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Multiple autoresonance accelerations generated from a chaotic base

Y. Gell
CET, P.O. Box 39513, Tel-Aviv 61394, Israel

R. Nakach
Département de Recherches sur la Fusion Controˆlée, Association Euratom—Commissariat a` l’Energie Atomique, Centre d’Etudes de

Cadarache, 13108 St. Paul lez Durance Cedex, France
~Received 20 September 1996!

A multiple autoresonance process for accelerating electrons is presented. It is based on the autoresonance
mechanism put forth in a previous publication@Y. Gell and R. Nakach, Phys. Lett. A207, 342 ~1995!#. The
configuration under study consists of two circularly polarized electromagnetic waves propagating in opposite
directions along a constant magnetic field and having frequencies in the electron frequency range. Such a
configuration admits, under appropriate conditions, stochastic motion of the particle. It is shown that the
stochastic nature of the motion plays an important role for inducing the multiple autoresonance acceleration.
The threshold for the onset of stochasticity when considering waves with different characteristics and particles
with different initial conditions is evaluated and compared with the numerical data. It is shown that for a proper
choice of the parameters of the system, the multiple autoresonance process can generate a bulk of particles
moving in a preferential direction and having a considerable time-averaged velocity parallel to the magnetic
field. Practical applications of this result are mentioned.@S1063-651X~97!12305-4#

PACS number~s!: 52.35.Nx, 52.20.Dq, 05.45.1b, 52.50.Gj
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I. INTRODUCTION

The autoresonance~AR! interaction has recently been a
tracting a large amount of interest both as a possible ca
date for accelerating particles@1,2# as well as for fusion cur-
rent drive @3# and in electron cyclotron heating of plasm
@4#. The limitations of AR mechanism are very well know
namely,~a! the necessity of having exact appropriate init
conditions for this mechanism to be operational and~b! the
necessity of having the refractive index of the medium of
propagating waves equal to one. Attempts to overcome th
limitations have been reported in the literature@5–7#. For
more details and references regarding these investiga
the reader is referred to Ref.@6#.

In a recent publication@8# we have shown that there is
possibility to remedy the first shortcoming inherently asso
ated with this process by a mechanism that allows for p
ticles far away from the AR conditions to get pushed in
these conditions, staying there for a considerable length
time. In Ref.@8# we limited ourselves to a specific configu
ration of two circularly polarized electromagnetic~e.m.!
waves having the same amplitudes, wave numbers, and
quencies propagating in vacuum in opposite directions, t
considering essentially a standing-wave configuration. An
trinsic feature of the relativistic dynamics of electrons
such a configuration is the appearance of chaotic mo
manifested as a spread out band in the associated p
space. However, this stochastic motion does not necess
prevail indefinitely since the particle, due to a possible A
capture, might leave the stochastic sea and undertake a
lar motion. This unexpected phenomenon might have pro
ising applications, which we will mention later on.

The significance of our results might be somewhat rest
tive due to the special configuration considered in Ref.@8#,
namely, the simplifying conditions associated with
551063-651X/97/55~5!/5915~9!/$10.00
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standing-wave configuration. In this paper, we show that
transition from chaotic to regular entrainment is fundamen
to the two-e.m.-wave configuration, the standing-wave c
being only a particular example. The importance of this g
eralization of the phenomenon lies in the flexibility it rende
to explore large portions of phase space searching for
chasticity. By choosing properly the parameters of t
waves, one allows for an enhanced population of particle
have a chance to participate in AR acceleration, result
thus in an efficient way of transferring energy and mome
tum from the waves to the particles. Implications of th
process could be of importance for the current genera
and heating of plasmas in thermonuclear fusion projects

This general transition process from chaotic motion to A
acceleration is exposed and explored in Sec. II, where
solve numerically the equations of motion for various para
eters and initial conditions of the system. In order to exhi
clearly the essential features of this process, we presen
solutions of equations of motion both in real time and
phase space. A convenient formalism for analyzing and p
senting phase-space characteristics of the motion of the
tem is to use an Hamiltonian function expressed in act
angle variables. In a phase-space representation of these
ables, time is of course eliminated. However, much insi
can be gained when time evolution of the action variable
explicitly exhibited. We thus present the time dependence
the two actions in the same graph, which allows one to r
ognize favorable conditions for possible applications, as
will explain later on. This type of graph also reveals regu
motions when the amplitudes of the waves are below thre
old for stochasticity, chaotic motion when this threshold
crossed, and a transition state between stochastic and re
motion when AR capture is about to occur.

