~x0!2@F8~x0!#
212gI @F~x0!#

350. ~5!

Equation~5! can be transformed to a Bernoulli equation@17#
and solved by means of an integrating factor. The gen
solution is

F~x0!5
c1
4gI

sech2@ 1
2Ac1~x01c2!#,

where c1 and c2 are constants. We can then get the r
length probability distribution P̃(x) from P̃(x)5
2dF(x0)/dx0ux05x . Normalizing and requiring thatP̃(0)

50 results in

P̃~x!5A4gI
sinh~AgIx !

cosh3~AgIx !
. ~6!

Equation~6! gives an approximate expression for the d
tribution of ray lengths arising from a heterogeneous fr
mentation process defined by an angular distribution func
D(u). To facilitate comparison with the numerical data
other fragmentation studies, it is necessary to comp
P( l ), the distribution function for line segment length
Now, a line segment of lengthl is composed of two rays o
lengthx and l2x. The regions in which we might find po
tent blockers of these oppositely directed rays do not ov
lap, so their lengths are statistically independent and we
obtainP( l ) from

P~ l !5E
0

l

dx P̃~x!P̃~ l2x!. ~7!

The evaluation of the integral in Eq.~7! is straightforward
but results in a rather complicated expression forP( l ):

P~ l !5
~y221!

y3
@y2~62y2!1~1228y2!ln~12y2!#, ~8!

where y[tanh(AgI l ). The expression of Eq.~8! behaves
near the origin asl 3, while P̃(x) is linear inx for small x.
The l 3 behavior ofP( l ) is consistent with simple probability
arguments@16#.

Equations~6! and~8! represent the essential results of t
mean-field treatment. In the following section we compa
these results with the numerical estimates of crack len
distribution functions obtained in previously studied fra
mentation models.

VI. ACCURACY OF MEAN-FIELD RESULTS

By an appropriate choice ofD(u), Eq. ~8! can be special-
ized to represent a number of heterogeneous fragmenta
models for which numerical estimates ofP( l ) exist in the
al
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literature. In Ref.@16#, Rauet al. propose a model of mar
tensite growth in which seeds nucleate single line segm
simultaneously~in one limit of the model!. These grow with
constant velocity and with equal probability along one of tw
perpendicular directions. The numerical estimate ofP( l ) is
fit to a G distribution in Ref. @16#. By letting D(u)
51

2@d(u)1d(u2p/2)#, the expression~8! can be special-
ized to represent the segment length distribution of the mo
of Ref. @16#. Figure 10 shows a plot ofP( l ) vs the reduced
variableAg/2l for both the numerical estimate of Ref.@16#
and the expression of Eq.~8!. The agreement is quite goo
over the entire range of data. The relative error is most p
nounced near the peak of the distribution, where a maxim
error of 6.7% is incurred.

The mean-field expression forP( l ) can be used to obtain
expressions for the moments of the distribution which ag
agree quite well with those obtained from theG distribution
of Ref. @16#. Computing the momentsMn[*0

`l nP( l )dl of
Eq. ~8! is rather awkward. We can however directly obta
the moments,M̃n of the simpler distribution,P̃(x) of Eq. ~6!.
A short calculation yields

M̃n54n~2g!2~1/2!n~12222n!G~n!z~n21!, ~9!

wherez(n21) is the Riemann zeta function.
To proceed, we note thatP( l ) is the convolution of

P̃(x) so that their Laplace transforms,P(k) and P̃(k), have
the simple relation P(k)5 P̃2(k). Now P̃(k)
[*0

`P̃(x)e2kxdx, which can be written

P̃~k!5 (
n50

`
~2k!n

n!
M̃n .

ComputingP(k)5 P̃2(k), we obtain

P~k!5 (
n50

`
~2k!n

n! (
m50

n S nmD M̃mM̃n2m ,

from which the moments ofP( l ) are found to be

FIG. 10. Line segment probability distributionP( l ) vs l / l 0
where l 0[A2/g. The dashed line is theG-distribution fit obtained
by Rauet al. @16#.
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Mn5 (
m50

n S nmD M̃mM̃n2m . ~10!

The first two moments obtained from Eq.~10! areM1

52A2/g andM252(2/g)(112 ln2) in excellent agreemen
with the moments obtained from the numerical fit in R
@16#. We find a relative error of<3% for the first three
moments. The higher-order moments, however, show m
pronounced deviations from their numerically estima
counterparts.

In Ref. @14#, a model similar in spirit to that of Rauet al.
is proposed for the fragmentation of a solid due to simu
neous nucleation of cracks. The essential difference betw
the models is that in the simulations of Ref.@14#, defects
nucleate single cracks~ray pairs! with random orientations
instead of orientations fixed along perpendicular lattice v
tors. Again, aG distribution is fit to the segment-length dis
tribution. While the uncertainty in the fit parameters is mu
larger in the work of Ref.@14#, we still find that Eq.~8! with
D(u)51/p ~i.e., with all angles being equally probable! re-
produces theG-distribution fit with a maximum deviation o
8% between the distributions.

