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Nonlinear dynamics of microwave instability in accelerators
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We develop a nonlinear theory of the weak single bunch instability in electron and positron circular accel-
erators and damping rings. A nonlinear equation is derived that governs the evolution of the amplitude of
unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical
solutions to this equation show a large variety of nonlinear regimes depending on the growth rate of the
instability and the diffusion coefficient. Comparison with the observation in the Stanford Linear Collider
Damping Ring at the Stanford Linear Accelerator Center shows qualitative agreement with the patterns ob-
served in the experimentS1063-651X97)11605-1

PACS numbegps): 41.85—p, 29.27.Bd, 41.75:i

[. INTRODUCTION nonlinear stage of the instability. A quasilinear theory of the
bunch lengthening due to single bunch instability was devel-
Microwave single bunch instability in circular accelera- oped in Ref.[6]. In Ref.[7], using a numerical simulation
tors has been known for many years. The instability usuallymethod, D’yachkov and Baartman studied a specific mecha-
arises when the number of particles in the bunch exceedsism that generates sawtooth oscillations due to the double-
some critical valueN., which can vary depending on the peaked nature of the stationary distribution. A simulation of
parameters of the accelerating regime. Typically, the instathe SLC damping ring instability, that also showed nonlinear
bility leads to the growth of the bunch lengthturbulent  oscillations of the amplitude, was performed in H&fl. Re-
bunch lengthening)' and the increased energy spread of thecently, Heifets proposed a theory of nonlinear oscillations
beam[1]. The origin of the microwave instability is usually considering the nonlinear phase of the instability as an equi-
associated with unstable oscillations of the bunch caused bibrium around a nonlinear resonanf@]. However, being
the high-frequency part of the impedance of the vacuunbased on either computer simulations or some specific as-
chamber. sumptions regarding the structure of the unstable mode, these
Recent observations in the Stanford Linear Colliderworks, in our view, do not give a consistent and universal
damping ring at the Stanford Linear Accelerator Cefi8r  description of the nonlinear stage of the instability.
with a low-impedance vacuum chamber revealed some new An attempt at a more general consideration of the prob-
interesting features of the instability. It was found that, inlem, based on the nonlinear Vlasov equation, is carried out in
some cases, after initial exponential growth, the instabilitythis paper. We adopt an approach recently developed in
eventually saturated at a level that remained constant througlasma physics for analysis of the nonlinear behavior of un-
the accumulation cycle. In other regimes, relaxation-type osstable modes in dynamic systems near the instability thresh-
cillations were measured in the nonlinear phase of the instasld [10,11]. Assuming that the growth rate of the instability
bility. In many cases, the instability was characterized by ds much smaller than its frequency, we find a time dependent
frequency close to the second harmonic of the synchrotrosolution to the Vlasov equation, and derive an equation for
oscillations. the complex amplitude of the oscillations that is valid in the
A vast literature devoted to the microwave instability nonlinear regime. This equation, after proper normalization,
mostly focuses on the linear theory. The main objective ofcontains only two dimensionless parameters, and can be eas-
this theory is to predict the frequency, growth rate, and strucily solved numerically. It turns out that even without a de-
ture of the perturbation as a function of beam parametersailed knowledge of the nature of the instability, we can
Especially important for the experiment is a determination ofqualitatively analyze and predict different patterns of the sig-
the threshold of the instability for a given wake in the accel-nal that can be observed in the experiment in a weakly non-
erator. Mathematically, the linear problem reduces to a set dfnear regime.
integral equations whose solution usually invokes elaborate The paper is organized as follows. In Sec. Il we formulate
numerical method§3-5]. the stability problem in terms of the Vlasov equation, with a
A solution obtained in the linear theory, however, cannotright hand side due to the effect of synchrotron radiation. In
explain the time development of the instability above theSec. Ill, a brief review of the linear theory for a single bunch
threshold. Several attempts have been made to address timgtability is given. Section IV contains a general derivation
of an equation for the evolution of the amplitude of weakly
unstable oscillations near the threshold of the instability. A
*Also at Budker Institute of Nuclear Physics, Novosibirsk, detailed calculation of the nonlinear part of the equation is
630090, Russia. presented in Sec. V. In Sec. VI we include a synchrotron