The possible existence of a chaotic band in phase spa
rather fortunate since it allows for particles being far aw
5915 © 1997 The American Physical Society
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5916 55Y. GELL AND R. NAKACH
from the appropriate conditions for AR capture to wand
and reach these privileged conditions. As the stochastic
havior of the motion of the particle is important for fulfilling
on a large scale, the requirements necessary for the AR
celeration of the electrons, it is desirable to have a straig
forward efficient way to detect the appearance of stochas
ity. This is readily accomplished by utilizing the usu
surface of section technique.

The prediction of the onset of this stochastic behavior
phase space is an essential part of the analysis of this p
lem and is dwelled upon in some detail in Sec. III. In th
section we derive approximate theoretical expressions for
threshold, depending on the whole set of parameters and
tial conditions. These predictions are compared then with
numerical results obtained from the solutions of the eq
tions of motion. The limitations and shortcomings of the p
dictive power of these expressions are discussed in deta

The fact that one can use an asymmetric configuration
waves and still have the AR entrainment process opera
allows for an acceleration of an ensemble of particles i
preferential direction. It is found that the time-averaged p
allel velocity of the particles can be very significant due to
accumulation in time of accelerating steps and can thus re
in the generation of a current. A discussion of these asp
of the analysis constitutes the major part of Sec. IV of t
paper, in which we also outline avenues for future resea

II. STOCHASTICALLY INDUCED AUTORESONANCE
PROCESSES

The important role that stochasticity plays in moving p
ticles to bring them in AR trapping regions in phase spac
motivating our research for appropriate schemes for gene
ing stochastic motion of the particle. As is well known@1#, a
single circularly polarized wave propagating parallel to
magnetic field cannot serve as a candidate for this purp
since such a system is completely integrable. However,
troducing an additional e.m. wave also circularly polariz
propagating in the opposite direction of the first wave c
lead to the generation of stochastic motion, as was show
Ref. @8#. In this work we deal with the very specific examp
of a standing-wave configuration. Hereby we relax this
strictive condition and study the more general parame
space of the system. To this end we use a Hamiltonian
malism for describing the relativistic motion of an electr
moving in the presence of two circularly polarized e.
waves having, in principle, different amplitude wave nu
bers and frequencies and propagating along a constant
netic fieldB0 that is fixed in thez direction.

The Hamiltonian describing the dynamics of the system
expressed in the standard manner as

H5$m2c41~cP1eA!2%1/2. ~1!

The essential physics lies in the expression of the ve
potential. Considering first two counterpropagating wav
the vector potential for this case will read

A5B0xey1A1$@sin~k1z2v1t !ex#1@cos~k1z2v1t !ey#%

1A2$@2sin~k2z1v2t !ex#1@cos~k2z1v2t !ey#%. ~2!

Without loss of generality, we can choosePy50 since the
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Hamiltonian is independent of they coordinate. For com-
pleteness we repeat the steps leading to equations of mo
as presented in Ref.@8#. Following the formalism as devel
oped by Chen and Schmidt@9#, we transform the coordinate
and momenta into action angle variables via the relation

x5A2Ic

eB0
sinu, Px5A2IeB0

c
cosu.

Time is eliminated with the help of the generating functio

F5~u2k2z2v2t !Pc1~u1k1z2v1t !Pf .

The transformed Hamiltonian expressed in normalized v
ables is

H̄~c,f,Pc ,Pf!5@11Ā1
21Ā2

21~ k̄1Pf2 k̄2Pc!2

12~Pf1Pc!12A2~Pf1Pc!~Ā1sinf

1Ā2sinc!12Ā1Ā2cos~f2c!#1/2

2v̄1Pf2v̄2Pc , ~3!

where c5]F/]Pc5u2 k̄2z̄2v̄2t̄ and f5]F/]Pf5u
1 k̄1z̄2v1t̄, and the normalized actionsĪ and P̄z are ex-
pressed in terms of the new momenta as

Ī5
]F

]u
5Pf1Pc , P̄z5

]F

] z̄
5 k̄1Pf2 k̄2Pc . ~4!

The normalizations of the other quantities areH̄5H/mc2,
Ā1,25eA1,2/mc2, P̄z5Pz /mc, t̄5Vt, v̄1,25v1,2/V,
k̄1,25k1,2c/V, z̄5Vz/c, Ī5IV/mc2, and P̄'5P' /mc

5A2Ī , V being the gyrofrequencyeB0 /mc. The Hamilton
equations of motion read

ċ5
]H̄

]Pc
5
1

g F2 k̄2~ k̄1Pf2 k̄2Pc!11

1
Ā1sinf1Ā2sinc

A2~Pf1Pc!
G2v̄2 , ~5!

