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Particle dynamics in storage rings with barrier rf systems

S.Y. Le€ and K. Y. Ng
Department of Accelerator Physics, Fermilab, Box 500, Batavia, lllinois 60510
(Received 22 October 1996

The stability of particle motion in a barrier rf system is studied. Parametric resonance strength functions for
the barrier rf system with rf phase and voltage modulations are derived. We find that higher order parametric
resonances of the barrier rf system are important. Tolerance of the rf phase modulational errors in the barrier
rf system in the Fermilab Recycler, a cooling storage ring to recycle unused antiprotons from the Tevatron and
to store newly produced cooled antiprotons, is analyzed. A constraint on the rate of bunch compression
utilizing the barrier rf system is derivefiS1063-651X97)15905-0

PACS numbsg(s): 29.20.Dh, 03.20¢i, 05.45+b

[. INTRODUCTION employing a biased voltage wave on top of the bunch-
confining positive and negative voltage pulses.
Bunch beam manipulations have become a routine opera- Most of the time, orbiting particles see no cavity field in
tional practice in antiproton production, beam coalescence?@ssing through the cavity gap. When a particle travels in the
multiturn injection, accumulation, etc. The demand of higherime range where the rf voltage is not zero, the energy of the

beam brightness in storage rings and higher luminosity ifparticle can increase or decrease depending on the sign of the

high energy colliders requires intricate beam manipulations’0lt@ge it sees. In this way, the accelerator is divided into
g gy d P table and unstable regions. Thus the wide bandwidth rf

In particular, a flattened rf wave form has been commonly® te barrier bucket t f biti ticl
employed to shape the bunch distribution in order to alleviatd/ave can create barrier bucket to confin€ orbiting particies.

: Because solid state amplifiers are normally low power
space gharge problems in low energy proton SynChr()tr()nscjevices, the voltage across the rf gap is usually limited. The
and to increase the tune spread in electron storage rings.

o ; A . resulting bunch area may nearly fill theicket areawhich is
_For achieving high I.ummosr[y in the Fermilab TeV col- the maximum stable area that can normally confine the beam
lider Tevatron, a machine called the Recycler has been pr

posed to recycle unused antiprotons from the Tevaidn %articles. Since the bucket is almost full, timing jitter in the

Th led antiorot b led bv stochasti i rf wave may cause problems in beam stability. In particular,
€ recycled antiprotons can beé cooled by stochastic Cooling, o, e frequency spectrum of these perturbations is near a
or electron cooling to attain a high phase space density.

) armonic of the synchrotron frequency, beam particles can
the same time, the Recycler also accumulates newly Prose coherently excited to escape the budiets)]
duced, cooled antiprotons from the antiproton Accumulator. This paper studies the beam dynamics aésociated with a

To maintain the antiproton bunch structure, a barrier rf wavg _ o0 b cket. We analyze the stability of the particle mo-

form [2] is generated to confine the beam bunch, and Shapﬁ}on in a barrier bucket under the perturbative force of rf

the bunch distribution waiting for the next collider refill. The : - :
required bunch length and the momentum spread of the beathase and voltage modulations. Furthermore, if the dipole

can be adjusted more easily by gymnastics with barrier rf R
waves than the usual rf cavities. |
The barrier rf wave is normally generated by a solid state
power amplifier, which has intrinsic wide bandwidth charac-
teristics. An arbitrary voltage wave form can be generated
across a wideband cavity gap. Figure 1 shows some possible
barrier rf waves with half sines and triangular and square
function forms. These wave forms are characterized by a
voltage amplitudeV(r), a pulse durationl, a pulse gap
T, between the positive and negative voltage pulses, and an
integrated pulse strengtfV(7)dr. For example, the inte-
grated pulse strength for a square wave forid§$,. The rf
wave form is applied to a wideband cavity with a frequency
hf.y, Whereh is an integerf ., is the revolution frequency
of synchronous particles, whose revolution frequency syn-
chronize with the rf frequency. The effect on the beam is
determined mainly by the integrated voltage of the rf pulse. g 1. possible wave forms for the barrier bucket. The barrier
Acceleration or deceleration of the beam can be achieved by \yave is characterized by a voltage heighy, a pulse widthT,,
and a pulse gaff,. Below the transition energy witp<<0, par-
ticles are confined within the positive and negative pulse regions.
*Permanent address: Department of Physics, Indiana UniversityAbove the transition energy, the sign of the voltage wave should be
Bloomington, IN 47405. reversed.
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field in the accelerator is modulated, the resulting circumfer-and the synchronous particle at the center of the bucket. The
ence of the orbiting particles will be changed as well. Thisequation of motion for the phase space coordinaie
results in a synchrotron phase dependence on the modulating

dipole field error, i.e., a kind of synchrobetatron coupling d_T: _ n_AZE, (2.2
[4,5]. Section Il gives fundamental properties of particle mo- dt BEq

tion in the barrier bucket. Section Ill analyzes the stability OfPassing through a barrier wave, the particle gains energy at
the barrier bucket in the presence of rf phase modulationrhe rate of '

Section IV analyzes the effects of rf voltage modulation.

