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Nonlinear dynamics of microwave instability in accelerators

G. V. Stupakov
Stanford Linear Accelerator Center, Stanford University, P.O. Box 4349, Stanford, California 94309
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~Received 3 January 1997!

We develop a nonlinear theory of the weak single bunch instability in electron and positron circular accel-
erators and damping rings. A nonlinear equation is derived that governs the evolution of the amplitude of
unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical
solutions to this equation show a large variety of nonlinear regimes depending on the growth rate of the
instability and the diffusion coefficient. Comparison with the observation in the Stanford Linear Collider
Damping Ring at the Stanford Linear Accelerator Center shows qualitative agreement with the patterns ob-
served in the experiment.@S1063-651X~97!11605-1#

PACS number~s!: 41.85.2p, 29.27.Bd, 41.75.2i
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I. INTRODUCTION

Microwave single bunch instability in circular acceler
tors has been known for many years. The instability usu
arises when the number of particles in the bunch exce
some critical valueNc , which can vary depending on th
parameters of the accelerating regime. Typically, the in
bility leads to the growth of the bunch length~‘‘turbulent
bunch lengthening’’! and the increased energy spread of
beam@1#. The origin of the microwave instability is usuall
associated with unstable oscillations of the bunch cause
the high-frequency part of the impedance of the vacu
chamber.

Recent observations in the Stanford Linear Collid
damping ring at the Stanford Linear Accelerator Center@2#
with a low-impedance vacuum chamber revealed some
interesting features of the instability. It was found that,
some cases, after initial exponential growth, the instabi
eventually saturated at a level that remained constant thro
the accumulation cycle. In other regimes, relaxation-type
cillations were measured in the nonlinear phase of the in
bility. In many cases, the instability was characterized b
frequency close to the second harmonic of the synchro
oscillations.

A vast literature devoted to the microwave instabil
mostly focuses on the linear theory. The main objective
this theory is to predict the frequency, growth rate, and str
ture of the perturbation as a function of beam paramet
Especially important for the experiment is a determination
the threshold of the instability for a given wake in the acc
erator. Mathematically, the linear problem reduces to a se
integral equations whose solution usually invokes elabo
numerical methods@3–5#.

A solution obtained in the linear theory, however, cann
explain the time development of the instability above t
threshold. Several attempts have been made to addres

*Also at Budker Institute of Nuclear Physics, Novosibirs
630090, Russia.
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nonlinear stage of the instability. A quasilinear theory of t
bunch lengthening due to single bunch instability was dev
oped in Ref.@6#. In Ref. @7#, using a numerical simulation
method, D’yachkov and Baartman studied a specific mec
nism that generates sawtooth oscillations due to the dou
peaked nature of the stationary distribution. A simulation
the SLC damping ring instability, that also showed nonline
oscillations of the amplitude, was performed in Ref.@8#. Re-
cently, Heifets proposed a theory of nonlinear oscillatio
considering the nonlinear phase of the instability as an e
librium around a nonlinear resonance@9#. However, being
based on either computer simulations or some specific
sumptions regarding the structure of the unstable mode, th
works, in our view, do not give a consistent and univer
description of the nonlinear stage of the instability.

An attempt at a more general consideration of the pr
lem, based on the nonlinear Vlasov equation, is carried ou
this paper. We adopt an approach recently developed
plasma physics for analysis of the nonlinear behavior of
stable modes in dynamic systems near the instability thre
old @10,11#. Assuming that the growth rate of the instabili
is much smaller than its frequency, we find a time depend
solution to the Vlasov equation, and derive an equation
the complex amplitude of the oscillations that is valid in t
nonlinear regime. This equation, after proper normalizati
contains only two dimensionless parameters, and can be
ily solved numerically. It turns out that even without a d
tailed knowledge of the nature of the instability, we c
qualitatively analyze and predict different patterns of the s
nal that can be observed in the experiment in a weakly n
linear regime.