ḟ5
]H̄

]Pf
5
1

g F1 k̄1~ k̄1Pf2 k̄2Pc!11

1
Ā1sinf1Ā2sinc

A2~Pf1Pc!
G2v̄1 , ~6!

Ṗc52
]H̄

]c
52

Ā2

g
@A2~Pf1Pc!cosc1Ā1sin~f2c!#,

~7!

Ṗf52
]H̄

]f
52

Ā1

g
@A2~Pf1Pc!cosf2Ā2sin~f2c!#,

~8!

where
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55 5917MULTIPLE AUTORESONANCE ACCELERATIONS . . .
g5@11~ k̄1Pf2 k̄2Pc!212~Pf1Pc!1Ā1
21Ā2

2

12A2~Pf1Pc!~Ā1sinf1Ā2sinc!

12Ā1Ā2cos~f2c!#1/2

5H̄1v̄1Pf1v̄2Pc . ~9!

Note that the HamiltonianH̄ is independent of time; it is thu
a constant of motion and is determined by the parame
and initial values of the system. This system not being in
grable forces us to analyze its solutions by using numer
techniques. Concentrating on the possibility to detect typ
AR accelerations, we find it convenient to present the
merical solutions of the equations of motion as evolving
time. An example for such a solution is shown in Fig. 1.
this figure we consider a set of parameters that correspo
to a non-standing-wave configuration~Ā150.07, Ā250.02,
k̄15v̄150.4, k̄25v̄250.2 assuming luminous waves,k̄1
5v̄1 , andk̄25v̄2!. By comparing this figure with Fig. 1 o
Ref. @8#, one realizes in a striking manner the nonpreferen
nature of the standing-wave configuration for the operati
ality of the AR mechanism. Furthermore, inspecting Fig.
one observes a main feature of the time dependence o
two actionsPf andPc . Indeed, following the heavy curv
corresponding to the time evolution of the actionPf with the
associated actionPc represented by the thin curve, one im
mediately observes that whenPf starts to increase conside
ably the other action remains essentially constant. This
related behavior of the two actions can be understood
inspecting the equations of motion when expressed via t
original variables. Indeed, considering, for example, Eq.~6!,
we thus obtain

df

dt
52v1~12bz!1

V

g
@11Ā1~ !1Ā2~ !#,

where

FIG. 1. Canonical actionsPf andPc as functions of the nor-
malized timet̄, for a system consisting of two circularly polarize
e.m. waves propagating in opposite directions with normalized
rametersĀ150.07, Ā250.02, k̄150.4, k̄250.2, v̄150.4, andv̄2

50.2. The initial values of the canonical action angle variables
Pf051.6, Pc051.5, f053.1, andc053.1. Symbols and normal
ization are as defined in the text. The heavy and thin lines co
spond to the actionsPf andPc , respectively.
rs
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bz5
vz
c

5
P̄z

g
5
k̄1Pf2 k̄2Pc

g
. ~10!

For an exact AR condition for the wave designed by index
the particle obeys the well-known relation@1#

g~12bz!5
V

v1
5

1

v̄1
. ~11!

Using then Eq.~9!, we get

H̄1v̄1Pf1v̄2Pc2~ k̄1Pf2 k̄2Pc!5
1

v̄1
,

which results in

Pc5

1

v̄1
2H̄

2v̄2
5const[Pc* . ~12!

We could of course have shown an analogous result by
terchanging the roles ofPf and Pc for the AR condition
g(11bz)5V/v251/v̄2 and getting then the condition fo
AR capture as

Pf5

1

v̄2
2H̄

2v̄1
5const[Pf* . ~13!

Now, considering Eq.~8!, since for exact AR condition
the phasef and the actionPc are constants, the integratio
of this equation leads to an unlimited growth of the acti
Pf . However, exact AR is an abstraction even for a sing
wave configuration due to the spread of the initial conditio
it is certainly so for a two-wave configuration. In gener
one should not expect an indefinite growth of one of t
actions, but rather a bell-shaped structure reflecting the s
variation in time of the corresponding phase.

Indeed, in Fig. 2 we show a typical behavior, in which w
observe successive AR captures manifested as bell struc
for one of the actions~the heavy curve! correlated with the
essentially constancy of the associated action~the thin line!.
These structures are separated by time intervals where
AR is not operative and the system undergoes stochastic
tion. One should realize that the two actions are on the sa

a-

e

e-

FIG. 2. Same as Fig. 1. The only change is in the initial con
tions for the actions, which now readPf053.7 andPc054.5.
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5918 55Y. GELL AND R. NAKACH
footing and might interchange their roles during the cou
of the interaction. As can be seen in Fig. 3, in an earlier st
one observes thatPf changes considerably, whilePc stays
almost constant; in a later stage, their roles are interchan
Consequently, the parallel velocity of the particle w
change its direction during the course of the motion.

