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Fragmentation of thin films bonded to solid substrates: Simulations and a mean-field theory
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We perform simulations of crack growth in a brittle-elastic two-dimensional film bonded to a rigid substrate
and subjected to an isotropic tensile stress. We find that the resulting fracture patterns can be classified
according to the applied tensile stress. For a significant range of stresses, the crack interactions are extremely
short range. The resulting fracture patterns are independent of stress and depend only on the initial distribution
of crack nuclei. In this regime, the fracture process is well described by a fragmentation model in which a
random distribution of seeds nucleates pairs of oppositely directed rays which grow until encountering other
rays. Using a mean-field approach, we obtain approximate analytical results for this model which compare well
with both the simulations of the fragmentation model, and with the fracture simulation results. Our approach is
extensible to other models of fracture, and where numerical results exist in the literature, our mean-field
solutions agree well with thentiS1063-651X%97)02705-0

PACS numbsg(s): 03.40-t, 61.43.Bn, 62.20.Mk, 81.30.Kf

[. INTRODUCTION tions of tensile fracture in thin films bonded to solid sub-
strates. The simulations show that a fragmentation model, in
The process of fragmentation has been the subject ofhich the crack tip velocities are constant in time, is a good
much interest recently as a number of authors have obtaine&gpproximation to the actual, more complicated dynamics for
exact solutions for a class of fragmentation moddls6|. a significant range of stresses. This intermediate stress re-
These models have been proposed in the context of marime is characterized by final film surface configurations
important physical and chemical phenomena. These includ@hich can be reproduced by application of a set of simple,
explosiond 7], atomic collision cascad¢8], droplet breakup stress-independent crack growth rules to the distribution of
[9], and polymer degradatidri0]. A basic premise of these initial defects. We numerically investigate such a model and
models is that as the fragmentation process proceeds, tf#@d crack length distribution functions which compare well
fragments split independently of one another. Fragment&ith the gnalogpus distribution functions obtained from the
continue to split independently in time. This permits the in-fracture simulations.
troduction of linear rate equations to describe the evolution FOr stresses above the intermediate regime, we find in-
of the fragment size distribution. Solutions to these “frag-creasingly complex crack interactions which lead to stress-
mentation equations” for several fragmentation rules aredependent final states. We also propose a mean-field descrip-
now well established. tion of a generic, heterogeneous fragmentation process and
There are fragmentation phenomena, however, which ar@nalyze its properties in the context of the tensile-fracture
not well described by linear rate equations. Fracture of elassimulations. We show that our solution can be specialized to
tic solids typically initiates from scattered defects in the me-describe the properties of related models of fragmentation,
dium which nucleate cracks upon exposure to a supercritic@nd that where numerical estimates of fragment length dis-
tensile stress. The nucleation of cracks is heterogeneous ffibutions exist in the literature, our solutions agree quite
this case. If the elastic solid is a thin film bonded to a solidwell with them.
substrate, the final structure resembles a patchwork of po-
Iygonal islands of undamaged film boundeq by cracks. If t_he Il. BRITTLE-ELASTIC THIN FILM MODEL
film is a conductor and the substrate an insulator, the film
undergoes a conductor-insulator transition upon sufficient Our model is a deterministic central-force lattice model
fragmentation. which consists of a triangular array of masgéée film) con-
Tensile fracture of real thin film materials is a significant nected by Hookean bonds to each other and to a planar tri-
obstacle to reliability engineering of many important tech-angular array representing the substrate. Each mass in the
nologies. Very large scale integrated circuityiLSI) relies  film is anchored to three substrate sites by a tripod of bonds.
in part on the integrity of thin metal and dielectric films The number of sites along an edge of the film defines the
which are often under large tensile stresses applied by thelinear dimensionL of the lattice, where we have set the
substrates. The deposition process is often responsible for tligitial lattice spacing to 1.0.
high tensile stress. For example, metal-vapor deposition fre- We work with L X L lattices, so that there ate? sites in
guently produces films with high tensile stresses which arg¢he film layer. We choose the substrate to havel sites
then used in optical applicatioh$1]. Epitaxial alkaline earth along an edge which ensures that the edge sites in the film
fluoride films are candidate materials for use as passivatingre fully anchored to the substrate. There are-()(3L
layers on semiconductors and these films are also under high1) bonds in the film and 3> adhesive bonds. Taken to-
intrinsic tensile stresgl2). gether, the film and substrate form a rhombus consisting of
In this paper we present the results of computer simulatwo adjacent{111) planes of an fcc latticéFig. 1).
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FIG. 1. Geometry of film and substrate. The fixed substrate sites
are not shown.