1063-651X/97/565)/59769)/$10.00 55 5976 © 1997 The American Physical Society



55 NONLINEAR DYNAMICS OF MICROWAVE INSTABILITY ... 5977

radiation term into the nonlinear equation, and introduce di- In the equilibrium state, the distribution functiaf and

mensionless variables that minimize the number of free pathe HamiltonianH do not depend on time. The equilibrium

rameters in the equation. An analysis of the solutions andolution of Eq.(6) was given by HaissinsKil4],

results of numerical computations are presented in Sec. VII,

and in Sec. VIl we discuss the main results of the paper. Ho( 2,—6)
cpog |’

(z,8)= consiX exp( — (7)

II. BASIC EQUATIONS

whereog= k! yp is the rms energy spread of the beam in

We start from the equations of motion in the longitudinal ) e .
9 9 the absence of the wake, aht}, is the equilibrium Hamil-

direction(see, e.g., Ref.12]):

tonian.
7= —c7é, 5= K(z1), (1) It is convenient to introduce dimensionless variables
wherez is the longitudinal coordinatej is the relative en X=—, p=— 2 r=twg, F=ou )
ergy deviation,z is the slip factor, the dot indicates differ- o, og

entiation with respect to timg and
where o, is the rms length of the beam without wake, and

® re (*,., , 0,=0g|n|clwg. In these variables, the Hamiltoniaf3)
TS ToeyJZ dz'n(z’,yw(z’ - 2). (2) tazkes Itzl\e|foms10

In Eq. (2), wg denotes the unperturbed synchrotron fre- H(x,p,7)=3p*+U(x,7), 9
guency; T, is the revolution periodr, is the classical elec- ) )
tron radius,y is the relativistic factorn(z,t) is the longitu- ~ Where the “potential energy'U is
dinal beam density;/* n(z,t)dz=N, where N is the
number of particles in the bunch; am2) is the longitudi- U(x,7)= bx2—| fxdx’S(x’—x)fx dp F(X'.p.7),
nal wake function. The first term in E@2) corresponds to x —o
the potential of the accelerating voltage, and the second term (10
describes the wakefield generated by the bunch. _
Equations of motior{1) can be obtained from the follow- with
ing Hamiltonian:

| NTe (11)
2 -
0} r z Toywsoo,0
H(z,— 8,t)=3cnd®+ 2——ef dz' 07TS0TZTE
( )=2¢7 2nc ToyvJo
and
xf dzZ'n(z",tyw(z"-2'), 3 X0g
Z S(x)zJ' dzwz). (12)
0

in which z plays a role of a coordinate, and$é is the con-

jugate momentum. _ Equation(10) follows from Eq.(3) if one takes into account
We will use a distribution function)(z,6,t) of the par-  thatw(z)=0 for z<0, and changes the order of integration
ticles in the bunch such that, integrating ovgrgives the  in the last term of Eq(3). Note that the functior§ is a
particle density dimensionless function of its argument.
. Let us now perform a canonical transform fronandp to
n(zt)= Nf ¥(z,8,)ds. (4)  action and angle variablelsand 6 of the equilibrium Hamil-
— tonian Hy, and denote by the deviation of the potential
energy from the equilibrium in Eq9). SinceH, depends on

This distribution function satisfies the Vlasov equation WlthJ only, the total HamiltoniarH(6,J.t) takes the form

a Fokker-Planck ‘“collision” term on the right hand side,

o H(0,3,7)=Ho(J)+V(0,3,7). (13
—CHH =R (5) _ _ _ _
The Vlasov equation foF in terms of action-angle variables
where we have the Poisson brackets on the left hand sidés,
R i he eff f th h i ~ ~
andR describes the effect of the synchrotron radiatisee, 9F OE NOE o oF

e.g.,[13)), - — =
o Tt e ae a4

J Iy

R= %( VD'//5+K% : ®  where ws=wy(J) is the frequency of synchrotron oscilla-
tions with the wake taken into accountg(J)=dHy/dJ.