The appearance of intervals of stochastic motion we h
been referring to can be seen in a transparent manner w
viewing the motion in phase space. To this end we sol
numerically the equations of motion~5!–~8! and present the
results in phase space using the surface of section techn
The cut plane we use is determined by the conditionf
50,mod2p). The conjugate action and angle (Pc ,c) are
presented as a point in this plane. Recalling thatH̄ is a con-
stant, the points in the cut plane determine completely
dynamics of the system. In Fig. 4 we present such a ph
space portrait of the motion of the particle. Following t
successive crossing points in time, we observe that the
ticle starts to undergo AR acceleration once it arrives at
propriate conditions of phase and action. Once it has bee
into this capture course~crossing number 202! the particle
completes a bell structure in phase space returning to
stochastic sea~point 635!. Wandering stochastically, the pa
ticle arrives at the right conditions~point 732!. It is set again
into an acceleration course and so on. The wandering pe
in phase space~points between 635 and 732! are the intervals
referred to previously as stochastic.

The mobility of the electrons provided by the existence
a stochastic region in phase space allowing for succes
AR captures is a rather general property of the system un
consideration. Indeed, the type of behavior seen in Fig
whereĀ1.Ā2 and k̄1. k̄2 , holds as well as whenĀ2.Ā1 ,
as can be seen in Fig. 5, and also holds whenk̄2. k̄1 . How-
ever, when the condition of counterpropagation of the wa
is violated and one considers copropagating waves no
chastic region is available for the particles and thus the s
cessive bell structures, randomly generated, can no longe
realized. To see this we consider the set of equations~3!–~9!
in which k̄2 is replaced by2 k̄2 accounting for the copropa
gation of the two waves. This set will read

FIG. 3. Same as Fig. 1. The changes are in the following
rameters and initial conditions, which now readĀ150.03, Ā2

50.01, k̄15v̄150.4, k̄25v̄250.2, Pf053.8, Pc051.4, f0

53.1, andc053.1.
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ċ5
]H̄*

]Pc

5
1

g F k̄2~ k̄1Pf1 k̄2Pc!111
Ā1sinf1Ā2sinc

A2~Pf1Pc!
G2v̄2 ,

~14!

ḟ5
]H̄*

]Pf
5
1

g F k̄1~ k̄1Pf1 k̄2Pc!11

1
Ā1sinf1Ā2sinc

A2~Pf1Pc!
G2v̄1 , ~15!

Ṗc52
]H̄*

]c
52

Ā2

g
@A2~Pc1Pf!cosc1Ā1sin~f2c!#,

~16!

Ṗf52
]H̄*

]f
52

Ā1

g
@A2~Pc1Pf!cosf2Ā2sin~f2c!#,

~17!

where

g5@11~ k̄1Pf1 k̄2Pc!212~Pf1Pc!1Ā1
21Ā2

2

12A2~Pf1Pc!~Ā1sin f1Ā2sin c!

12Ā1Ā2 cos~f2c!#1/2

5H̄*1v̄1Pf1v̄2Pc , ~18!

-

FIG. 4. Particle trajectories in phase space (Pc ,c) with
c~mod2p! viewed at successive crossings of the cut plane defin
by the conditionf50. The configuration parameters and initia
conditions areĀ150.07, Ā250.05, k̄150.45, k̄250.4, v̄150.45,
v̄250.4, Pf051.6, Pc053.1, f052.1, andc052.12. Numbers
associated with the given crossings correspond to the time sequ
as found from the numerical calculation. The numbered cross
points have been enlarged somewhat for visualization convenie
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55 5919MULTIPLE AUTORESONANCE ACCELERATIONS . . .
H̄* being a constant of motion, designated specially for
copropagating case.

Considering the new time variables defined by the rela-
tion ds5dt̄/g and using the expression ofg as given by Eq.
~18!, the system of equations of motion will read

c85
dc

ds
5ċg512v̄2H̄*1~ k̄2

22v̄2
2!Pc1~ k̄1k̄2

2v̄1v̄2)Pf1
Ā1sinf1Ā2sinc

A2~Pf1Pc!
,

~19!

f85
df

ds
5ḟg512v̄1H̄*1~ k̄1

22v̄1
2!Pf1~ k̄1k̄2

2v̄1v̄2)Pc1
Ā1sinf1Ā2sinc

A2~Pf1Pc!
,

~20!

Pc85
dPc

ds
5 Ṗcg

52Ā2A2~Pf1Pc!cosc2Ā1Ā2sin~f2c!, ~21!