A film site i with massm obeys the equation of motion

mx = —bx;+ le F(Xi=%)), @ FIG. 2. Film surface shortly after onset of fracture. The simula-
tion parameters are=150, y=0.01 andoy=27.0.
where we consider nearest-neighbor interactions only, so that IIl. SIMULATION RESULTS
the sum onj is over nine neighborgsix in-plane neighbors
and three adhesively bonded substrate neighbdise dis- Initially, a random distribution of defects in the form of

placement from equilibrium for the sifeis X; . The quantity ~broken bonds is present in the film layer. Letenote the

b is a phenomenological damping coefficient. The magnitudénitial defect density. As the temperature is lowered, bonds

of dissipative losses is characterized by the quaniity contiguous to the initial defects begin to rupture, generating
=b/m. In the simulations reported here, we consider purelycracks. We have also allowed the initial state to contain a

dissipative dynamics wherg=. The force term in Eq(1)  small fraction of adhesive disorder through the presence of

represents the Hookean interaction with “spring constant’randomly placed, broken adhesive bonds. This is thought to

ki, i.e., E(X—%)=—k;(%—%). We choosek to have MiMIC the likely imperfect adhesion between real films and
1]y oo | ] 1) I 17 i) . . .

the same valuk for all unbroken bonds in the lattice, and we their substrateg. We observe no substanpve qhange n .the

setk; =0 for broken bonds. The value kfsets the scale for fracture dynamics when such dilute adhesive disorder is in-

the elastic properties of the lattice and dictates the choice oq‘!Uded'. In w_hat f(?"OWS’ we will restrict our attention to the
the time step when Edl) is integrated numerically. S|mulat|ons in which there is no adhesive disorder present.
The bonds which connect the masses to each other have Ther? IS alzz_—depgnder;t thresholﬁl stresskn(?/) f_or_ _th"e
temperature dependent natural lengths with thermal expar‘?—nSGt of cracking. -Ob'o/am('y),.t e crack tips initially
sion coefficientsz: . We set alla:.'s for the film and adhe- Propagate along lattice vectors. Figure 2 shows the film sur-
sive bonds to theIl same valug, IJand allajj’s for the sub- face after a sh_ort time on a Iat.tice (.)f sire=150 with y
strate bonds to zero. This results in a rigid substrate, which is_ 0'01.' An ob_v|ous feature of Fig. 2 is the appearance of a
a plausible assumption if the film is much thinner than its9€N€rc crosslike pattern common to most defects. j’h|s fea-
substrate, as is usually the case. A state of tensile stress tigre Is a consequence Of_ the symmetries of_the lattice. Most
introduced by requiring that;>0 and reducing the tem- defects nucleate a crpssllke crgck_pattern with branch angles
perature of the lattice incrementally to some final value. In°f ?’?1 adnd tthO ¢ :ﬁlattlve to thte initially brr]olégrtl tt)onctir.] b
this way, the film layer’s contraction is imposed by the rigid € depth ot the temperalure quench dictates theé subse-
substrate. The bonds in the film layer break irreversiblyquent e\{olut|on of the fracture pa“e”?- Frgm simulations
when they bear a strain in excess of a threshold vajue over a wide range of stresses, one can _|dent|fy t_hree types of
which we have chosen to be 0.02 for the simulations reporte nal states wh|ch_we”|a_1bel Incipient, mtermeo_llate, and
here. The adhesive bonds are not permitted to break. Th trongly interacting® In reference to the dominant crack

applied stress in the film in the absence of any broken bon ynamics observed in each case. lg{y) represent the
ispgi\l/ensby SS m S y values ofa that distinguish these final states, whetel or