In Eqg. (6), yp is the damping time for the amplitude of the Suppose thaFy(J) is the equilibrium distribution function,

synchrotron oscillations, and is the diffusion coefficient andéF(J,0,7)=F—Fq(J) is its deviation from the equilib-

associated with the quantum nature of the radiation. rium. ThendF satisfies the equation
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ISF  9oF 9N 9F, ISV 9SF 9oV 1F _
g7 9S50 0 a3 a0 a3 a3 a6

1 (2= (2= .
Knm(J,Jl)=Efo , dode,e' M1 "9K(J,6,d,,6,).

(15 (23)
where The integral on the right hand side of E@2) defines an
analytical function in the upper half plane of the complex
5’\7(9 J 7-)=—If dJ,d6,K(3,d1,6,0,) 5F(34,01,7) variable w; for Imw < 0 the integral must be analytically
" G Lo continued into the lower half plane. For a real valuewgthe

(16) integration is performed along a contour in the complex

and K(J,3;,0,0.)=S[x(J,0)—x(J;,0,)]. We note that plane which bypasses possible singular points of the inte-
vJyi1,v,V1)— ) 1.Y1)1-

. grand below the polésee, e.g.[12]). The residues of inte-
Egs;éi?r%:tri]c?rflig)tﬁ;e difﬁ(;tﬁgﬁc:s OS\? ewe did not make anygral (22) are associated with the Landau damping effect.

IIl. LINEAR THEORY IV. NONLINEAR THEORY

Let us assume that the instability has a threshold corre-
ponding to a critical value of the parameter| . with the
requency at the threshold=w. (Imw .=0). We will be
interested in the analysis of the nonlinear phase of the insta-

SF=f,(J,0)e '“+ c.c., (17) bility in the vicinity of the threshold when the growth rate of
the instabilityl” is much smaller thaw., I'<w.. In other
where for the sake of brevity we use the notation “c.c.” to words, we assume that the instability is weak, and that it

In linear theory, the last two terms on the left hand side in
Eq. (15 must be discarded. We assume that the perturbatio
of the distribution function oscillates with the frequeneoy

denote a complex conjugate of the first term. develops on a time scale which is much larger then the pe-
The perturbation of the potenti® is riod of the oscillations. It turns out that in this case one can
- _ separate a “slow” time scale on which the amplitude
V=Ve '“7+ c.c. (18)  evolves from “fast” oscillations with the frequenay,, and

] ] o ] __ derive nonlinear equations for the evolution of the amplitude
SinceV is a periodic function off, we can expand it in  of the instability by averaging oven.. In this section, we
Fourier series, will give a general description of the approach following a

o similar analysis in the theory of nonlinear plasma oscillations
— ing [15].
v n;w un(J)e (19 First, we rewrite the result of the previous section in a
concise form,
For simplicity, here we will neglect the effect of the synchro-
tron damping in the linear theory by dropping tReterm in L(w,1)V,=0, (24)
Eqg. (15). This greatly simplifies the linear analysis, and is
USUa”y aSSUmed in the ”terature. HOWEVGI’, as we will see i@vhere the |inear Operatd;_r represents a set Of integra' equa_
Sec. VIII, the effect of the synchrotron damping is crucial for tions (22) and (23),
the nonlinear stage of the instability and will later be in-
cluded in the derivation of the nonlinear equations. R <
Substituting Egs(17) and (19) into Eq. (15) gives, inthe  L(w,)V,= >, "’
linear approximation, n=-"

o) =1 >, dJ;d6;KF4(Jy)

m=—o

&f © nvn(Jl)
. 1 . ing X————
—iwf + ws(g_g_FO > invp(d)en?, (20 w—Nwg(Jy)

n=-—ow

: (25

andV,, is a Fourier harmonic of the functiovi correspond-
ing to the frequencyw, V,=3v,(J)e"’. Note that at this
nva(Jd) ., point we can also include il a contribution from the
e’ (21) Fokker-Planck ternR. A particular form of the operatdr is
not essential for the analysis in this section.