Pf8 5
dPf

ds
5 Ṗfg

52Ā1A2~Pf1Pc!cosf1Ā1Ā2sin~f2c!. ~22!

Assumingk̄15v̄1 andk̄25v̄2 and subtracting Eq.~20! from
Eq. ~19!, we get

c82f85~v̄12v̄2!H̄*[c05const.

This constant allows us to express one phase in terms o
other as

FIG. 5. Same as Fig. 4. The only change is in the amplitude
the waves, which now readĀ150.048 andĀ250.07.
e

he

c5f1c0s1j0 , ~23!

where j0 is a phase constant of integration. This relati
allows for a decoupling of the two degrees of freedom le
ing to a separate interaction of the two waves with the p
ticle, which turns out to be completely integrable. For a d
tailed derivation of this statement we refer the reader to
Appendix. Note that this result is still valid when the pola
ization of the waves is changed.

The counterpropagation of the waves is thus essentia
generating stochastic motion; however, the conditions
onset of such a motion involve the whole set of parame
of the system and will be dealt in Sec. III. The location of t
stochastic band in phase space considering the nonsymm
counterpropagating waves configuration can be displaced
an appropriate change of the parameters of the system.
show this in the two frames in Fig. 6. Figure 6~a! corre-
sponds to the parameter setĀ150.07, Ā250.05, k̄15v̄1

50.47, k̄25v̄250.4, Pf051.5, Pc053.1, f052.1, and
c052.12, which results in a stochastic band centered aro
Pf50.81. By changing the parameter set toĀ150.07, Ā2

50.05, k̄15v̄150.35, k̄25v̄250.4, Pf051.6, Pc053.1,
f054.1, andc053.12, the center of the stochastic band
moved toPf>2.2, as can be seen in Fig. 6~b!. As is well
known, the size of the stochastic layers depends on the m
nitudes of the two waves considered. The importance of
flexibility of locating the stochastic layers in phase space w
be elaborated upon in Sec. IV.

III. THRESHOLD FOR THE ONSET OF STOCHASTICITY

The system under consideration is rather rich in indep
dent parameters as well as initial conditions fixing the m
tion of the particle. As such its behavior is expected to be
involved and intricated one. We then are going to search
global estimates for the conditions of the onset of stochas
ity; refined estimates will be out of order here. The stand
mechanism leading to a rough reliable estimate for
threshold of stochasticity is based on the notion of resona
overlap@10#. This sets the framework of our analysis. Sta
ing from equations of motion~5!–~8!, we want to transform
them into a form from which the overlapping criterion can
deduced. To this end, we find it convenient here to introd
also the proper time, namely,s, defined by the relationds
5dt̄/g. The equations of motion are derived in a simil
way to what was done in Sec. II and read

c8[
dc

ds
5ċg512 k̄2H̄22k̄1k̄2Pf1

Ā1sinf1Ā2sinc

A2~Pf1Pc!
,

~24!

f8[
df

ds
5ḟg512 k̄1H̄22k̄1k̄2Pc1

Ā1sinf1Ā2sinc

A2~Pf1Pc!
,

~25!

Pc8[
dPc

ds
5 Ṗcg52Ā2A2~Pf1Pc!cosc

2Ā1Ā2sin~f2c!, ~26!

of
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5920 55Y. GELL AND R. NAKACH
Pf8 [
dPf

ds
5 Ṗfg52Ā1A2~Pf1Pc!cosf

1Ā1Ā2sin~f2c!. ~27!

For future reference, we introduce the variablej as the dif-
ference of the phasesf andc. From Eqs.~24!–~27! one gets
immediately

j85f82c852k̄1k̄2~Pf2Pc!1~ k̄22 k̄1!H̄, ~28!

Ī 852A2Ī ~Ā1cosf1Ā2cosc!. ~29!

FIG. 6. Same as Fig. 4 showing the displacement of the stoch
tic band in phase space.~a! corresponds to the parametersĀ1

50.07, Ā250.05, k̄15v̄150.47, andk̄25v̄250.4, with the initial
conditionsPf051.5, Pc053.1, f052.1, andc052.12. ~b! corre-
sponds to the parametersĀ150.07, Ā250.05, k̄15v̄150.35, and
k̄25v̄250.4, with the initial conditionsPf051.6, Pc053.1, f0

54.1, andc053.12.
As can be seen by inspection, the equations of motion~24!–
~27! are derivable from the Hamiltonian

Ĥ522k̄1k̄2PfPc1~12 k̄1H̄ !Pf1~12 k̄2H̄ !Pc

1A2~Pf1Pc!@Ā1sinf1Ā2 sinc#

1Ā1Ā2cos~f2c!, ~30!

where (Pf ,f) and (Pc ,c) are conjugated pairs of actio
angle variables. Note that once the parameters and in
values of the system are given, the Hamiltonian describ
the motion in real timeH̄ determines the Hamiltonian in
proper timeĤ through the relation

Ĥ5
H̄2212Ā1

22Ā2
2

2
.