Section V discusses the tolerance of the barrier rf cavity in d(AE) eV(7)

the Recycler, the tolerance of the orbit stability due to syn- dt T, 2.3
chrobetatron coupling, and the rate of bunch compression

with the preservation of the bunch area. The conclusion i§quations(2.2) and(2.3) constitute the equations of motion
given in Sec. VI. of a particle in a barrier rf wave.

Since the effect of the barrier rf wave on particle motion
depends essentially on the integrated rf voltage waee
Appendix A), we consider only the square wave forms with
The fractional change of the orbiting timeT/T, for a  Vvoltage heightstV, and a pulse widtfT, in time, separated

Il. PROPERTIES OF THE BARRIER BUCKET

particle with an energy deviatioAE is given by by a gap ofT,. At a proper passage time, the particle gains
or loses equal amount of energyeV, ie.,
AT AE d(AE)/dt=eV,/T, every turn. The number of cavity pas-
T_0: 7],32Eo’ (2.1) sages before the particle loses all its maximum off-energy
value AE is

where 7 is the phase slip factor, angc andE, are, respec-

tively, the speed and energy of the synchronous patrticle, and ]’A\E|
T, its revolution period. Without loss of generality, we con- N= e_\/o'
sider synchrotron motion withp<<O in this paper. For

7>0, the wave form of the barrier bucket is reversed. LetThus the phase space trajectory for a particle with a maxi-
— 7 be the relative time between an off-momentum particlemum off-energyAE is given by

(2.9

(AE)? if |T|s%
(AE2={ . (2.9
(AE)Z—(ITI—f)

2
woBEpeVy Ty T,
_ —<|r=s=+

7T| 77| |f 2 | T| 2 Tl y

wherewy= 27T, is the angular revolution frequency of the for a particle inside the bucket. The mathematical minimum
beam. The phase space ellipse is composed of a straight lirsynchrotron period of Eq2.8) is given by
in the rf gap region and a parabola in the square rf wave

region. The phase space area of the invariant phase space o 32T, T, B%Eq| M2 2.9
eIIipse is s,min— | 7]|8V0 ) .
— 8| 7| —3 and the corresponding maximum synchrotron tune is given
A=2T,AE+ W(AE) . (2.6 by
The maximum energy deviation or the barrier height that _ E | mleVy | M2 (2.10
the barrier rf wave can sustain is given by Vs max— T, 325750 :

Note here thatrT,/(16T,) plays the role of harmonic num-
ber “h” of a regular rf system. The synchrotron tune is a

function of the off-energy paramet&E given by

AEb:

eVyT, 2,82E0)1’2 27

To |77|

whereT, is the pulse width of the rf voltage wave, afg is

the revolution period of the beam. The bucket height de- T,\Y2AE
pends onVyT4, which is the integrated rf voltage strength v3=4vsymax( T_) AE.
JV(7)d7. The synchrotron period is given by 2 b

AE Ty 2.1
& (2.1

1+4 35

|ZTE| Note that when the rf pulse gap width decreases to
— T, (2.8) T,/T,<4, the synchrotron tune becomes peaked at an am-
eVo plitude within the bucket height. This feature is similar to

T2 B’Eq
* “lal\ |AE|
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FIG. 2. The synchrotron tune vs the off-energy paramater
The parameters used in this plot &g=8.9 GeV,f,=89.8 kHz,
Vo=2 kV, 7T=20.7, andT,=0.5 us. Note that ifT,>4T,, the
synchrotron tune is a monotonic function®E. On the other hand,
if T,<4T,, the synchrotron tune is peaked at an off-eneidy
smaller than the bucket heightE,, .

that of a double rf systeif¥]. Figure 2 shows' vs AE with
the Fermilab Recycler's parameter&,=8.9 GeV,
yr=20.7, f,6,=89.8 kHz, T;=0.5 us, Vo=2 kV, and
T,/T,=1, 2, 4, and 8 respectively. For
1/S,m‘,,1x=3.7><10*5 for T,=T,, i.e., the synchrotron fre-
quency is 3.3 Hz.
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FIG. 3. Schematic drawing of the form factofg, f,, f,, and
f3 used in this paper for the barrier rf system.