Now, substituting this equation into E¢L6) yields an infi- The frequency of the oscillations, at the threshold and
nite set of integral equations that determine eigenfrequencig§e corresponding eigenfunctiaf, =u. are determined by
and eigenfunctions for the collective oscillations of thethe equation

bunch:

whereF = dFydJ. A solution to Eq.(20) is

fi=—Fp 2

n=—o0w ®W—Nwg

B L(we,lc)ue=0. (26)
* , Mo m(J1)
Un(‘])=|m:2_x 0 dJlFO(Jl)Knm(J'Jl)m' We now need to define a scalar product of two functions
s (22) u andw of the phase space variablésé. Let us denote this
product by (1,w). Usually, scalar multiplication in Hilbert
with the kernel given by space is given in terms of an integration of the product
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uw* over J and # with some weight function. The exact In Eg. (31) we neglected the term containimg,+wc, which
lows, and we do not specify it here. For a given scalar prod-

uct, we can define an operatbf conjugate tol satisfying L(w, I+ AD(A, -, UcTAV,)=N,,. (32)
the following condition for two arbitrary functions and
w: Making a Taylor expansion of the linear part and neglecting
the productAl AV, one finds
(u,Lw)=(w,L*u). (27) ) )
N aL aL
We will assume that the operatbi is known and, together Lwe I AV, + (@ wC)A“’_‘”cam Ut ARG, a1 e
with the solution of Eq(26), the solutionw,. of the conjugate .
problem, =N,, (33
L (gl )w=0, (28  Where the derivatives of the operatbr are evaluated at

w=w; andl=I,. We can annihilate the first term in Eq.

is available. Note that the solution of E(8) represents a (33) by a scalar multiplication witiw, and using Eqs(27)
linear problem, and in each particular case can be acconnd(28). The result is
plished by standard methods of numerical analysis.

We now consider a situation wherslightly exceeds the
threshold] =1.+ Al, with Al <l . Taking into account non-
linear terms in the Vlasov equation, we will assume that they R
are much smaller than the linear ones. That is to say, we =(We,N,). (34
expect that the instability, after initial exponential growth, i . i
will eventually saturate at a level where the amplitude of the/V& Now multiply Eq.(34) by €'“c”, and make an inverse
oscillations is relatively small. If this is not the case, and theFourier transform to timer:
instability evolves to a highly nonlinear regime, our theory ~ 1
will or)Iy be applicable for a relatively short perioq of tim_e —A+iAwA= _ieiwCT(Wc,N)(WC,ﬂu(J . (35
following the linear growth. Fortunately, as we will see in aT d
Sec. VII, in many cases the damping associated with syn-
chrotron radiation indeed limits the growth of the instability, Where
and the whole process is described within a framework of a ~ - -1
weakly nonli'near approximation. _ Aw=—Al ( W, iuc) (Wc , ﬁuc) (36)

With nonlinear terms, the equation for thie, can now be al dw
written as

aL
((1)— wC)Awwa We, %uc

aL
+A|Aw,wc Wc,ﬁuc

is a linear frequency shift due to the changé .dfiote that in
C(w,)V,=N,, (29) Eq. (:_%5), aftgr the inverse Fourier transforiy, represents a
function of time rather thaw.
whereN,, is a Fourier transform of the nonlinear term ne- WIthOl:,I'[ the rlght hand.S'd? it follows fFOm Ecj35} th"."t
‘ . i N the amplitudeA will vary with time as exp{-iAw7), which is
glected in the linear analysis. The operakd] depends on 5 rivial consequence of the fact that in linear theafy
the parameter, and acts on the functio, xexp(ion) with v=w.+Aw. In Sec. V we wil find the

Following a general prescription of nonlinear theory of ,hjinear term averaged over fast oscillations which adds
oscillations[15], we will assume the following type of solu- oniinear dynamics to EG35).

tion (in time representatigrfor Eq. (29):
V=[A( T)ucefi‘”CT-F c.C.]TAV(I67), (30) V. DERIVATION OF NONLINEAR EQUATIONS