2.
For stresses in the rangeo,(y) <oy<oi(7y) (the in-
oo=——— ay|AT], (2)  cipient regime, there is not enough strain energy in the film
(1-v) to support full fragmentation of the film surface. Most crack
tips stop before intersecting other cracks. The film surface is
whereE, and v are, respectively, the Young's modulus and characterized by a scattering of small, isolated crosslike
Poisson ratio of the undamaged film gadr| is the tempera- cracks with a small number of longer cracks. Tlatis a
ture drop. It is straightforward to show thag=(2/3)k and  function of y can be understood in terms of the decreasing
v=1/3 for a two-dimensional triangular lattice subjected tomean distance between defects with increasingarger de-
plane stress. We set a convenient scale for the stress in tifiect densities result in a smaller mean distance between crack
simulations by measuring the initial stress in units oftips, and therefore, an increased probability of intersection.
Eq/(1—v) and temperature in units ofd{. oy is then nu- For o.(y)<oo<o,(y) (the intermediate regime we
merically equal to the depth of the temperature diag]|, find long-time configurations like that shown in Fig. 3. The
which is the quantity we control directly. Our simulations value of oy for this simulation is 26.5. A significant feature
span the range ¥50,<100. of the pattern shown in Fig. 3 is the absence of intersecting

Eo
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FIG. 3. Final configuration of the film surface fo,=26.5 and FIG. 5. Final configuration of the film surface fof,=26.0 and
y=0.1 on a lattice of sizé& =150. This pattern is typical of those ¥=0-30.
obtained in the intermediate regime.
Many of the crack branches represented in Fig. 4 evolve

cracks. Propagating crack tips move in straight lines untifdentically, resulting in the appearance of a smaller number
they are arrested as they approach other cracks. The crack @ trajectories. The near coincidence of all the trajectories
velocities are approximately uniform throughout the film for before arrest indicates that the cracks propagate with a com-
this choice ofa,. Crack propagation typically initiates be- Mon velocity. In fact, the variance is everywhere less than
fore the targetr, is reached. As a result, crack tip velocities 0-- )
increase with time. However, they do so uniformly through-  This procedure is adequate fpr<0.2. Fory greater than
out the film as we show below. about 0.2, the defects are sufficiently close on average that
The direct determination of crack tip velocities poses acracks form by bridging the gaps between defects with
technical challenge since we must determine the cracRtraight crack segments. The resulting pattern is not a po-
branch to which a given broken bond belongs. This procelygonal network of cracks bounding patches of undamaged
dure is particularly ambiguous in the high density or highfilm, but instead contains long, winding cracks surrounded
stress simulations. For a dilute network, i.e., one in which thdY inactive defectsFig. 5). _ _
defects initially present are far apart on average, a simple Sufficiently energetic cracks, however, interact in a com-
algorithm can be implemented which will reliably measurePlicated way; the velocity of the propagating crack tip dic-
crack lengths. The procedure we adopt is to assign foutates whether or not it is arrested by another crack in its path.
“crack paths” to each defect based on the defect's orientalNe tip velocity and direction are complicated functions of
tion in the lattice. These paths consist of lists of bonds whictihe stress field ahead of the crack tip which is modified by
lie along the likely paths of the crack branches. As bondghe presence of other nearby cracks. These effects are ob-
break sequentially along these paths, the crack length p&erved in the simulations fooq larger thano,(y) (the
path is recorded as the number of adjacent breaks along tférongly interacting regime Figure 6 shows a final state
path. In Fig. 4, we show the time evolution of the lengths offracture pattern witlro=36.0. This pattern reflects the more
100 randomly chosen crack branches. The simulation parangomplicated crack interactions of branching and crossing.