The parameteWV with a dimension of time is related to the
Hamiltonian value by

. (l)oeVO . 77
o 27 T 2P%E,

(AE)2. (2.15

For a given Hamiltonian torud)V has the physical meaning
that it is equal to the maximum phase excursjignin the rf

example, wave region. ThereforeW=0 corresponds to an on-

momentum patrticle, antV="T, is associated with particles
on the bucket boundary.

The Hamiltonian for the phase space coordinates The action for a particle torus inside the bucket is given

(7,AE) is given by

_m 5 woeVoTy
HO_—ZBZEO(AE) +—277 fo(T,Tl,Tz), (212
where
1 T, T,
fo(’T,Tl,Tz):T_l T+Tl+? [ T+Tl+?
T, Ts Tz Tz
- T+7)0(7’+7 —(7‘—;)0(7—;

T2 T2

| 7T-T— 7) 9( =Ty~ 7) } -1 (213

Here 6(x) is the standard step function with(x)=1 for
x>0 and#(x) =0 for x<<0. The top plot of Fig. 3 shows a
schematic drawing of th&, function.

For constantsT,, T,, and V,, the HamiltonianH, is a

constant of motion. The action of a Hamiltonian torus is

given by

J= ! 3€AEd
_E T

_ 1 wOﬁZEOeVO
“2al wlq

1/2
) % \W+f0(T,T1,T2)d’T.
(2.19

by

_ 1 (woﬁoneVO

1/2] 8
— — 3/2
2l ] ) [ZTW*:%W }

2

8 ]
2T, + §W}AE.

(2.16
The bucket area is related to the maximum action with
W: Tl’ |e,

B=2mw3=(2T,+&T,)AE,. (2.17)
Again, the bucket area depends only on the integrated rf
voltage strengthf V(7)d7=VT;.

Canonical transformation from the phase space coordi-
nates f,AE) to the action-angle variable can be achieved by
using the generating function

F2(J,T)=f _AEdT,

-T

(2.18

where =W+ (T,/2). The angle variable/ is given by
IF,

B Tr\/V_V dr

T T AW Wer,

The integral can be evaluated easily to obtain

(2.19
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( 27W T, \» T, T,
—_ — —W——<7<—— E>0
T, 44w +2+7' if —w S =T 5 A
T T, T,
—_— —= ——=<7<—= >
U+ T+ aw T+ 5 if 7 =T , AE>O0
2m7YW T zoor T
20+ Y, — W 27| if 2<r<sw+=2, AE>0
T,+4W 2 2 2
y= ‘ (2.20
2m (W T C i cews 2 ap<o
Wetdtp g\ W —7) =W
T T, T,
i p—| —=— if ——=<7r<—, AE<O
et w2 T) 1 ’
2mNW T, \% T,
- —+ -W-—=—=s7r<s-—, AE<O,
\ 4429, AW W+ +7 if —W-—5<r7
|
where T,
- 0( —Ti—— (3.2
_27W 7l 52
¢°_T2+4W’ S T,+4W 2.29 is also schematically shown in Fig. 3. Note that the effective

perturbation is proportional ta,/T,. We expand the func-
are the synchrotron phase advance for a half orbit in the rfion f; in action-angle variables, i.e.,
wave region and the synchrotron phase advance in the region

between two rf pulses respectively. Note thak.2 ;=7 o T,T1,T2)=Z gn(J)e™,

for one half of the synchrotron orbit; and the motion of a @3
stable particle orbit in the barrier bucket with<0 is clock-
wise. We choose the convention >0 corresponding to a where
clockwise motion in synchrotron phase space.
1 (2« _
gm:_f f1(7. 71, To)e” ™ dy. (3.9
lll. ff PHASE MODULATIONS 2w Jo

Noise in the rf system and ground vibration are inherenisince f, is a real even function of, all odd harmonics

in all realistic storage rings. The timing jitter of the rf pulse \,5nish withg_.=g* . The strength functiow,, is given by
introduces rf phase modulation, and the variation of the rf moum m

voltage, gives rise to amplitude modulation. Furthermore, 0
ground vibration can result in orbit length modulation, which
leads to rf phase modulation. This section studies the effects
of rf phase errors on stability of the barrier rf system. Pos-
sible forms of rf phase error are listed as follows: Breath-

if m=odd

Im= (3.5

2 .
—sinm if m=even,
m e

ing rf phase modulation withT,—T,+a;cosw,t, (2) rf
phase modulation withr— 7+ a,cosw,t, (3) rf pulse width
modulation withT,;— T, + a3coSwpt.