The nonlinear terms in our problem arise from the last
where|Auc|>[AV|. The first term in Eq(30) describes 0s- term in kinetic equatioti15). We need to solve this equation
cillations with the eigenfunctioru;, frequencyw., and  approximately, and findN in Eq. (29). In order to simplify
varying amplitudeA(7), and the second term is a correction the derivation, we first consider the case wier0. In Sec.
due to the deviation of the exact eigenfunction fram Itis V| a generalization foR+0 will be given.
important to emphasize here th&{r) is supposed to be a Since the nonlinear term is assumed to be small, it will be
slow function of time,|dInA/dr}<w.. This also means that accurate enough to neglect the/ term in its evaluation.
the spectrumA, of the functionA(7) is represented by a Hence \~/mA(r)uce““’cT+ c.c., whereu, can be decom-
narrow peak(the width of the peak is much smaller than posed into Fourier series oveér
w¢) localized near the zero frequency.

We now need to make a Fourier transform of E3f)) and ,
substitute it into EQ.(29). Since we are interested in the Ue= > up(den’. (37)
frequency range close ®., an approximate relation holds: e

oo

We will also represent the perturbation of the distribution

Vo=Ay-wlctAV,. (3D function F as
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SF=[f1(J,0,7)e '™+ c.c.]+fy(J.6,7)
+[ f( J.6,7)e 2"+ c.c], (39

wheref, f;, andf, are slow functions of tim¢asA(7)] in
the sense that/dt<w,.

As calculations show, the main contribution to the final

equation comes from the nonlinear terms in whiéh is
differentiated with respect td. This allows us to neglect the
last term in Eq(15) when substituting E¢38) into Eq.(15),

ofe g oV IfY gV af, o 2
97 TG0 e ae a0 39
gr S el Oy 0 5y T (40

ot o N oFo N oty aV* of,
gr T Oy T 00 T 90 93 90 93
(41
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with n#0 will cause only small oscillations iy at the
frequencynwg, without systematic changing of its ampli-
tude. Keeping onlyn=0 terms we have

)

>

n=-—w

afg d , dFgq
-—= i —g¥—+ c.c.
o mAuna‘]gn 3 c.c

5 (48)

When differentiating with respect td in Eq. (48), it is suf-
ficient to differentiate only the exponential term
exdi(m—m)(w—nw¢(J))] in the expression fog [see Eq.
(47)]; all other terms will be relatively small because we
assume that the time scale on which the nonlinear effects
become essential is such thab>1,

o0

>

n=-—w

afg

in3A( T)UpUN wéFéj dri(7—79)
ks 0

XA*(7y)e (7@ mNos) 4 ¢ ¢, (49)

where the asterisk indicates complex conjugating. The last

two terms in Eq.(41) imply that we can split the function
f, into linear L) and nonlineafNL) parts,

fo=f+fi", (42
wheref'i satisfies the equation of linear theory,
afs | afh oV aF
E—wal-l—wSa—a—&—aw—O, (43

and f'" is the nonlinear correction arising from the higher
order terms in the kinetic equation,

ot

or

NL 7 7
ot o afts oV oty av* of,
S 96

960 93 96 3J =0.
(44)

In equations forf; andf, we can substituté& for f,.
Let us consider first Eq43) for the linear part of the

distribution function. As a matter of fact, this is the same

equation as Eq20); however, we now want to find its so-

lution in the time domain rather than in the frequency do-

main. We expand}; in Fourier series ir,

oo

fi= 2 gn(3,7)Fee™, (45)
n=-—ow
and find, from Eq(43), an equation fog,,,
d9n . :
?—I(w—nws)ganA(T)un. (46)
This equation can be easily solved,
gn=inun(J)J A(ry)e e nedd (47)
0

We now consider Eq39) for fy. The dominant terms in
this equation will be those that do not depend @nterms

Now we can integrate this equation, yielding

oo

fo=2 Re 2,

.
in3ng’ounu§J driA( 71)
n=-o« 0
1 .
X | dr 71— 75)A*( 7, )e (T T2) (@ nes)
0

(50

In a similar fashion, the following equation can be obtained
for f,:

of, f, < . ) .
- ~2eftos—2= > infA(DUZw Fie?n?