Considering the phase space associated with the conjug
pair (Pf ,f), we want to know under what conditions th
phasef will undertake a stochastic behavior. To this end w
derive the fundamental equation governing the change of
phase. Thus, taking the derivative with respect to the pro
time s of Eq. ~25! and using the whole set of equations
motion, one obtains straightforwardly the equation

f95Ā1

~12 k̄1H̄22k̄1k̄2Pc!

A2~Pf1Pc!
cosf

1Ā2

@12 k̄2H̄12k̄1k̄2~2Pc1Pf!#

A2~Pf1Pc!
cosc

12k̄1k̄2Ā1Ā2sin~f2c!

1
~Ā1sinf1Ā2sinc!~Ā1cosf1Ā2cosc!

Pf1Pc
. ~31!

ConsideringĀ1 and Ā2 to be small quantities, we group th
terms on the right-hand side of this equation in first order a
second order in these quantities. Equation~31! will read

f95 l 0cosf1 l 1cosc1@O~2! terms#, ~32!

where

l 0[Ā1

12 k̄1H̄22k̄1k̄2Pc

A2~Pf1Pc!
,

l 1[Ā2

12 k̄2H̄12k̄1k̄2~2Pc1Pf!

A2~Pf1Pc!
.

Second-order quantities, when not resonating can be
glected. Under such conditions, we can write approximat
the equation governing the change in the phasef,

f95 l 0cosf1 l 1cos~f2c1s1j1!, ~33!

where c152k̄1k̄2(Pf2Pc)1( k̄22 k̄1)H̄ and j1 is a phase
constant of integration. In deriving this equation use h
been made of Eq.~28!, assumingPf andPc to be constant
terms and taken to have their initial valuesPf0 and Pc0 .
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Such an assumption is consistent with keeping only fi
order quantities since their deviations from initial conditio
are by themselves first-order quantities. Under this same
sumption,l 0 and l 1 are constant quantities. Equations of t
form ~33! have been treated extensively in the literature, n
being textbook material. We quote thus here the theoret
expression for the threshold for stochasticity for such a c
@11#.

s15
2Al 012Al 1

c1
>0.67. ~34!

In order to test the validity of our analysis, we solve nume
cally the equations of motion searching for the thresh
values of the amplitudes of the waves for which stochasti
sets in. In Fig. 7 we plot, for a given set of initial condition
the threshold values ofĀ2 and Ā1 , which induce stochastic
motion, considering some representative values of the w
numbersk̄1 and k̄2 . The full curves in this figure give the
threshold values as predicted by Eq.~34!, the numerical data
are given by the graphical symbols~see caption! correspond-
ing, respectively, to the casesk̄250.2, 0.3, and 0.4. As is
seen from this figure, the agreement is quite reasona
However, by changing significantly the initial values, esp
cially those of the actions, the agreement deteriorates con
erably. In order to understand this discrepancy we have to
back to the assumptions underlying our derivation of
threshold given in Eq.~34!. By inspecting both the initial
conditions and structure of the terms in Eq.~31!, one realizes
immediately that choosingPf0 andPc0 very small, we have
underminded the ordering scheme we have proposed. Ind
if Pf01Pc0 is too small, the last terms that have been co
sidered of second order attain now values comparable to
values ofl 0 and l 1 . Moreover, by choosingPf01Pc0 small
we let the two initial frequencies be of comparable mag
tude and their difference rather small. This permits for
beat frequencyj8 to be slowly varying, which is a characte
istic of a resonating behavior. This resonating te
2k̄1k̄2Ā1Ā2sin(f2c) might be even the leading term in Eq
~31!, thus breaking our proposed ordering scheme. For s

FIG. 7. Normalized threshold values ofĀ1 and Ā2 for which
stochasticity sets in according to Eq.~34! for a particle having the
initial conditionsPf050.3, Pc051.25, f053.5, c053.1, andk̄1
50.6. The different curves correspond to three different value
k̄2 ~0.2, 0.3, and 0.4!, indicated in the figure. The points represent
by the symbols* , 1, ands correspond to the threshold value
found from the numerical data;k̄250.2, 0.3, and 0.4, respectively
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a case the natural variable to consider will bej, and one has
to proceed to derive its governing equation in order to arr
at the appropriate threshold for stochasticity. To this end
derive with respect tos Eq. ~28!, and using Eqs.~26! and
~27! one finds immediately

j954k̄1k̄2Ā1Ā2sinj22k̄1k̄2A2~Pf1Pc!