The paper is organized as follows. In Sec. II we formula
the stability problem in terms of the Vlasov equation, with
right hand side due to the effect of synchrotron radiation.
Sec. III, a brief review of the linear theory for a single bun
instability is given. Section IV contains a general derivati
of an equation for the evolution of the amplitude of weak
unstable oscillations near the threshold of the instability
detailed calculation of the nonlinear part of the equation
presented in Sec. V. In Sec. VI we include a synchrotr
5976 © 1997 The American Physical Society
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55 5977NONLINEAR DYNAMICS OF MICROWAVE INSTABILITY . . .
radiation term into the nonlinear equation, and introduce
mensionless variables that minimize the number of free
rameters in the equation. An analysis of the solutions
results of numerical computations are presented in Sec.
and in Sec. VIII we discuss the main results of the pape

II. BASIC EQUATIONS

We start from the equations of motion in the longitudin
direction ~see, e.g., Ref.@12#!:

ż52chd, ḋ5K~z,t !, ~1!

wherez is the longitudinal coordinate,d is the relative en-
ergy deviation,h is the slip factor, the dot indicates differ
entiation with respect to timet, and

K~z,t !5
vs0
2

hc
z2

r e
T0g

E
z

`

dz8n~z8,t !w~z82z!. ~2!

In Eq. ~2!, vs0 denotes the unperturbed synchrotron f
quency;T0 is the revolution period;r e is the classical elec
tron radius,g is the relativistic factor;n(z,t) is the longitu-
dinal beam density;*2`

` n(z,t)dz5N, where N is the
number of particles in the bunch; andw(z) is the longitudi-
nal wake function. The first term in Eq.~2! corresponds to
the potential of the accelerating voltage, and the second t
describes the wakefield generated by the bunch.

Equations of motion~1! can be obtained from the follow
ing Hamiltonian:

H~z,2d,t !5 1
2chd21

vs0
2

2hc
z22

r e
T0g

E
0

z

dz8

3E
z8

`

dz9n~z9,t !w~z92z8!, ~3!

in which z plays a role of a coordinate, and2d is the con-
jugate momentum.

We will use a distribution functionc(z,d,t) of the par-
ticles in the bunch such that, integrating overd, gives the
particle density

n~z,t !5NE
2`

`

c~z,d,t !dd. ~4!

This distribution function satisfies the Vlasov equation w
a Fokker-Planck ‘‘collision’’ term on the right hand side,

]c

]t
1$H,c%5R, ~5!

where we have the Poisson brackets on the left hand s
andR describes the effect of the synchrotron radiation~see,
e.g.,@13#!,

R5
]

]dS gDcd1k
]c

]d D . ~6!

In Eq. ~6!, gD is the damping time for the amplitude of th
synchrotron oscillations, andk is the diffusion coefficient
associated with the quantum nature of the radiation.
i-
a-
d
II,

l

-

rm

e,

In the equilibrium state, the distribution functionc and
the HamiltonianH do not depend on time. The equilibrium
solution of Eq.~6! was given by Haissinski@14#,

c~z,d!5 const3 exp S 2
H0~ z,2d !

ch s E
2 D , ~7!

wheresE5Ak/gD is the rms energy spread of the beam
the absence of the wake, andH0 is the equilibrium Hamil-
tonian.

It is convenient to introduce dimensionless variables

x5
z

sz
, p52

d

sE
, t5tvs0 , F5szc, ~8!

wheresz is the rms length of the beam without wake, a
sz5sEuhuc/vs0. In these variables, the Hamiltonian~3!
takes the form

H~x,p,t!5 1
2p

21U~x,t!, ~9!

where the ‘‘potential energy’’U is

U~x,t!5 1
2x

22I E
x

`

dx8S~x82x!E
2`

`

dp F~x8,p,t!,

~10!

with

I5
Nre

T0gvs0szsE
~11!

and

S~x!5E
0

xss
dz w~z!. ~12!

Equation~10! follows from Eq.~3! if one takes into accoun
thatw(z)50 for z,0, and changes the order of integratio
in the last term of Eq.~3!. Note that the functionS is a
dimensionless function of its argument.

Let us now perform a canonical transform fromx andp to
action and angle variablesJ andu of the equilibrium Hamil-
tonianH0, and denote byṼ the deviation of the potentia
energy from the equilibrium in Eq.~9!. SinceH0 depends on
J only, the total HamiltonianH(u,J,t) takes the form

H~u,J,t!5H0~J!1Ṽ~u,J,t!. ~13!