A. Breathing rf phase modulation

For case(1), the Hamiltonian can be expressed as

a, eVoT,
H=Ho+ 5= ———f1(7,T1,Ty)cosmpt+- -+, (3.1)
2T, To

where higher order perturbation terms involvidgunction
are neglected, and

T
fl(T,Tl,Tz):H T+Tl+?2 + 6

T
—0(7'4-?2

T,
iy

wherey. is the phase advance of synchrotron motion across
the rf wave region given by Eq2.21). Note that the reso-
nance strength function decreases slowly with the mode
numberm. For a largeiT, parameter, the resonance strength
function also becomes smaller. The resonance strength func-
tion satisfies the sum rule theorem

WT,

ngl |92n(‘])|2:(-|—2+—4vv)2- (3.6

The sum rule vanishes for on-momentum particles with
W=0. SinceW=T,, the sum rule is maximum at orbits with
W=T,/4 provided thafl,<4T,. For barrier rf systems with
T,>4T,, the sum rule is a monotonic increasing function of
the synchrotron amplitude.

The perturbation term in the Hamiltonian becomes
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FIG. 4. The Poincarsurface of section ab,= 1.95ws max- The
2:1 parametric resonance generated by the rf breathing phase modu- FIG. 5. The stable rf bunch ardan ratio to the bucket argas
lation with a; /T,;=0.05 andT,/T;=2. Note that the last torus is plotted as a function of the rf breathing phase modulation frequency
about 60% of the bucket height shown as solid lines. Orbits outsidéin ratio to the maximum rf frequengyThe modulation amplitude
the last torus are not bounded by the barrier bucket. is 5% of the rf pulse width, i.eg, /T,;=0.05. The ratio between the
rf pulse gap and the pulse width 15, /T;=4. In this example, a
smaller resonance excitation at 4:1, 8:1, ... parametric resonances

AH is due to the vanishing,,gg, . .. on the barrier orbits.

_ 2a;,We\p t+§ aeV, )
= T (T, aw) So%omt+ 24 57 sin(2nye)

(3.7) steps of 0.04. In order to eliminate high order modes and
retain about 90% of stable phase space area near the 2:1

Note here that when the modulation frequency is equal to aparametric resonance, the modulation amplitude must be
even harmonic of the synchrotron frequency, the rf phas@;/T;=<0.005.
modulation can coherently perturb particle motion. Figure 4
shows the Poincarsurface of sectiofi9] for a particle with
a,/T,=0.05, T,/T,;=2, and a modulation frequency
W/ wg max=1.95, Wherewg max= ®oVs max IS the maximum
angular synchrotron frequency of the rf system. Note that th
2:1 parametric resonance plays an important role in dete
mining the orbit stability, where orbits outside the last torus,p"':'ssed as
shown in Fig. 4 are unstable.

To estimate the tolerance of the rf phase breathing modu- H=Hq+
lation, we calculate the maximum stable bunch area of the rf
system. We randomly and uniformly populate 1000 particles
inside the bucket area and track the beam bunch for more 1o —————
than 50 synchrotron periods. The stable phase spacediarea
units of the bucket argads defined as the ratio between the
number of survival particles and the number of initial par-
ticles. Figure 5 shows the maximum stable bunch dnea
ratio to the bucket ar¢as the rf phase modulation frequency
(in ratio to the maximum synchrotron frequencyith
a;=0.101,, T,/T,=4, where we havey,=0, gg=0, etc.
for the particle orbit on the bucket boundary wikti=T,.
This fact is reflected in a weak 4:1 parametric resonance™
shown in Fig. 5. Because the driving amplitude is large in &

X[cog2ny+ wt) +cog2ny— wpt)].

B. Phase modulation of the rf wave

If the entire rf wave timing and/or the particle orbit length
are modulated, the effect gives rise to a modulation of the
Iphase variabler. In this case, the Hamiltonian can be ex-

a, eVyT,
— ———1,(7,T;,Ty)coswpt+---, (3.8
T To

0.8

J

T T

0.6

hase Space Area

0.4

this example, the 8:1 and 12:1 resonances are found not to bé

0.2

small.

n

a,/T,=0.04, 0.08, ...
To/T =1

\\I‘II\Il\IVTl

In general, a 5% timing jitter gives a stable bunch area of
about 95% of the bucket area, provided that parametric reso-
nances are avoided. On the other hand, if the modulation
frequency is near a synchrotron sideband, the stable phase
space area becomes very small. Figure 6 shows the stable FiG. 6. The stable phase space afieaunits of the bucket ar¢a
phase space aréi ratio to the bucket ar¢ars the modula-  vs the modulation frequendyn units of the maximum synchrotron
tion frequency(in ratio to the maximum synchrotron fre- frequency for the breathing rf phase modulation with=T, and
qguency with T,=T,; and a,/T;=0.04,0.08,...,0.20 in a,/T;=0.04,0.08....,0.20.