Recently, Birnie and Weinberg presented a model
phase transformation in which anisotropic particles nucle
simultaneously with random orientations and grow with co
stant velocities along their long and short axes@18#. In their
work, the effects of blocking are only approximately a
counted for, so that all particles which satisfy a relevant
teraction geometry are potent blockers. The effects
blocker-blocker and higher-order interactions are ignor
When the particles are needlelike, our results indicate
this may be a rather severe approximation. To examine
claim, we solve Eq.~4! to first order in the ‘‘blocking
depth,’’ excluding blocker-blocker and higher-order bloc
ing effects. Under these conditions,P̃(x) has the form

P̃~x!'2gIxe2gIx2. ~11!

Equation~11! is a rather poor approximation to both Eq.~6!
and the numerical data. For instance, Eq.~11! yields a dis-
tribution maximum which differs from that of the expressio
in Eq. ~6! by 7.5%. It compares even more poorly with th
numerical data, incurring an error of over 12% in the dis
bution maximum for the case of square lattice fragmentat
However, a solution of Eq.~4! to the next order in blocking
depth yields a substantial improvement in the approximat
suggesting that higher-order corrections~blocker-blocker-
blocker, etc.! do not have a significant effect on the cra
length distribution function.

In short, we have developed approximate expressions
the ray and line length distribution functions for a gene
fragmentation process with heterogeneous nucleation of
fects. The expressions we derived hold for arbitrary cra
orientation distributions. Our results agree well with the e
isting numerical data and allow a systematic evaluation
the distribution moments for all cases. The lower-order m
ments are of interest experimentally, as one is often in
ested in the average crack length and variance for a g
fragmentation process.
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VII. COMPARISON OF THE MEAN-FIELD RESULTS
WITH THE THIN FILM FRACTURE SIMULATIONS

To describe the ray length distribution obtained from t
fracture patterns of our thin film model in the intermedia
regime,D(u) must have the form

D~u!5 1
3 @d~u!1d~u2p/3!1d~u22p/3!#. ~12!

Figure 11 shows a plot of the mean-field expression
P̃(x) vs x for g50.01, 0.05, 0.10, and 0.20, withD(u)
given by Eq.~12!. Also plotted in Fig. 11 are the normalize
ray-length distributions obtained from averaging over 10
simulations of the fragmentation model withg50.05, 0.10,
and 0.20. Finite size effects were eliminated by repeating
simulations on lattices of different sizes in order to obtain
limiting values of the data points as the lattice size tends
infinity. The latter are included to justify the mean-field a
proximation, as the agreement between the numerical
mean-field results is quite good. Finally, plotted in Fig. 11
the normalized crack length distribution obtained from av
aging over five fracture simulations withg50.1. This distri-
bution was generated by simulations on a lattice of sizeL
580 withs0526.5, within the intermediate regime. A finit
size effect is discernible in the fracture data where
boundary increases the probability of obtaining shor
length cracks for defects near the edges of the film. Oth
wise, the agreement is quite good over the entire range
crack lengths.

VIII. SUMMARY AND DISCUSSION

Lattice models are well suited to the simulation of fra
ture in bulk and have been employed to describe many of
generic features of stress relief in solids. Typically, the
simulations rely on some method of relaxation about e
configuration of cracks in the network as it sustains dama
The cracking is thus quasistatic and computationally int

FIG. 11. Ray length probability distributionP̃(x) vs x. The
solid lines are the mean-field solutions forg50.01, 0.05, 0.10, and
0.20 withD(u)5 1

3@d(u)1d(u2p/3)1d(u22p/3)#. Also plotted
are the distributions obtained from simulations of the fragmenta
model and the thin film fracture model (3). The fracture simula-
tions were carried out with the parametersg50.1 ands0525.0 on
a lattice of sizeL5150.
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sive. For this reason there are significant practical constra
on both the lattice size and geometry available to the
searcher. In our simulations, cracking is dynamic, with
relaxation between incremental extensions of crack tips.
significant reduction in computation time allows us to
more realistic with the modeling. We employ a fully thre
dimensional network and model the adhesive interaction
tween the substrate and film layer. We believe that the p
ence of an accurately modeled substrate is necessary
realistic film relaxation behavior. In our model the substr
applies a local traction at all points to a film which has
nonzero shear modulus. In Ref.@19# it is shown that the
energy cost associated with shearing the film layer lead
qualitatively different crack morphologies in stochastic mo
els of fracture. The same holds in deterministic fracture m
els as well@20#.

We find that the long-time surface patterns emerging fr
our simulations can be classified broadly according to
complexity of the crack interactions. The three regimes
identify are distinguished by the applied stress. In the in
se

-

ts
-
o
e

e-
s-
for
e

to
-
-

e
e
r-

mediate stress regime the complex crack tip interactions
not play a significant role in determining the final configur
tion of the surface cracks. This leads to the description of
fracture process in terms of a simple fragmentation model
which we have determined the crack length distributi
function within a mean-field approximation.

The approximate crack length distribution functions d
rived in Sec. IV are applicable to generic fragmentati
problems with simultaneous nucleation of cracks. Seve
examples of these appear in the literature with numeric
estimated distribution functions. Our solution can be spec
ized to represent these models, and we find agreement
the numerical fits. Further, we have computed the mome
of the general distribution functions.
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