eters arey=0.01 andoy,=27.5. The lattice size i&=80. There is, of course, some ambiguity in the choice of the
o;'s. While the essential observation is the existence of the

100 three regimes, there are no sharp boundaries in stress be-

80.0

60.0 - 4

ity

20.0 - ’_‘:‘
=

0.0 50.0 100.0

FIG. 4. Crack lengths vs time for 100 randomly selected defects FIG. 6. Final configuration of the film surface fot;=36.0 and
in a film with dilute disorder ¢=0.01). The lattice size ik =80 v=0.1 on a lattice of sizé& =150. This pattern is typical of those
and o=27.5. obtained in the strongly interacting regime.
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tween them. What is important is the width of the interme- s
diate regimeos(y) —o1(y), which we have chosen to de- o
fine in the following way. We choose this width to represent S#a
the range ofo for which all crack tips terminate upon first
encountering another crack tip or boundary. This width is 5|
also characterized by the uniformity of the crack tip veloci-
ties. Fory=0.20, the width is approximately 18, a signifi-
cant portion of the total stress range of<1&,<100 we *
have examined. The lower boundary roughly corresponds to A o
o, for the range of seed density we have explored. For o0 r k2
09>100, the crack density is too high to resolve separate e
cracks in lattices of a reasonable size<(250). 2,
The crosslike cracks we observe in our fracture simula- o
tions arise from the symmetries of the triangular lattice. We =~ o000 - = - —— -
can eliminate this multiple nucleation effect by nucleating i
correlated defects as follows. For each of the broken bonds
initially present in lattice, we break an adjacent bond whose
orientation defines the incipient crack’s subsequent propag
tion direction. In this way, defects generate single crack
which grow with equal probability along any of the three
lattice vectors.

P(l)

FIG. 7. Ray length probability distributions obtained from frac-
ure (@) and fragmentatiofO) simulations withy=0.20. The frac-
iure simulations were carried out witly=26.5 on a lattice of size

=150.

before[14]. Another variation of the fragmentation model
has been used to describe martensite grgdh a phenom-
IV. A HETEROGENEOUS FRAGMENTATION MODEL enon which bears similarities to square lattice fracture in real
. . . . ! materialg12]. In the following sections, we develop a mean-
For stresses in the intermediate regime, we find Onljie 4 theory for a general, heterogeneous fragmentation
straight, nonintersecting cracks in our simulations. Furthermode| and compare its properties to these fragmentation

in this intermediate range of,, crack branching is rela-  gmjations and to our own thin film fracture simulations.
tively rare and the spread in crack tip velocities is quite small

throughout the evolution of the pattern. We can draw an
important conclusion from these observations: In the inter- v. A MEAN-FIELD THEORY OF HETEROGENEOUS
mediate regime, the final configuration of the film is, to a FRAGMENTATION

good approximation, independent of the stress and is a func- . ) , , )
tion of the initial distribution of defects alone. In this section we obtain approximate expressions for the

This leads naturally to the description of the fracture pro-crack length distribution functions of a generic heteroge-
cess in terms of a fragmentation model which we define by &#€0us fragmentation model. We show that our results are
set of simple rules: Cracks nucleate simultaneously from ran@Pplicable to any fragmentation process in which randomly
domly scattered defects and propagate with constant velogcattered seeds simultaneously nucleate single pairs of oppo-
ity, stopping upon contact with other cracks. That fractureSitély directed rays which propagate with constant velocity
might be modeled in such a way has been proposed befotéhtil they are stopped by other rays. By appropriate choice of
[13-15. That it is a fair approximatiofiat least for a range the.ray pair orientations, the soluﬂon; we obtaln.can be spe-
of tensile stressgshas to our knowledge never before beencialized to descr!be_a variety of previously studied models,
confirmed. In what follows, we discuss simulations of this@S Well as the thin film fracture model of Sec. II.
fragmentation model and obtain crack length distribution e begin by considering seeds distributed randomly on a

functions which agree well with those obtained from the thinPlane with seed density. At t=0, each seed nucleates a pair
film fracture simulations. of oppositely directed rays each of which grows with the