The Vlasov equation forF in terms of action-angle variable
is

]F

]t
1vs

]F

]u
1

]Ṽ

]J

]F

]u
2

]Ṽ

]u

]F

]J
5R, ~14!

wherevs5vs(J) is the frequency of synchrotron oscilla
tions with the wake taken into account,vs(J)5dH0 /dJ.
Suppose thatF0(J) is the equilibrium distribution function,
anddF(J,u,t)5F2F0(J) is its deviation from the equilib-
rium. ThendF satisfies the equation



n

i
tio

to

o-

is
e
or
n-

ci
he

ex
y

lex
te-

rre-

sta-
f

t it
pe-
an
e

de

a
ns

a

a-

ns

uct
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]dF

]t
1vs

]dF

]u
2

]dṼ

]u

]F0

]J
2

]dṼ

]u

]dF

]J
1

]dṼ

]J

]dF

]u
5R,

~15!

where

dṼ~u,J,t!52I E dJ1du1K~J,J1 ,u,u1!dF~J1 ,u1 ,t!,

~16!

and K(J,J1 ,u,u1)5S@x(J,u)2x(J1 ,u1)#. We note that
Eqs. ~15! and ~16! are exact because we did not make a
approximation in the derivation above.

III. LINEAR THEORY

In linear theory, the last two terms on the left hand side
Eq. ~15! must be discarded. We assume that the perturba
of the distribution function oscillates with the frequencyv,

dF5 f 1~J,u!e2 ivt1 c.c., ~17!

where for the sake of brevity we use the notation ‘‘c.c.’’
denote a complex conjugate of the first term.

The perturbation of the potentialṼ is

Ṽ5Ve2 ivt1 c.c. ~18!

SinceV is a periodic function ofu, we can expand it in
Fourier series,

V5 (
n52`

`

vn~J!einu. ~19!

For simplicity, here we will neglect the effect of the synchr
tron damping in the linear theory by dropping theR term in
Eq. ~15!. This greatly simplifies the linear analysis, and
usually assumed in the literature. However, as we will se
Sec. VIII, the effect of the synchrotron damping is crucial f
the nonlinear stage of the instability and will later be i
cluded in the derivation of the nonlinear equations.

Substituting Eqs.~17! and~19! into Eq. ~15! gives, in the
linear approximation,

2 iv f 11vs

] f 1
]u

5F08 (
n52`

`

invn~J!einu, ~20!

whereF085]F0]J. A solution to Eq.~20! is

f 152F08 (
n52`

`
nvn~J!

v2nvs
einu. ~21!

Now, substituting this equation into Eq.~16! yields an infi-
nite set of integral equations that determine eigenfrequen
and eigenfunctions for the collective oscillations of t
bunch:

vn~J!5I (
m52`

` E
0

`

dJ1F08~J1!Knm~J,J1!
mvm~J1!

v2mvs~J1!
,

~22!

with the kernel given by
y

n
n

in

es

Knm~J,J1!5
1

2pE0
2pE

0

2p

du du1e
i ~mu12nu!K~J,u,J1 ,u1!.

~23!

The integral on the right hand side of Eq.~22! defines an
analytical function in the upper half plane of the compl
variablev; for Imv < 0 the integral must be analyticall
continued into the lower half plane. For a real value ofv, the
integration is performed along a contour in the comp
plane which bypasses possible singular points of the in
grand below the pole~see, e.g.,@12#!. The residues of inte-
gral ~22! are associated with the Landau damping effect.

IV. NONLINEAR THEORY

Let us assume that the instability has a threshold co
sponding to a critical value of the parameterI5I c with the
frequency at the thresholdv5vc (Imv c50!. We will be
interested in the analysis of the nonlinear phase of the in
bility in the vicinity of the threshold when the growth rate o
the instabilityG is much smaller thanvc , G!vc . In other
words, we assume that the instability is weak, and tha
develops on a time scale which is much larger then the
riod of the oscillations. It turns out that in this case one c
separate a ‘‘slow’’ time scale on which the amplitud
evolves from ‘‘fast’’ oscillations with the frequencyvc , and
derive nonlinear equations for the evolution of the amplitu
of the instability by averaging overvc . In this section, we
will give a general description of the approach following
similar analysis in the theory of nonlinear plasma oscillatio
@15#.

First, we rewrite the result of the previous section in
concise form,

L̂~v,I !Vv50, ~24!

where the linear operatorL̂ represents a set of integral equ
tions ~22! and ~23!,

L̂~v,I !Vv[ (
n52`

`

einuFvn~J!2I (
m52`

` E dJ1du1KF08~J1!