P N B B B
0.5 1 1.5 2

Modulation frequency
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where higher order perturbation terms involvidgunction 1.0 — — R , —
are neglected, and %@ i
© r
_ T, T, ) 5o o8 e
f2(T,T1,T2)—0 T+Tl+? -0 T+? -0 T_? o r . é?é
] r =|
T2 Ug;_‘ 0.8 ;. 0 S % ;
+0 T—Tl—? (3.9 i [ o a ]
2 I c ° ]
is an odd function of- shown in Fig. 3. The effective phase £ °7 [~ -
modulation strength is proportional & /T,. We expand the o N . ]
function f, in action-angle variables, i.e., :% 0.6 _ ay/T,=0.10 _
” mn [ B8 ° T,/T,=4 1
fo(m,T1,T2) =2 hy(J)e™. (3.10 N N E N B B
- “o 5 10 15
Sincef, is an odd function ofr, we obtain Modulation frequency
0 if m=even FIG. 7. The stable rf bunch are ratio to the bucket argds
plotted as a function of the rf shaking phase modulation frequency
hym= (3.11 (in ratio to the maximum rf frequengyThe modulation amplitude

2 :
Esmmdlc if m=odd. is 5% of rf pulse width, i.e.a;/T;=0.10. The ratio of the rf pulse

gap to the pulse width i$,/T,=4.
The resonance strength function satisfies the sum rule theo-
rem parametric resonance. The circlesnnected by a solid line
and rectangles are obtained from the paramelgry ;=1
and 4, respectively. Thus our estimated tolerable phase
modulation amplitude isa,/T;<2.5x10 2 in order to
eliminate higher order modes and to retain a stable phase
The sum rule Strength for the rf phase modulation is S”ghtlyspace area of about 90% of the bucket area at the 1:1 para-
larger than that of rf breathing phase modulation of 8f).  metric resonance. The cusp in the bottom plot of Fig. 9 arises
This means that the rf phase modulation can cause MOKEom the fact that the Synchrotron tune is peaked at a syn-

particle orbit distortion than the rf breathing phase modulathrotron amplitude inside the bucket f65/T,<4 (see Fig.
tion. The sum rule is a monotonic function of the synchro-p).

tron amplitude. At the maximum synchrotron amplitude with
W=T,, the sum rule decreases with increasingT;.
The perturbation term in the Hamiltonian becomes

2W

2:—
nzl [2n 1) =7 (3.12

C. rf pulse width modulation

The Hamiltonian for the rf pulse width modulation is

< aeVo given by
AH—nZl (2n+1)ﬂosm((2n+ 1))

1.0

X[cod(2n+ 1) ¢+ wt)+cod(2n+ 1) h— wit)]
(3.13

When the modulation frequency is equal to an odd harmonic 8|
of the synchrotron frequency, particle motion will be
strongly perturbed. The resulting effects on particle motion
are similar to that discussed in Sec. Il A. Figure 7 shows the ¢
stable phase space ar@a units of the bucket argass the
modulation frequencyin units of the maximum synchrotron
frequency for a,/T;=0.10. The reduction of stable bunch
area by the excitation of odd order modes is clearly visible.

Figure 8 shows the stable phase space area near the 1:1
parametric resonance faa,/T,=0.01,0.02, ..,0.10, re-
spectively. In comparison with the result of Fig. 6, the loss of
phase space area due to the shaking phase modulation is
more severe than that of breathing phase modulation.

The top plot of Fig. 9 shows the stable phase direanits FIG. 8. The stable phase space afém units of the bucket
of the bucket argaas a function of the breathing phase arey near 1:1 parametric resonance due to the rf phase modul-
modulation amplitude &,/T,) at the 2:1 parametric reso- ation for T,/T;=4. The modulation frequency is in units of the
nance. The bottom plot shows the stable phase space areamaximum rf frequency. The modulation amplitudes are
the shaking phase modulation amplitude/T, at the 1:1 a,/T;=0.01,0.02....,0.10, respectively.

To/T =4
az/Ty=1%, 2%, ... 10%

P
1.05

SN I IR B I
0.85 0.90 0.95 1.00

Modulation frequency

L
1.10
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FIG. 9. The stable phase space afieaunits of the bucket arga

vs the modulation amplitude at 1:1 parametric resonance for thé
shaking phase modulatiofibottom plo} and 2:1 parametric reso-

nance for the breathing phase modulatitop ploY). Circular sym-

bols (connected with a lineand rectangular symbols are obtaine
from the rf parameters with, /T,=1 and 4, respectively. The cusp
in the rf phase modulation is due to a peaked characteristic of the

synchrotron tune.