3@~Ā1cosf2Ā2cosc!#. ~35!

Inspecting Eqs.~24! and ~25! for c8 andf8, one observes
that for small values of the initial actionsPf0 andPc0 for
which the previous criterion has failed, one gets rather h
values for these frequencies, although their difference
rather small. On the time scale of variation ofj, f, andc
thus oscillate fastly and their averaged behavior is to
looked at. Applying such a procedure to Eq.~29! yields im-
mediately the approximate constancy of the sum of the
tions Ī . Now we rewrite Eq.~35!, expressing the dynamica
phasesf andc, exhibiting explicitly their deviation from the
central phasej as

j954k̄1k̄2Ā1Ā2sinj22k̄1k̄2A2~Pf1Pc!

3@Ā1cos~j1c!2Ā2cos~j2f!#. ~36!

This governing equation describes the variation ofj due to
three oscillating terms. Resonance motion can, in princip
be associated with every one of these oscillations and ca
represented as islands in phase space. We thus expect
island structures: one centered around zero frequency an
other two shifted with respect to this central island on bo
its sides. However, their distance from this central island w
be different, reflecting the difference in frequencyf8 andc8.
From our previous experience@12#, we know that onset of
stochasticity is determined by the overlap of the central
land with its most neighboring one; the more distant isla
plays a secondary role and can be neglected. For prac
purposes, considering, for example, the parameters of Fig
we thus end up with the equation

f

FIG. 8. Normalized threshold values ofĀ1 and Ā2 for which
stochasticity sets in according to Eq.~38! for a particle having the
initial conditions Pf050.08, Pc050.06, f053.5, c053.1, and
k̄150.6. The different curves correspond to three different val
of k̄2 ~0.4, 0.5, and 0.8!. The points represented by the symbols* ,
1, ands correspond to the threshold values found from the n
merical data,k̄250.4, 0.5, and 0.8, respectively.
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j954k̄1k̄2Ā1Ā2sinj12k̄1k̄2Ā2A2~Pf1Pc!

3cos~j2vf0s2w0!, ~37!

wherevf0522k̄1k̄2Pc0112 k̄1H̄, w0 is a constant of in-
tegration phase, and fast oscillating terms have been
glected in Eq.~36!. Equation~37! is similar to Eq.~33! and
leads to the threshold condition

s25
2A4k̄1k̄2Ā1Ā212A2k̄1k̄2Ā2A2~Pf01Pc0!

vf0
>0.67.

~38!

We test this criterion for the onset of stochasticity by co
paring it with the numerical data. This comparison is sho
in Fig. 8. As can be seen from this figure, the agreemen
quite satisfactory. The validity of this criterion is of cours
not limited to the specific set of parameters considered
Fig. 8, but holds generally when the underlying conditio
and limitations as stated above are met. Note, finally, t
since the phasesf andc play symmetric roles, they could
have been interchanged, leading to an expression for
threshold equivalent to the one given in relation~34! when
fulfilling the appropriate conditions.

IV. APPLICATIONS OF AUTORESONANCE
ACCELERATION

The possibility of creating a stochastic band removes
of the major obstacles of applying the AR process for use
purposes. This stems from the fact that due to the existe
of a stochastic region in phase space, the electrons acqu
mobility that enables them to arrive at favorable conditio
for AR interaction they did not possess originally. The
observations are based on the analysis of the system co
ering the waves propagating in vacuum (n51). For a propa-
gating medium characterized by an index different from
but still very close to 1, our conclusions are still valid. How
ever, the pronounced bell structure of the action becom
reduced somewhat as compared to then51 case.

This feature is shown in Fig. 9, where we present a pha
space plot (Pc ,c) for the case: n51.1. As is clearly seen
in this figure, two rather broad bell structures spread out o
large part of the@0,2p# phase range are generated from t
stochastic layer. When considering plasmas with higher
higher index of refraction, the effectiveness of the A
mechanism reduces until it ceases to be operative w
reaching high values ofn. Accordingly, the bells in the
phase space reduce until they essentially disappear. A
tailed analysis regarding the validity and limitation of th
multiple autoresonance entrainment mechanism for the
nÞ1.1 is planned to be presented in a future paper. Here
consider plasmas for which the AR mechanism is opera
and note that the simultaneous appearance of a pronou
bell structure for one of the actions, while the other o
remains essentially constant, has important implications
garding the velocity limit the particle can attain. Indeed, co
sidering the expression forbz as given in Eq.~10! and writ-
ing convenientlybz as
e-
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bz5
vz
c

5
P̄z

g
5

k̄1Pf2 k̄2Pc

H̄1 k̄1Pf1 k̄2Pc

,

one notices that whenPf , say, increases greatly whilePc is
about constant,bz tends to 1.