3
nvn~J1!

v2nvs~J1!
G , ~25!

andVv is a Fourier harmonic of the functionṼ correspond-
ing to the frequencyv, Vv5(vn(J)e

inu. Note that at this
point we can also include inL̂ a contribution from the
Fokker-Planck termR. A particular form of the operatorL̂ is
not essential for the analysis in this section.

The frequency of the oscillationsvc at the threshold and
the corresponding eigenfunctionVvc

[uc are determined by
the equation

L̂~vc ,I c!uc50. ~26!

We now need to define a scalar product of two functio
u andw of the phase space variablesJ, u. Let us denote this
product by (u,w). Usually, scalar multiplication in Hilbert
space is given in terms of an integration of the prod
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uw* over J and u with some weight function. The exac
choice of the weight function is not important for what fo
lows, and we do not specify it here. For a given scalar pr
uct, we can define an operatorL̂1 conjugate toL̂ satisfying
the following condition for two arbitrary functionsu and
w:

~u,L̂w!5~w,L̂1u!. ~27!

We will assume that the operatorL̂1 is known and, togethe
with the solution of Eq.~26!, the solutionwc of the conjugate
problem,

L̂1~vc ,I c!wc50, ~28!

is available. Note that the solution of Eq.~28! represents a
linear problem, and in each particular case can be acc
plished by standard methods of numerical analysis.

We now consider a situation whenI slightly exceeds the
threshold,I5I c1DI , with DI!I c . Taking into account non-
linear terms in the Vlasov equation, we will assume that th
are much smaller than the linear ones. That is to say,
expect that the instability, after initial exponential growt
will eventually saturate at a level where the amplitude of
oscillations is relatively small. If this is not the case, and
instability evolves to a highly nonlinear regime, our theo
will only be applicable for a relatively short period of tim
following the linear growth. Fortunately, as we will see
Sec. VII, in many cases the damping associated with s
chrotron radiation indeed limits the growth of the instabilit
and the whole process is described within a framework o
weakly nonlinear approximation.

With nonlinear terms, the equation for theVv can now be
written as

L̂~v,I !Vv5N̂v , ~29!

where N̂v is a Fourier transform of the nonlinear term n
glected in the linear analysis. The operatorN̂v depends on
the parameterI , and acts on the functionVv .

Following a general prescription of nonlinear theory
oscillations@15#, we will assume the following type of solu
tion ~in time representation! for Eq. ~29!:

Ṽ5@A~t!uce
2 ivct1 c.c.#1D V~J,u,t !, ~30!

whereuAucu@uDVu. The first term in Eq.~30! describes os-
cillations with the eigenfunctionuc , frequencyvc , and
varying amplitudeA(t), and the second term is a correctio
due to the deviation of the exact eigenfunction fromuc . It is
important to emphasize here thatA(t) is supposed to be a
slow function of time,u] lnA/]tu!vc . This also means tha
the spectrumAv of the functionA(t) is represented by a
narrow peak~the width of the peak is much smaller tha
vc) localized near the zero frequency.

We now need to make a Fourier transform of Eq.~30! and
substitute it into Eq.~29!. Since we are interested in th
frequency range close tovc , an approximate relation holds

Ṽv'Av2vc
uc1DVv . ~31!
-

-

y
e

e
e

n-

a

In Eq. ~31! we neglected the term containingAv1vc
, which

is peaked aroundv5-vc . Equation~29! now reads

L̂~v,I c1DI !~Av2vc
uc1DVv!5N̂v . ~32!

Making a Taylor expansion of the linear part and neglect
the productDIDVv , one finds

L̂~vc ,I c!DVv1~v2vc!Av2vc

]L̂

]v
uc1DIAv2vc

]L̂

]I
uc

5N̂v , ~33!

where the derivatives of the operatorL̂ are evaluated a
v5vc and I5I c . We can annihilate the first term in Eq
~33! by a scalar multiplication withwc and using Eqs.~27!
and ~28!. The result is

~v2vc!Av2vc
Swc ,

]L̂

]v
ucD 1DIAv2vc

Swc ,
]L̂

]I
ucD

5~wc ,N̂v!. ~34!

We now multiply Eq.~34! by eivct, and make an inverse
Fourier transform to timet:

]A

]t
1 iDvA52 ieivct~wc ,N̂!Swc ,

]L̂

]v
ucD 21

, ~35!

where

Dv52DI Swc ,
]L̂

]I
ucD Swc ,

]L̂

]v
ucD 21

~36!

is a linear frequency shift due to the change ofI . Note that in
Eq. ~35!, after the inverse Fourier transform,N represents a
function of time rather thanv.