H= H0+ T 3(TT1,T2)+AH(2) (3.19
where
T2 T2
f3(T,T1,T2): 0 T+T1+7 _0 T_T1_7 _1 y
(3.19
eVoa T, T
AH@ =22 6| - Tok 5 |+ 0| = Tim 5 | |+
0
(3.1

Since the resonance strength functiorf pghown in Fig. 3 is
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FIG. 10. The stable bucket ar¢ia ratio to the bucket arears
the rf voltage modulation frequendin ratio to the maximum syn-
chrotron frequency The modulation amplitude is 5% of the rf volt-
ge amplitude, i.ea,/Vy=0.05. The ratio of the rf pulse gap to the
pulse width isT,/T,;=4. A small excitation at the 6:1, 10;1..
due to the vanishing cosine term @g,Gqp, ... for synchrotron

d orbits at the barrier height.

©

fo(r, T, T)= X Gp(d)e™. 4.2

Sincef, is an even function of, we obtain
0 if m=odd

2(T,+4W)
m27TZT1

Gn(J) =

cosMy— sinm,

mi
if m=even. (4.3

The resonance strength functions satisfy the sum rule theo-
rem

16W3(3T,+2W)

2_
ngl | 2n| 45T (T2+4W)2 (44)

zero within the bucket region, parametric resonance will noffhe effect of rf voltage modulation is concentrated at low
be excited by the perturbation. Thus the pulse width moduharmonics of the synchrotron sidebands because terms in
lation affects only particles at the bucket boundary withoutGy, are proportional tan~2 andm~3, respectively.

any resonance structure. This can be understood from the Figure 10 shows the survival bunch ar@a ratio to the
total energy variation for particle orbit near the top of thebucket arepas a function ofw,/ g max With AV/Vy=0.05

bucket driven by theA\H®) term. It will not affect particles
inside the bucket.

IV. rf VOLTAGE MODULATION

andT,/T;=4. Since the cosine term i6¢,G4g, . .. van-
ishes for particles with the maximum synchrotron amplitude
at the bucket, the effective parametric resonance excitation is
much smaller atw,,/ws=6,10, ... shown in Fig. 10. Al-
though the cosine term i6, is also zero, a large resonance

When the rf pulse amplitude is modulated, the Hamil-strength at the 2:1 resonance arises mainly from the sine

tonian for the particle motion becomes

T,eAV
H = HO_

fo(’T,Tl,Tz), (41)

term.

Figure 11 shows the stable phase space éreaatio to
the bucket areavs the modulation frequendyn ratio to the
maximum synchrotron frequency with T,=T; and
AV/Vy=0.02,0.04,. . .,0.20. Results of many similar simu-

where AV is the rf voltage modulation amplitude, and the lations show that the tolerable voltage modulation is about

function f is given by Eq.(2.13. We expandf, in action-
angle variables, i.e.,

AV/V(=<0.01, in order to attain a minimum of 90% stable
phase space area at the 2:1 parametric resonance.
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ticle due to an angular kick is equal B, 6, whereD, is the
dispersion function, and is the dipole kick angle. When
low frequency modulational angular kicks are applied to the
beam, the resulting orbit length change is the integrated orbit
variation, i.e. AC=¢D,d#. The resulting timing error in the

rf cavity gap is given by

At T, fﬁDxde
T_l_T_l 27v,C "’

(5.2)

02 a,/Vy=0.02, 0.04, ... 0.2 - ) ) )
r T,/T,=1 ] where C is the circumference of the machine, and

i . Vm= o/ wg is the modulation tune. Due to the synchrobeta-
S S S tron coupling, the rf synchronous phase slips in one direc-
0 0.5 1 1.5 2 . . .

Modulation frequenc tion, and accumulates for half of the modulation period be-

cduiation freq Y fore it reverses in the other direction. Because the
synchrotron frequency is much smaller than the revolution
frequency, the phase error of each term accumulates. The
phase modulation amplitude is enhanced by a factor

Stable Phase Space Area

FIG. 11. The stable phase space af@aunits of the bucket
area vs the modulation frequenad§n units of the maximum syn-
chrotron frequency for the breathing rf phase modulation with

T,=T, anda, /T,=0.02,0.04, . . 0.20. wol2mw,, . Using the constraindt/T,;=<0.0025 in order to
R avoid harmful parametric resonances, the tolerable path
V. TOLERANCE FOR APPLICATIONS length error is given by