We have carried out simulations on the fragmentatiors@me speetand with the same speed as all other rays on the
model defined above for the case in which each defect nucld?!@ng. The orientation of the ray pair is described by an
ates a pair of oppositely directed crack branches. The orier@ngular distribution functio>(6), where 0< <, which
tation of the cracks on the lattice is chosen with equal probSPecifies the orientation of the ray pair relative to thaxis.
ability to be one of the three allowed orientations on theP(6)dé is the probability of finding a ray with orientation
triangular lattice. In Fig. 7, we show the crack length distri- betweengand6+dé. A coordinate system is placed with its
butions obtained from both the fracture simulatiomgth ~ ©rigin lying on a seed and with its axes oriented so that the
correlated defecysin the intermediate regime and simula- ray pair lies along the axis. Letx denote the length of the
tions of the fragmentation model. For both simulations, the@y lying on the positivex axis after all rays have stopped
initial defect densityy is 0.20. The agreement between thegrowing. We now ask for the ray-length distribution func-
fragmentation and fracture simulations is quite good over thdion, P(x).
entire range of crack lengths. We proceed by defining (Xx,) to be the probability that

We expect that fracturéin the intermediate regimeon  the ray nucleated at the origin and directed along the positive
the square lattice and off-lattice fracture can be similarlyx axis grows to a lengtix=x,. In order for this to occur,
modeled by the fragmentation model. In fact, fragmentatiorthere can be no “blocker” rays which pass through the
by randomly oriented cracks has been numerically studiedxis betweerx=0 andx=X,. For each orientatiory, we
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A X\
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FIG. 8. The region enclosing\(w/2) for the special case RRVAN

D(6)= %[ 6(6)+ 8(0— m/2)] is outlined with dotted lines.
FIG. 9. The region enclosing(d) is outlined with dashed lines.

identify a region of are#\(6) =x§sin0 symmetric about the Also shown is the geometry of the ray interactions.

x axis and spanned by the line segmert)3<x,. All rays

originating within this region which have orientatighwill, therefore decomposE(Xy) into a product over all points

if unblocked, intersect the line segmenk@<x, beforethe  (x,y) and possible orientationwithin the areaA(6). Each

ray propagating along the axis does so. To make the con- factor in the product then represents the probability that a

struction clear, we consider the special cB3&) = [ 5(6) potent blocker does not exist at the poirty). F(xy) can be

+ 8(6— 7/2)] so that each seed nucleates a ray pair with ondormally written as

of two perpendicular orientations with equal probability.

A(0=m/2) is then the area enclosed by the right triangle

symmetric about the axis, with a vertex at the origin, and F(XO):(Xl_ylg) [1-1(y.0)]. )

with base length £, (Fig. 8. Any ray which originates -

within A(7r/2) andwhich has the orientatiofi= 7/2 has the I'(y,6) is the probability that a ray nucleates in the area

potential to prevent the ray at the origin from reaching elementdx dy at (x,y) with orientation# and is a potent

=Xo and is termed a “blocker” ray. Whether it does so plocker. It is straightforward to show thai(y,6)

depends on the absence of “blocker-blocker” rays which in=y dx dy dD(6)F(y|csdd). The product in Eq(3) is to

this case must have orientatigi+=0 or 7 and lie within a be taken over alk, Y, and @ Satisfying the potency condi-
right triangle with its vertex at the origin of the blocker ray. tjons

For arbitrary 6, A(6) is the area enclosed by the dashed

lines in Fig. 9. This shape, which is a chevron @ /2 ly| <X,siné,
and a diamond fo#<#/2, has an opening angle»2vith
given by ly|(cso— coth) <x=<xX,— |y|cots,
sin@
- and
tane 1-co9’

o L O<o0=m.
where the principal branch of the tangent function is taken.