Without the right hand side it follows from Eq.~35! that
the amplitudeA will vary with time as exp(2iDvt), which is
a trivial consequence of the fact that in linear theoryV
}exp(2ivt) with v5vc1Dv. In Sec. V we will find the
nonlinear term averaged over fast oscillations which a
nonlinear dynamics to Eq.~35!.

V. DERIVATION OF NONLINEAR EQUATIONS

The nonlinear terms in our problem arise from the la
term in kinetic equation~15!. We need to solve this equatio
approximately, and findN in Eq. ~29!. In order to simplify
the derivation, we first consider the case whenR50. In Sec.
VI a generalization forRÞ0 will be given.

Since the nonlinear term is assumed to be small, it will
accurate enough to neglect theDV term in its evaluation.
Hence Ṽ'A(t)uce

2 ivct1 c.c., whereuc can be decom-
posed into Fourier series overu,

uc5 (
n52`

`

un~J!einu. ~37!

We will also represent the perturbation of the distributi
function dF as
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dF5@ f 1~J,u,t!e2 ivct1 c.c.#1f0~J,u,t !

1@ f2~ J,u,t !e22ivct 1 c.c.#, ~38!

where f 0, f 1, and f 2 are slow functions of time@asA(t)# in
the sense that]/]t!vc .

As calculations show, the main contribution to the fin
equation comes from the nonlinear terms in whichdF is
differentiated with respect toJ. This allows us to neglect the
last term in Eq.~15! when substituting Eq.~38! into Eq.~15!,

] f 0
]t

1vs

] f 0
]u

2
]Ṽ

]u

] f 1*

]J
2

]Ṽ*

]u

] f 1
]J

50, ~39!

] f 2
]t

22iv f 21vs

] f 2
]u

2
]Ṽ

]u

] f 1
]J

50, ~40!

] f 1
]t

2 iv f 11vs

] f 1
]u

2
]Ṽ

]u

]F0

]J
2

]Ṽ

]u

] f 0
]J

2
]Ṽ*

]u

] f 2
]J

50,

~41!

where the asterisk indicates complex conjugating. The
two terms in Eq.~41! imply that we can split the function
f 1 into linear (L) and nonlinear~NL! parts,

f 15 f 1
L1 f 1

NL , ~42!

where f 1
L satisfies the equation of linear theory,

] f 1
L

]t
2 iv f 1

L1vs

] f 1
L

]u
2

]Ṽ

]u

]F0

]J
50, ~43!

and f 1
NL is the nonlinear correction arising from the high

order terms in the kinetic equation,

] f 1
NL

]t
2 iv f 1

NL1vs

] f 1
NL

]u
2

]Ṽ

]u

] f 0
]J

2
]Ṽ*

]u

] f 2
]J

50.

~44!

In equations forf 0 and f 2 we can substitutef 1
L for f 1.

Let us consider first Eq.~43! for the linear part of the
distribution function. As a matter of fact, this is the sam
equation as Eq.~20!; however, we now want to find its so
lution in the time domain rather than in the frequency d
main. We expandf 1

L in Fourier series inu,

f 1
L5 (

n52`

`

gn~J,t!F08e
inu, ~45!

and find, from Eq.~43!, an equation forgn ,

]gn
]t

2 i ~v2nvs!gn5 inA~t!un . ~46!

This equation can be easily solved,

gn5 inun~J!E
0

t

A~t1!e
i ~t2t1!~v2nvs!dt1 . ~47!

We now consider Eq.~39! for f 0. The dominant terms in
this equation will be those that do not depend onu; terms
l

st

-

with nÞ0 will cause only small oscillations inf 0 at the
frequencynvs , without systematic changing of its ampl
tude. Keeping onlyn50 terms we have

] f 0
]t

5 (
n52`

`

inAun
]

]J
gn*

]F0

]J
1 c.c. ~48!

When differentiating with respect toJ in Eq. ~48!, it is suf-
ficient to differentiate only the exponential term
exp@i(t2t1)„v2nvs(J)…# in the expression forg @see Eq.
~47!#; all other terms will be relatively small because w
assume that the time scale on which the nonlinear effe
become essential is such thattvs@1,

] f 0
]t

5 (
n52`

`

in3A~t!unun*vs8F08E
0

t

dt1~t2t1!