Since the barrier rf system can provide much lower volt- At T,
age than an ordinary rf cavity system, it is important to AC= § Dxd0~27rvsCT— T—s3>< 10° m (5.3
evaluate its tolerance in any applications. In the following, 170
we study an example of the Fermilab Recycler which is a
fixed energy synchrotron with kinetic energy 8 GeV, circum-for the Recycler, where parameters used aye3x10~°
ference 3319.4 m, transition gamma=20.7, and a momen- (see Fig. 2 T,/T~0.02, andC=3319.4 m. Ground vibra-
tum aperture of about 1%. The rms energy spread of entirOn at the frequency of a few Hz is the most important
recycled antiprotons is about 2.7 MeV filled up the wholeSOUrce of the orbit length modulation. Fortunately, ground
fing. As the beam is cooled, the resulting 95% momenturﬁ’!brat'on is ma_unly vertical, where the correspondm_g disper-
spread is about 2 MeV. Allowing a factor of 7 in bunch SiON function is small. However, because of the tight con-
compression for the newly accumulated antiprotons from th&traint of Eq.(5.3), an active feedback system, e.g., by using
accumulator, the resulting 95% bunch height is 14 MeV. The? feedback dipole at a high dispersion location, may be
bucket height for the Recycler is, according to E27), needed to eliminate harmful effects of parametric reso-

nances.
AE,=13.5V,T,[kV us])¥? MeV. (5.1)
B. Constraint on bunch compression
Thus an integrated field strength of about 2 k¥ is needed
to manipulate the recycled antiprotons.

In the conceptual design of this low level rf system, bar-
rier rf waves are generated by digital rf synthesig&@].
Since the timing jitter in digital frequency synthesizer is
small, rf phase modulation due to hardware is negligible
Furthermore, a typical propagation delay time in digital logic

The Recycler storage ring was proposed to recycle the
unused antiprotons from the Fermilab Tevatron. At the end
of a collider run, unused antiprotons can be decelerated in
the Tevatron to 150 GeV. Antiprotons can then be trans-
ferred and decelerated in the Main-Injector in about nine
pulses and injected into the Recycler for accumulation. After
each injection, the recycled antiproton batch must be com-

circuits s of thte o_rdeIr Ofl 10(;‘($ete_ for ?xabmpfoieseﬁll]).(;f pressed using the barrier rf wave to make space for the next
We assume a typica’ pulse duration of abou uS and a recycled batch injection as well as the later injection of fresh

e o ; . .
pessimistic 5% modu[at|on_ell errorin the propagation delayantiprotons from the Accumulator. The compression rate
time, the actual timing jitter is expected to be about

"3 . . ) o, Must be properly determined to eliminate unnecessary par-
At/Tlslxl_O . Comparing with the constraint for 90% ticle loss and bunch-area increase. Besides the applications
bucket survival derived in Sec. IV, the timing jitter resulting

f the barrier rf . licibl hen it is at in the antiproton recycling project, the barrier rf wave has
rom the barrier it wave IS negligible even when 1t1s at apqq.n considered for creating a gap in a coasting beam for
parametric resonance.

multipulse injections. The rate at which particles should be
pushed by the barrier rf wave is crucial in order not to blow
A. Tolerance of phase modulation resulting up the longitudinal emittance.

from synchrobetatron coupling Let T,<O be the compression rate of the barrier rf wave.
In the following we analyze the tolerance of orbit length The change of energy deviation from the synchronous beam
modulation due to the synchrobetatron coupling. In the lineaenergyE, after traversing through the barrier rf field region
approximation, the orbit length change of the orbiting par-is given by
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_ _ . B%E, When the second term in the round bracket of £q10 is
AEfinat AEin:= _2|T2|W’ (5.4 small, i.e., a small bunch or a smal} /T, approximation,
the equation can be integrated to obtain
whereAE;,, andAE,;, are the final and initial energy de- N S

viations. It is clear from Eq(5.4) that the energy deviation (T2AE)inie=(T2AE) final- (5.11)
of a particle with Thus the rectangular part of the phase space is conserved
) during the compression. The final energy spread of the beam
AE=—|'T |ﬁ Eo (5.5 depends only on the amount of compression provided that

2 g ' condition (5.8) is satisfied.

There is another constraint to the compression rate in or-
will move at the same speed as the barrier rf wave. Thigler to avoid beam loss. If the largest excursion of the beam
particle will not be affected by the moving barrier. There-punch into the barrier pulse i/, the barrier should not
fore, in order not to produce empty spaces inside the beam, #dvance by more thaif;—W in each revolution period.
is necessary for the barrier rf wave to move with a velocityFrom this, we obtain
slower than the drift velocity of particles having the maxi-

— _— 2
mum energy spread of the beakt , i.e., . T AE;
gy sp beam |T2|<—l 1— final . (5-12)
1] To AE,
7
|T2’ma>1 - BZEOAEbeam' (5.6 This condition indicates that the bunch compression does not

work for a full bucket.