n=—o

.
xf driA(r)e (T nes),
0

(51
with the solution
f2: 2 inSwéFéuﬁeZinHJ' dTlA(Tl)
n=—oo 0
% f dry(ry— ) A(rp)e (BT (5
0

We now have to substitutg, and f, into Eq. (44). As cal-
culations show, the leading contribution t§- comes from
fo; nonlinear terms arising fror, turns out to be small in
parameted’/ ws. Keeping onlyfy and performing differen-
tiation with respect tal in the exponential terms only, we
find
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ot ot 4V ot with respect tal. In other words, the most important effect
—— i ofY+ wg 20 =783 of the synchrotron radiation will be the quantum diffusion of
T particles in the phase space rather than energy loss. Keeping
o only the second derivative iR gives
=— 2 in%w))?uyurFoe’ 2
. R=D() 5
) =D(3) 732- (57)
X2 Ref dTlA(Tl) . . .. .
0 The diffusion coefficientD was found in Ref.[14], and
equals
1
_ 2 A
<, drtn A D(3)=Jyp/wyd). (58)
x g (n=mn)eney (53)  The derivation offY- given in Sec. V can now be repeated

with the diffusion termR on the right hand side of the Vla-

with the solution sov equation. For the sake of brevity, we will omit this deri-

® vation here, referring the reader to REff6], where a similar

f?L: _ 2 in5(w;)2u;§ uﬁFéderlA( ) problem was worked out fqr a npnlinear pla.sma. oscillations
n=—ow 0 problem. In our case, the inclusion of the diffusion reduces
formally to appearing of a exponential factor in the integrand
x2 Re | drA(ry) | dry(ryrm) 2A% (1) of Eq. (56).
0 2 2 0 3L727173 3
(7= 7ot 72) (0— NL e 5 12 « 240 9F0
X @t (0 ney) (54) Nl=—27i > n%(wl)?8(w-NwgutuZen’——

Finally, since timer is supposed to be much larger than

: . . . 72 —2¢
ws_l, one can use the following mathematical identity when X f d¢A(T— §)§2J doA(r—{—0)
integrating overr: 0 0

. e _ XA* (7= 27— o) Batlo+ (234 (59)
J dxf dy f(x,y)e™=27£(0,0), (55)
e e whereB,=n?(w.)?D(J,), andJ, is the value of the action

which in application to Eq(54) after changing the variables at thenth resonancenws(J,) = o.

o=r1,—1, and{=7— 7, yields We are now in position to find the nonlinear teNrin Eq.
(35). Since it will be multiplied by exp.7), we need a
- - dF component inN that oscillates as exp{iw.7), S0 that the
NL__ 5 2 2 0 0 c’)y
fi= _27”“:2_@ N>(@g)*8(w—nwg)urume!™’—= right hand side in Eq(35) would be a slowly varying func-
tion of time. From Eqs(16) and(38) we see that such term
712 ) T—2¢ inVis
X dZA(T— )¢ doA(7—{—0)
0 0
XA*(7—2{—0). (56) ‘W:_lceiiwcrf dJ;d6:K[J,d1,6,0:)(F1(J1,01,7)
We have found a nonlinear part of the perturbation of the +fII‘L(\]1,91,T)], (60)

distribution functionf’f”‘. As we see, this function is propor-

tional to the third order of the amplitudé. On the linear which gives, forN,
stage of the instability, wher is small, andf)- can be
neglected; however, as grows, the nonlinear term becomes S e NL

more important and eventually competes with the linear part N=—lce ™" | dJyd01K(J,J1,0,61)117(J1, 01,7).
f}. Notice also, that due to the presence dffunction (61)

6(w—nwg), the nonlinear term is peaked at the resonant . . . , .
v;ﬁ:es g)fszthe actiod.. such thahw (g )= With this expression, the right hand side of E8p) becomes
n s\¥n "

* 12
VI. EFFECT OF SYNCHROTRON DAMPING 2ml, S Ky(3)F nlw)| fT AL A(r— ) 2
AND NONLINEAR EQUATION FOR THE AMPLITUDE n=—oo 0