In what follows, we consider this general case. Taking the natural logarithm of both sides of E®),
We consider a blocker defect with orientati@mucleated using the relation In(zx)~—x for smallx, and converting

at the point &,y) to be potent if it grows to a length’  the resulting triple sum to integrals yields

=y/sind and has a ray which intersects the line segment 0

<X=<Xq. The geometry is illustrated in Fig. 9. w Xgsing xo—|ylcotd
Let us now make an assumption which amounts to a |nF(Xo)=—7f dﬁf dYJ

mean-field type approximation. To proceed with the calcula- 0 |

tion it is necessary to assume that the blocker defects are X F(|y|cse)

statistically independent of one another. That is, given

knowledge of the length of one potential blocker, nothing m Xgsing

can be said about the lengths of other blockers. This assump- T nyo dejo dy D(0)(xo~y csa)

tion is clearly not valid in general. However, it does appear

that the ray length correlations are small, and in fact, vanish XF(ycsd),

in the high density limit. Ultimately, the justification for this

approximation will come from the surprising accuracy of thewhere we have made use of reflection symmetry about the

crack length statistics obtained from the theory. We willx axis. A change of variable=y csa results in

dx D(0)

—Xgsing y|(csa¥—cotd)
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0.40

InF(x0)=—2yIJxodz(xo—z)F(z) 4)
0

where we have defineld= [ 7d6(sing)D(6). 0.30 -

Equation (4) permits an exact solution. Differentiating
twice with respect t,, we obtain the nonlinear differential
equation S 020

F(xo)F"(x0) ~[F' (%) >+ 2/ [F(x)°=0. (5

Equation(5) can be transformed to a Bernoulli equat{dr] o.t0 | f
and solved by means of an integrating factor. The general '
solution is

0.00 > *
0.0 10.0 15.0 20.0

sechi[\cy(xo+c2)], '

FIG. 10. Line segment probability distributioR(l) vs I/l
wherec; and c, are constants. We can then get the rayyhere|,=\2/y. The dashed line is thE-distribution fit obtained

C1

F(Xo)= 4yl

length  probability distribution P(x) from P(x)= by Rauet al. [16].
—dF(xO)/dx0|x0=X. Normalizing and requiring thaP(0)
=0 results in literature. In Ref[16], Rauet al. propose a model of mar-
tensite growth in which seeds nucleate single line segments
- sinh(\/yIx) simultaneously(in one limit of the model These grow with
P(x)= \/4_yl —_— (6) constant velocity and with equal probability along one of two
cost(+/y1x) perpendicular directions. The numerical estimateP¢F) is

. . . . . fit to a I' distribution in Ref. [16]. By letting D(6)
Equation(6) gives an approximate expression for the dis — 1 6(6)+ (06— ml2)], the expressior(8) can be special-

tribution of ray lengths arising from a heterogeneous frag-_ A
mentation process defined by an angular distribution functior'1zed to represent the segment length distribution of the model

D(0). To facilitate comparison with the numerical data of of Regl' [16\/]—};'?“?) 1?] SEOWS a pl_ot ld?(l)_ vs thefr;dticged
other fragmentation studies, it is necessary to computgagahe i<l for otftEe nuTn;]enca estimate o .é ] d
P(l), the distribution function for line segment lengths. and the expression of E¢B). The agreement is quite goo

Now, a line segment of lengthis composed of two rays of over the entire range of data. The relative error is most pro-
Ieng£hx and|—x. The regions in which we might find po- nounced near the peak of the distribution, where a maximum

o e
tent blockers of these oppositely directed rays do not overs"or of 6.7% Is incurred.

lap, so their lengths are statistically independent and we can The mean-ﬁeld expression fé(1) can t.)e u.sed to.obtaln .
obtain P(1) from expressions for the moments of the distribution which again

agree quite well with those obtained from theistribution
o~ of Ref.[16]. Computing the moment®! ,= [I"P(l)dI of
P(|)=J’ dx P(X)P(l —x). (7)  Eq. (8) is rather awkward. We can however directly obtain
° the momentsM , of the simpler distributionP(x) of Eq. (6).
The evaluation of the integral in E@7) is straightforward A short calculation yields
but results in a rather complicated expressionR¢h):

(y*-1)
y3

M,=4n(2y)~¥2"(1-22""T(n)¢(n-1),  (9)

P(h)= [y*(6—y?)+(12—8y*)In(1-y?)], (8

where{(n—1) is the Riemann zeta function.