3A* ~t1!e
2 i ~t2t1!~v2nvs!1 c.c. ~49!

Now we can integrate this equation, yielding

f 052 Re (
n5-`

`

in3vs8F80unun* E
0

t

dt1A~ t 1!

3E
0

t 1
dt2~ t 12t 2 !A* ~ t 2 !e2 i ~ t 12t 2 !~ v 2nvs !.

~50!

In a similar fashion, the following equation can be obtain
for f 2:

] f 2
]t

22iv f 21vs

] f 2
]u

5 (
n52`

`

in3A~t!un
2vs8F08e

2inu

3E
0

t

dt1A~t1!e
2 i ~t2t1!~v2nvs!,

~51!

with the solution

f 25 (
n52`

`

in3vs8F08un
2e2inuE

0

t

dt1A~t1!

3E
0

t1
dt2~t12t2!A~t2!e

2 i ~2t2t12t2!~v2nvs!. ~52!

We now have to substitutef 0 and f 2 into Eq. ~44!. As cal-
culations show, the leading contribution tof 1

NL comes from
f 0; nonlinear terms arising fromf 2 turns out to be small in
parameterG/vs . Keeping onlyf 0 and performing differen-
tiation with respect toJ in the exponential terms only, we
find
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] f 1
NL

]t
2 iv f 1

NL1vs

] f 1
NL

]u
5

]Ṽ

]u

] f 0
]J

52 (
n52`

`

in5~vs8!2unun*F08e
inu

32 ReE
0

t

dt1 A~t 1!

3E
0

t1
dt2~t12t2!

2 A* ~t2!

3e2 i ~t12t2!~v2nvs!, ~53!

with the solution

f 1
NL52 (

n52`

`

in5~vs8!2un* un
2F08E

0

t

dt1A~t1!

32 ReE
0

t 1
dt2A~t2!E

0

t 2
dt3~t2-t3!

2A* ~t3!

3ei~t2t1-t21t3!~v2nvs!. ~54!

Finally, since timet is supposed to be much larger tha
vs

21 , one can use the following mathematical identity wh
integrating overt:

E
2`

`

dxE
2`

`

dy f~x,y!eixy52p f ~0,0!, ~55!

which in application to Eq.~54! after changing the variable
s5t12t2 andz5t2t1, yields

f 1
NL522p i (

n52`

`

n5~vs8!2d~v2nvs!un* un
2einu

]F0

]J

3E
0

t/2

dz A~t2z!z2E
0

t22z

ds A~t2z2s!

3A* ~t22z2s!. ~56!

We have found a nonlinear part of the perturbation of
distribution functionf 1

NL . As we see, this function is propor
tional to the third order of the amplitudeA. On the linear
stage of the instability, whenA is small, andf 1

NL can be
neglected; however, asA grows, the nonlinear term become
more important and eventually competes with the linear p
f 1
L . Notice also, that due to the presence ofd function

d(v2nvs), the nonlinear term is peaked at the reson
values of the actionJn such thatnvs(Jn)5v.

VI. EFFECT OF SYNCHROTRON DAMPING
AND NONLINEAR EQUATION FOR THE AMPLITUDE

In Sec. V we neglected the effect of the synchrotron
diation in the Vlasov equation. To include theR term we
need to transform it first toJ2u variables. In doing so we
notice that, because of strong localization near the reso
valuesJn of the perturbed distribution function, the leadin
term in R will be the one containing the second derivati
e

rt

t

-

nt

with respect toJ. In other words, the most important effe
of the synchrotron radiation will be the quantum diffusion
particles in the phase space rather than energy loss. Kee
only the second derivative inR gives

R5D~J!
]2F

]J2
. ~57!

The diffusion coefficientD was found in Ref.@14#, and
equals

D~J!5JgD /vs~J!. ~58!

The derivation off 1
NL given in Sec. V can now be repeate

with the diffusion termR on the right hand side of the Vla
sov equation. For the sake of brevity, we will omit this de
vation here, referring the reader to Ref.@16#, where a similar
problem was worked out for a nonlinear plasma oscillatio
problem. In our case, the inclusion of the diffusion reduc
formally to appearing of a exponential factor in the integra
of Eq. ~56!,

f 1
NL522p i (

n52`

`

n5~vs8!2d~v2nvs!un* un
2einu

]F0

]J

3E
0

t/2

dz A~t2z!z2E
0

t22z

ds A~t2z2s!