In Sec. V we neglected the effect of the synchrotron ra- =2
diation in the Vlasov equation. To include ti term we X fo doA(r—{-0)
need to transform it first td— @ variables. In doing so we
notice that, because of strong localization near the resonant ><A*(T_2§_g)e*Bn§2[U+(2/3>§1, (62
valuesJ, of the perturbed distribution function, the leading
term in R will be the one containing the second derivative where
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A~ -1 T T T T
Kn(J)=(Wc,%Uc) J’ daei”"(wc,K)u: Uﬁ, (63) ol 0.4 j (a) : 0.8 I (b) i
02 F 404 H |
and the scalar product«;,K) in Eq. (63) is performed with 0 e, | C ] 0 U | ]
respect to variable3; and 6, in K(J,J1,6,6,). 0 100 500 0 100 200
To simplify the analysis further, we will assume here that 16 . | . 2 . | .
only one term dominates in the sum of E§2). This as- L | i
sumption is correct if the variation of the frequeney(J) Ll © | (d) |
within a distribution function is not very large, so that equa- al08 1
tion nwy(J,)=w. has a solution only for one value of. 0 ) | | ] 0 | | |
Omitting the sum sign in Eq62) gives the following non- 0 100 200 0 100 200
linear equation for the amplitudé: 5 : : : . : :
JA (e 4 2 "
E+iAwA=27-rI0Kn(Jn)F(’)n4|w;| lal 1 ]
72 —2¢ 0 ' 0 ' . '
X fo d¢A(T— g)ngo doA(t—{—0) 0 100 200 O 100 200
T T T T T T
AR (7— 20— )@~ Brélo (2941 64) ul 4 @ 7] r (]
2 <4 40 -
In this form, Eq.(64) contains two complex and one real M}Y\WVM\/W\A B 7
parameters. For numerical solution, it is convenient to reduce 00 100 200 0 0 10 ' 20
the number of the parameters by choosing other variables. : :

First, we denote the real part of the coherent frequency shift
by O, Aw=Q+iT", and introduce the absolute valpeand

the phasap of the complex factor in front of the integral so FIG. 1. Plots of the absolute value of the amplitlegvs time

& for ¢=0. (8 g=0.1; (b) g=0.3; (c) g=0.4; (d) g=0.48;

r 4 o _ ¢ . .
\/; iQ 1/3 . . . .
a=A¥,ge T, g= g &=B; "1, (65  only if |¢|<w/2. It is given by the following formula that
n n can be easily verified by direct substitution into EG):

Eq. (64) becomes

1
Ja _ i &2 £-2¢ a2181/6gl/2 efigtamﬁ, (67)
&g_ga__ed) 0 d¢g a(g_g)gzj'o do a(é—{—o) ‘/F(l/3)COS¢

X a*(¢—2{—g)e {lo+@3a, (66)

The parameteg here plays a role of dimensionless growth 0.4

rate of the instability that is measured in time units related to lal 0.2
the synchrotron damping rate. Note that now E&f) con-

tains only two real parameterg,and ¢. Y
1.2
VIl. ANALYSIS AND SOLUTIONS
OF NONLINEAR EQUATION lal 0.8
A complete analysis of nonlinear dynamics of the insta- 0.4
bility in any particular case requires computing of the coef- 0
ficients in Eq.(66) which can only be done based on the

solution of the linear problem described in Sec. lll. In the 80 [
general case, this constitutes a major computational task, i
which lies beyond the scope of the present paper. Rather than lal 40 - i
trying to find a particular solution to nonlinear problem for a L i

given set of beam parameters, we will outline here possible 0 L '
scenarios by numerically solving E¢6) for different val- 0 10 20
ues ofg and ¢. £
First, note that Eq(66) admits an asymptotic solution in
the form ofa= constx exp (\é) that corresponds to oscil- FIG. 2. Plots of the absolute value of the amplitudgvs time