__ To proceed, we note tha®(l) is the convolution of
where y=tanh(/yll). The expression of Eq8) behaves P(x) so that their Laplace transformB(k) andP(k), have
near the origin a$®, while P(x) is linear inx for smallx. the simple relation p(k):BZ(k). Now "p'(k)
Thel® behavior ofP(l) is consistent with simple probability Efgﬁ(x)e—kxdxl which can be written

argumentg16].

Equationg6) and(8) represent the essential results of the = (=)
mean-field treatment. In the following section we compare "p'(k): > ,\]n_
these results with the numerical estimates of crack length ni=o n!
distribution functions obtained in previously studied frag- _
mentation models. ComputingP (k) = P?(k), we obtain

VI. ACCURACY OF MEAN-FIELD RESULTS il (—k)" n n\— ~
. . . Pk)=> —— X )MmMn_m,
By an appropriate choice @ (6), Eg.(8) can be special- n=0 NI m=o\M

ized to represent a number of heterogeneous fragmentation
models for which numerical estimates B{l) exist in the  from which the moments oP(l) are found to be
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n\~ ~
Mn:E (m)MmMn—m- (10
m=0
The first two moments obtained from EQLO) are M, 020 |

=2./2/y andM,=2(2/y)(1+2 In2) in excellent agreement
with the moments obtained from the numerical fit in Ref.
[16]. We find a relative error 0f<3% for the first three
moments. The higher-order moments, however, show more
pronounced deviations from their numerically estimated
counterparts.

In Ref.[14], a model similar in spirit to that of Raet al.
is proposed for the fragmentation of a solid due to simulta-
neous nucleation of cracks. The essential difference between 09
the models is that in the simulations of R¢L4], defects x
nucleate single crack&ay pairg with random orientations o~
instead of orientations fixed along perpendicular lattice vec- FIG. 11. Ray length Pmbab'“t.y distributioR(x) vs x. The
tors. Again, al" distribution is fit to the segment-length dis- SClid lines are the mean-field solutions fp=0.01, 0.05, 0.10, and
tribution. While the uncertainty in the fit parameters is mucho'zor‘]’V'th.D(.g)_.g[ g 0)+.5(9TT/3)+. 5('?7.277/3)f]'hAl‘;'° plotted .
larger in the work of Ref{14], we still find that Eq/(8) with are the dlstrlbutlons c_)btalned rom simulations of the ragr_nentatlon

. . . model and the thin film fracture modek(). The fracture simula-

D(6)=1/m ("e"_W't,h a," angles being equa”y proba}?"e' tions were carried out with the parameters 0.1 andoy=25.0 on
produces thd'-distribution fit with a maximum deviation of  |juice of size. = 150.
8% between the distributions.