3A* ~t22z2s!e2Bnz2[s1~2/3!z] ~59!

whereBn5n2(vs8)
2D(Jn), andJn is the value of the action

at thenth resonance,nvs(Jn)5v.
We are now in position to find the nonlinear termN̂ in Eq.

~35!. Since it will be multiplied by exp(ivct), we need a
component inN̂ that oscillates as exp(2ivct), so that the
right hand side in Eq.~35! would be a slowly varying func-
tion of time. From Eqs.~16! and~38! we see that such term
in Ṽ is

dṼ52I ce
2 ivctE dJ1du1K@J,J1 ,u,u1!~ f 1

L~J1 ,u1 ,t!

1 f 1
NL~J1 ,u1 ,t!#, ~60!

which gives, forN̂,

N̂52I ce
2 ivctE dJ1du1K~J,J1 ,u,u1! f 1

NL~J1 ,u1 ,t!.

~61!

With this expression, the right hand side of Eq.~35! becomes

2pI c (
n52`

`

Kn~Jn!F8n4uvs8u E
0

t/2

dz A~t2z!z2

3E
0

t22z

ds A~t2z2s!

3A* ~t22z2s!e2Bnz2[s1~2/3!z] , ~62!

where



a

a

al
uc
le
h

o

th
t

ta
ef
e
he
as
th
a
ib

n
-
nc

5982 55G. V. STUPAKOV, B. N. BREIZMAN, AND M. S. PEKKER
Kn~J!5Swc ,
]L̂

]v
ucD 21E du einu~wc ,K !un* un

2 , ~63!

and the scalar product (wc ,K) in Eq. ~63! is performed with
respect to variablesJ1 andu1 in K(J,J1 ,u,u1).

To simplify the analysis further, we will assume here th
only one term dominates in the sum of Eq.~62!. This as-
sumption is correct if the variation of the frequencyvs(J)
within a distribution function is not very large, so that equ
tion nvs(Jn)5vc has a solution only for one value ofn.
Omitting the sum sign in Eq.~62! gives the following non-
linear equation for the amplitudeA:

]A

]t
1 iDvA52pI 0Kn~Jn!F08n

4uvs8u

3E
0

t/2

dz A~t2z!z2E
0

t22z

ds A~t2z2s!

3A* ~t22z2s!e2Bnz2[s1~2/3!z] . ~64!

In this form, Eq. ~64! contains two complex and one re
parameters. For numerical solution, it is convenient to red
the number of the parameters by choosing other variab
First, we denote the real part of the coherent frequency s
by V, Dv5V1 iG, and introduce the absolute valuer and
the phasef of the complex factor in front of the integral s
that 2pI 0Kn(Jn)F08n

4uvs8u52reif. With variables

a5A
Ar

Bn
5/6e

iVt, g5
G

Bn
1/3, j5Bn

1/3t, ~65!

Eq. ~64! becomes

]a

]j
2ga52eifE

0

j/2

dz a~j2z!z2E
0

j22z

ds a~j2z2s!

3a* ~j22z2s!e2z2[s1~2/3!z] . ~66!

The parameterg here plays a role of dimensionless grow
rate of the instability that is measured in time units related
the synchrotron damping rate. Note that now Eq.~66! con-
tains only two real parameters,g andf.

VII. ANALYSIS AND SOLUTIONS
OF NONLINEAR EQUATION

A complete analysis of nonlinear dynamics of the ins
bility in any particular case requires computing of the co
ficients in Eq.~66! which can only be done based on th
solution of the linear problem described in Sec. III. In t
general case, this constitutes a major computational t
which lies beyond the scope of the present paper. Rather
trying to find a particular solution to nonlinear problem for
given set of beam parameters, we will outline here poss
scenarios by numerically solving Eq.~66! for different val-
ues ofg andf.

First, note that Eq.~66! admits an asymptotic solution i
the form ofa5 const3 exp (ilj) that corresponds to oscil
lations with a constant amplitude and a coherent freque
shift l. This solution is valid in the limitj→` and exists
t
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only if ufu,p/2. It is given by the following formula that
can be easily verified by direct substitution into Eq.~66!:

a5181/6g1/2
1

AG~1/3!cosf
e2 i j tanf, ~67!