lations with a constant amplitude and a coherent frequency for ¢= /4. () g=0.1; (b) g=0.2; (c) g=0.3; (d) g=0.4; (¢)
shift X. This solution is valid in the limit—c and exists g=0.5.
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2 T I T T T I T in circular accelerators. We derived an equation which de-
scribes the evolution of the amplitude of the instability and
B i depends only on two dimensionless parangetera normal-
ized linear growth rate of the instability, and a phase of
nonlinear term¢. We found that for small values ap the
nonlinear term has a stabilizing effect and, for not very large
values ofg, results in the saturation of the instability at some
level. Larger values ofj lead to relaxation-type oscillations
of the amplitude. In the case @> 7/2, within the limits of
the applicability of our theory, the nonlinear term does not
0 25 50 75 100 prevent the unlimited growth of the amplitude.
g As was mentioned above, a complete comparison of our
theory with the experiment requires a solution of equations
FIG. 3. Plot of the absolute value of the amplitu@é vs time  Of the linear theory, and a determination of the parameters in
£ for = andg=0.1. the nonlinear equation. Due to the computational complexity
of this problem we did not attempt to solve it in this paper.
whereI'(1/3) stands for the gamma function. According to However, even without knowing the exact parameters, we
this solution, the steady state amplitueé increases in pro- can try to compare different patterns of the signal that have
portion to the square root of the dimensionless growth rateheen measured in the experiment with solutions obtained in
91/2. It turns out, however, that this solution is only stable forthe theory. In such a comparison we only pay attention to

lal 1 - —

relatively small values of the parametg(11]. qualitative behaviors of the amplitude such as growth, oscil-
We have numerically solved E¢66) for several sets of |ation, and saturation at some level.
g and ¢. The results are presented in Figs. 1-3. Even a visual comparison of the instability signal from

In Fig. 1 we show solutions fo$=0 and various values Ref, [2] shows a clear resemblance to our curves. In one case
of g starting with a sufficiently small value d, so that (kg 5 of Ref.[2]), after injection in the ring, the amplitude
initially the nonlinear term is unimportant. For small values ¢ ihe signal from spectrum analyzer tuned to a sideband
of g, g<0.4, we see that the solution, after initial eXponen'frequency began to grow monotonically, and after some

saltr?:gwrth r?naChfﬁ the F‘;ﬁut'i"bn”u[;n aftr?]r srtre]v?ral fsnc'"a:]t'ondstime, of the order of the synchrotron damping time, saturated
creasingg, the osciiiations become more pronounced, ,, approximately constant level. This situation is very similar

and finally, atg=0.48, a steady state solution with periodic to our Fig. 1a). In another caséFig. 4 of Ref.[2]), oscilla-

the value of 0.5 causes the period of those. osgiladons (JONS With decreasing amplitude were observed, which can be
break up which, after an initial transient period, results in a'dent!f'ed with _F|g_s. 1) or 1(c). In Ia}ter measuremen(s7],
relaxation-type behavior of the amplitude. For even Iargeﬁmp“tUde oscillations wth appro_xmately constant modulg—
g, g>0.8, the nonlinear term can no longer stabilize thetion were measured. Th_|s §|tuat|on reminds us of our Fig.
system, and the amplitude starts to grow without limit. 1(¢). Unfortunately, at this time we are not able to compare
Figure 2 shows solutions fop= /4. In this case the with the experiment theoretical predictions for the period of

amplitude oscillations appear to be less stable, and a ruibe nonlinear oscillation, although preliminary crude esti-
away solution develops fay=0.5. mates indicate they are about of the same order.

As was mentioned above, a stable asymptotic solution In conclusion, our theory shows qualitative agreement
exists only if| ¢| < /2. Numerical solutions indicate that for With the signals observed in the SLC Damping Ring single
|#|>m/2 all the solutions diverge with unlimited growth as bunch instability. Further work is planned to make a more
é—o0. An example of such a solution is shown in Fig. 3. We definite comparison of the theory and the experiment.
see that, in this case, the nonlinear term cannot stop the in-
stability whose amplitude continues to grow, and eventually
goes beyond the limit of applicability of the present theory. ACKNOWLEDGMENTS
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