It is clear that this result does not depend on the shape of the A preliminary experiment has been carried out at the

barrier wave, and it can in fact be used to infer E5j4). Brookhaven Alternating Gradient Synchrotrpb2], where
Even if this condition of Eq.(5.6) is satisfied, empty an empty gap of about;ds was created in 1.3 s using a pair

spaces can still exist if the total compression time for parof sinusoidal rf barrier waves. This amounts to

ticles with AE yeamdoes not complete full synchrotron peri- |T2|~1.6x10"°. Using Eq.(5.8), the constraint of rf com-
ods. This is because at the time when the compression stod@ession rate Is

part of the beam can have an uneven distribution in the phase )

space. To minimize this effect, the condition that the incre- | Tomal <2.7<107%,

mental change of beam energy spread should only be a small _
fraction of the total beam spread, i.e., where we have used the beam parameters of the AGS with

an injection kinetic energy of 1.5 GeV, a transition gamma
— — — 0, -
S(AEpear) <AEpearm (5.7) ¥,=8.5, and a 0.2% beam momentum spread. Thus the con

dition given in Eq.(5.8) was well satisfied, and, as expected,
no phase space area increase was observed.

A similar bunch beam manipulation for the Recycler at
the Fermilab has been contemplated. When antiprotons in the
Recycler are cooled to have a small momentum spread, the

. 7] - beam is compressed to acqept beam pulse§ from the gnt'ipro-
|T2,ma>J<IBZ_EAEbeama (5.8  ton Accumulator. The maximum compression speed is im-
0 portant in preserving the phase space area. Actual experi-

) o . . mental tests of beam manipulation schemes are needed in

which supersedes Ed5.6). Again, it is obvious that this  chieving a successful operation of avoiding a hollow beam.

constraint is independent of the shape of the barrier waveyce actual scenarios of beam manipulations are machine
pulse. If Eq.(5.8) is satisfied, the phase space area should b@ependent we will not present it here.

nearly conserved during the synchrotron phase space ma-
nipulations. The phase space area conservation property can
be proved as follows.

where 8(AEpe,) is the increase of energy spread in one
complete synchrotron period. Using E¢.4), this require-
ment becomes

VI. CONCLUSION

The amount of compressiodT; in dNsy, synchrotron In conclusion, we analyzed the effect of rf phase and volt-
periods is given by age errors on the particle motion in the barrier rf system. We
_ prove analytically that the dynamics of the barrier wave de-

T, pends only on the total voltage integral in the barrier wave,

dezfynstyn’ (5.9 and is independent of the actual barrier rf wave form. Reso-

nance strength functions and their associated sum rules are

wheref ., is the synchrotron frequency. Using the synChro_derived. We find_ that the resonance strength function de-
tron tune of Eq(2.11), Egs.(5.4) and(5.9) can be combined Cf€ases slowly with the mode number. The tolerance of the rf
to obtain phase and voltage modulation are discussed. We analyze the

stability of synchrotron motion for the Fermilab Recycler.

dT JiE e 2T The rf phase modulation due to orbit length modulation re-
2 _ 144 _} _1) (5.10  sulting from ground vibration can be important. Active com-
Tz E Ep] T2 pensation may be used to compensate for the effect of rf
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phase modulation. Some constraints of bunch compressiomhereT; is the width of the barrier rf wave form. Since the

schemes are discussed. barrier rf Hamiltonian is time independent, an invariant torus
has a constant Hamiltonian value. Tk¢ parameter for a
ACKNOWLEDGMENTS torus is defined by
Work was supported in part by U.S. Department of En-
ergy Grants No. DOE-DE-AC02-76CH03000 and No. DOE- J P () dr
92ER40747 and Grant No. NSF PHY-9512832. We thank lnl T,/2
Chuck Ankenbrandt, David Finley, Jim Griffin, Steve Z,BZEO(AE) = T : (A3)

Holmes, Gerry Jackson, Jim MacLachlan, Keith Meisner,
and F. Ostiguy for helpful discussions. One of the authors

(S.Y.L.) thanks the hospitality of Fermilab colleagues. The synchrotron period of a Hamiltonian torus can be written
as
APPENDIX: SYNCHROTRON HAMILTONIAN
FOR GENERAL BARRIER rf WAVE FORM T, ,32E0
. . Tg=2—| ——| +4T,, (A4)
From the equations of motion of Eq®.2) and(2.3) , the | 7] |AE|
general synchrotron Hamiltonian for an arbitrary barrier rf
wave from is given by whereT, is given by
eV(r)dr - q
w
H:—%(AE)Z— - (A1) P T
B"Eo 0 |7 Jo 2B2E, [T2/2+7
< - 2 ’ !
Thus the maximum off-energy bucket height can be easily (AE)*— |7 T JT2/2 eM(r')dr
derived to be ° A5
(A5)
Tol24 Ty 12
» B2E f eV(r)dr Clearly, all physical quantities depend essentially on
AE,= BEo | /Ta2 . (A2) JV(7dr. Thus the essential physics is independent of the
|7 | To exact shape of the barrier rf wave.
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