FIG. 1. Plots of the absolute value of the amplitudeuau vs time
j for f50. ~a! g50.1; ~b! g50.3; ~c! g50.4; ~d! g50.48;
~e! g50.5; ~f! g50.6; ~g! g50.7; ~h! g50.8.

FIG. 2. Plots of the absolute value of the amplitudeuau vs time
j for f5p/4. ~a! g50.1; ~b! g50.2; ~c! g50.3; ~d! g50.4; ~e!
g50.5.
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whereG(1/3) stands for the gamma function. According
this solution, the steady state amplitudeuau increases in pro-
portion to the square root of the dimensionless growth r
g1/2. It turns out, however, that this solution is only stable f
relatively small values of the parameterg @11#.

We have numerically solved Eq.~66! for several sets of
g andf. The results are presented in Figs. 1–3.

In Fig. 1 we show solutions forf50 and various values
of g starting with a sufficiently small value ofa, so that
initially the nonlinear term is unimportant. For small valu
of g, g,0.4, we see that the solution, after initial expone
tial growth, reaches the equilibrium after several oscillatio
With increasingg, the oscillations become more pronounce
and finally, atg50.48, a steady state solution with period
oscillating amplitude is set up. Further increasingg beyond
the value of 0.5 causes the period of those oscillations
break up which, after an initial transient period, results in
relaxation-type behavior of the amplitude. For even lar
g, g.0.8, the nonlinear term can no longer stabilize t
system, and the amplitude starts to grow without limit.

Figure 2 shows solutions forf5p/4. In this case the
amplitude oscillations appear to be less stable, and a
away solution develops forg50.5.

As was mentioned above, a stable asymptotic solu
exists only ifufu,p/2. Numerical solutions indicate that fo
ufu.p/2 all the solutions diverge with unlimited growth a
j→`. An example of such a solution is shown in Fig. 3. W
see that, in this case, the nonlinear term cannot stop the
stability whose amplitude continues to grow, and eventua
goes beyond the limit of applicability of the present theo

VIII. CONCLUSION

In this paper we applied the theory of weakly nonline
unstable oscillations to the case of a single bunch instab

FIG. 3. Plot of the absolute value of the amplitudeuau vs time
j for f5p andg50.1.
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in circular accelerators. We derived an equation which
scribes the evolution of the amplitude of the instability a
depends only on two dimensionless parameters — a normal-
ized linear growth rate of the instabilityg, and a phase of
nonlinear termf. We found that for small values off the
nonlinear term has a stabilizing effect and, for not very lar
values ofg, results in the saturation of the instability at som
level. Larger values ofg lead to relaxation-type oscillation
of the amplitude. In the case off.p/2, within the limits of
the applicability of our theory, the nonlinear term does n
prevent the unlimited growth of the amplitude.

As was mentioned above, a complete comparison of
theory with the experiment requires a solution of equatio
of the linear theory, and a determination of the parameter
the nonlinear equation. Due to the computational complex
of this problem we did not attempt to solve it in this pape
However, even without knowing the exact parameters,
can try to compare different patterns of the signal that h
been measured in the experiment with solutions obtaine
the theory. In such a comparison we only pay attention
qualitative behaviors of the amplitude such as growth, os
lation, and saturation at some level.

Even a visual comparison of the instability signal fro
Ref. @2# shows a clear resemblance to our curves. In one c
~Fig. 5 of Ref.@2#!, after injection in the ring, the amplitud
of the signal from spectrum analyzer tuned to a sideb
frequency began to grow monotonically, and after so
time, of the order of the synchrotron damping time, satura
at approximately constant level. This situation is very simi
to our Fig. 1~a!. In another case~Fig. 4 of Ref.@2#!, oscilla-
tions with decreasing amplitude were observed, which can
identified with Figs. 1~b! or 1~c!. In later measurements@17#,
amplitude oscillations with approximately constant modu
tion were measured. This situation reminds us of our F
1~e!. Unfortunately, at this time we are not able to compa
with the experiment theoretical predictions for the period
the nonlinear oscillation, although preliminary crude es
mates indicate they are about of the same order.

In conclusion, our theory shows qualitative agreem
with the signals observed in the SLC Damping Ring sin
bunch instability. Further work is planned to make a mo
definite comparison of the theory and the experiment.
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