The time-averaged parallel velocity of the particle duri
the AR process is considerably higher than the upper bo
of the stochastic band from which it was emitted. The val
ity of this observation is based on the asymmetry in the b
direction with respect to the stochastic layer of one of
actions. Explicitly, we show that when one action, sa
Pf , undergoes an AR process it cannot attain values belo
fixed minimum bound, while in the positive direction it ca
have, in principle, an unlimited grow. Indeed, whenPf un-
dergoes an AR interaction, relation~11! is approximately
valid, thusg(12bz)5g2 k̄1Pf1 k̄2Pc>1/k̄1 . Eliminating
Pc by using relation ~4! we get k̄1Pf> k̄2( Ī2Pf)1g
21/k̄1 and Pf>( k̄2Ī1g21/k̄1)/( k̄11 k̄2). Since Ī takes
only positive values andg>1, Pf cannot reach AR values
below Pf,min5(121/k̄1)/( k̄11 k̄2). Similarly, whenPc un-
dergoes an AR interaction, its minimum attainable value w
be Pc,min5(121/k̄2)/( k̄11 k̄2).

The asymmetry ascertained by the last argument still d
not guarantee a preferential direction of motion for the p
ticle, since, as we have shown in Fig. 3, the particle can
the course of its motion change its parallel directionali
However, for a large bulk of particles one can avoid th
possibility by choosing properly the parameters of the wav
The criterion for such a proper choice is to have conditio
appropriate for having multiple AR captures fulfilled for on
action but not for the other. We recall that these conditio
are that~a! the motion should be stochastic and~b! the values
of the actions in the stochastic range should be such tha
appropriate AR condition given by Eq.~12! or ~13! is ap-

FIG. 9. Particle trajectories in phase space (Pc ,c) with c
~mod2p! as in Fig. 4, with the indices of refraction different from 1
The configuration parameters and initial conditions aren51.1, Ā1

50.07, Ā250.21, k̄150.33, k̄250.33, v̄150.3, v̄250.3, Pf0

51.2, Pc053.1, f052.0, andc054.61.
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proximately fulfilled. We thus have to choose these para
eters so that the width of the stochastic band will be such
this layer will be outside the range for AR capture for one
the actions and not for the other. For example, to avoid st
tures such as those in Fig. 3, we should choose param
such that the upper bound of the stochastic layer, for
momentumPf , lies in the range 1.75–4.00.

Choosing properly the parameters of the waves, we t
can generate a bulk of particles moving in a preferential
rection, having a considerable time-averaged parallel ve
ity. The possibility to have such a unidirectional motion is
course the key to generating a current drive in a plas
Moreover, let us note that during an AR process, no subs
tial amount of energy or momentum is transferred from
waves to the particle in the perpendicular direction. Inde
considering the explicit expression forv' ,

v'

c
5
P̄'

g
5

A2~Pf1Pc!

H̄1 k̄1Pf1 k̄2Pc

,

one realizes immediately that when one of the actions
creases greatly,v'→0.

V. CONCLUSION

We have presented the basic physics underlying
scheme for generating currents in fusion plasmas and em
sizing its qualitative aspects. A quantitative evaluation o
practical current drive having its origin in the multiple A
acceleration mechanism described in this paper is prese
under study and is planned to be reported in a future pa
z.
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APPENDIX

In this appendix we show the complete integrability of t
system of equations~19!–~22!. As an introductory step we
express in Eq.~20! the phasec in terms of the phasef and
the proper time using Eq.~23!. Adding then Eqs.~21! and
~22!, we get

R852Ā1cosf2Ā2cos~f1c0s1j0!,

whereR5A2(Pf1Pc). Equation~20! will then read

f8512v̄1H̄*1
Ā1sinf1Ā2sin~f1c0s1j0!

R
.

Now we perform the transformationsx5R cosf and y
5R sinf. For these variables we get

x852y~12v̄1H̄* !2Ā12Ā2cos~c0s1j0!,

y85x~12v̄1H̄* !1Ā2sin~c0s1j0!,

from which we get

x91~12v̄1H̄* !2x5Ā2@~2v̄12v̄2!H̄*21#sin~c0s1j0!,

which describes a driven harmonic linear oscillator syste
which is of course completely integrable. In a similar ma
ner, eliminating the phasef in favor of the phasec, we get

X91~12v̄2H̄* !2X5Ā1@11~v̄122v̄2!H̄* #sin~c0s1j0!,

where nowX5R cosC.
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