Recently, Birnie and Weinberg presented a model Ok comMPARISON OF THE MEAN-FIELD RESULTS
phase transformation in which anisotropic particles nucleate \\,TH THE THIN EILM FRACTURE SIMULATIONS
simultaneously with random orientations and grow with con-
stant velocities along their long and short ak&8]. In their To describe the ray length distribution obtained from the
work, the effects of blocking are only approximately ac-fracture patterns of our thin film model in the intermediate
counted for, so that all particles which satisfy a relevant in-regime,D(6) must have the form
teraction geometry are potent blockers. The effects of
blocker-blocker and higher-order interactions are ignored. D(0)=3[8(0)+ 80— mwl3)+8(6—2m3)]. (12
When the particles are needlelike, our results indicate that
this may be a rather severe approximation. To examine this Figure 11 shows a plot of the mean-field expression for
claim, we solve Eq.(4) to first order in the “blocking E(x) vs x for y=0.01, 0.05, 0.10, and 0.20, witB(#6)
depth,” excluding blocker-blocker and higher-order block- given by Eq.(12). Also plotted in Fig. 11 are the normalized
ing effects. Under these conditior®(x) has the form ray-length distributions obtained from averaging over 1000
simulations of the fragmentation model with=0.05, 0.10,
and 0.20. Finite size effects were eliminated by repeating the
simulations on lattices of different sizes in order to obtain the
limiting values of the data points as the lattice size tends to
Equation(1l) is a rather poor approximation to both E) infinity. The latter are included to justify the mean-field ap-
and the numerical data. For instance, Etf) yields a dis- proximation, as the agreement between the numerical and
tribution maximum which differs from that of the expression mean-field results is quite good. Finally, plotted in Fig. 11 is
in Eg. (6) by 7.5%. It compares even more poorly with the the normalized crack length distribution obtained from aver-
numerical data, incurring an error of over 12% in the distri-aging over five fracture simulations witp=0.1. This distri-
bution maximum for the case of square lattice fragmentationbution was generated by simulations on a lattice of $ize
However, a solution of Eq4) to the next order in blocking =80 with oo=26.5, within the intermediate regime. A finite
depth yields a substantial improvement in the approximationsize effect is discernible in the fracture data where the
suggesting that higher-order correctioftslocker-blocker- boundary increases the probability of obtaining shorter
blocker, etc. do not have a significant effect on the crack length cracks for defects near the edges of the film. Other-
length distribution function. wise, the agreement is quite good over the entire range of

In short, we have developed approximate expressions farrack lengths.
the ray and line length distribution functions for a general
fragmentation process with hetc_arogeneous nuclgation of de- VIIl. SUMMARY AND DISCUSSION
fects. The expressions we derived hold for arbitrary crack
orientation distributions. Our results agree well with the ex- Lattice models are well suited to the simulation of frac-
isting numerical data and allow a systematic evaluation ofure in bulk and have been employed to describe many of the
the distribution moments for all cases. The lower-order mo-generic features of stress relief in solids. Typically, these
ments are of interest experimentally, as one is often intersimulations rely on some method of relaxation about each
ested in the average crack length and variance for a giveconfiguration of cracks in the network as it sustains damage.
fragmentation process. The cracking is thus quasistatic and computationally inten-

=
e

0.10 Xy

P(x)~2ylxe™ ", (12)
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sive. For this reason there are significant practical constraintsediate stress regime the complex crack tip interactions do
on both the lattice size and geometry available to the renot play a significant role in determining the final configura-
searcher. In our simulations, cracking is dynamic, with notion of the surface cracks. This leads to the description of the
relaxation between incremental extensions of crack tips. Th&acture process in terms of a simple fragmentation model for
significant reduction in computation time allows us to bewhich we have determined the crack length distribution
more realistic with the modeling. We employ a fully three- function within a mean-field approximation.
dimensional network and model the adhesive interaction be- The approximate crack length distribution functions de-
tween the substrate and film layer. We believe that the presived in Sec. IV are applicable to generic fragmentation
ence of an accurately modeled substrate is necessary fproblems with simultaneous nucleation of cracks. Several
realistic film relaxation behavior. In our model the substrateexamples of these appear in the literature with numerically
applies a local traction at all points to a film which has aestimated distribution functions. Our solution can be special-
nonzero shear modulus. In Rdfl9] it is shown that the ized to represent these models, and we find agreement with
energy cost associated with shearing the film layer leads tthe numerical fits. Further, we have computed the moments
qualitatively different crack morphologies in stochastic mod-of the general distribution functions.
els of fracture. The same holds in deterministic fracture mod-
els as wel[20]. . _ ACKNOWLEDGMENTS
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