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Multiple autoresonance accelerations generated from a chaotic base
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A multiple autoresonance process for accelerating electrons is presented. It is based on the autoresonance
mechanism put forth in a previous publicatipi. Gell and R. Nakach, Phys. Lett. 207, 342 (1995]. The
configuration under study consists of two circularly polarized electromagnetic waves propagating in opposite
directions along a constant magnetic field and having frequencies in the electron frequency range. Such a
configuration admits, under appropriate conditions, stochastic motion of the particle. It is shown that the
stochastic nature of the motion plays an important role for inducing the multiple autoresonance acceleration.
The threshold for the onset of stochasticity when considering waves with different characteristics and particles
with different initial conditions is evaluated and compared with the numerical data. It is shown that for a proper
choice of the parameters of the system, the multiple autoresonance process can generate a bulk of particles
moving in a preferential direction and having a considerable time-averaged velocity parallel to the magnetic
field. Practical applications of this result are mentio&1.063-651X97)12305-4

PACS numbefs): 52.35.Nx, 52.20.Dq, 05.45b, 52.50.Gj

[. INTRODUCTION standing-wave configuration. In this paper, we show that the
transition from chaotic to regular entrainment is fundamental
The autoresonand@\R) interaction has recently been at- to the two-e.m.-wave configuration, the standing-wave case
tracting a large amount of interest both as a possible candbeing only a particular example. The importance of this gen-
date for accelerating particl¢s,2] as well as for fusion cur- eralization of the phenomenon lies in the flexibility it renders
rent drive[3] and in electron cyclotron heating of plasmasto explore large portions of phase space searching for sto-
[4]. The limitations of AR mechanism are very well known, chasticity. By choosing properly the parameters of the
namely,(a) the necessity of having exact appropriate initial waves, one allows for an enhanced population of particles to
conditions for this mechanism to be operational @dthe  have a chance to participate in AR acceleration, resulting
necessity of having the refractive index of the medium of thethus in an efficient way of transferring energy and momen-
propagating waves equal to one. Attempts to overcome thegam from the waves to the particles. Implications of this
limitations have been reported in the literatfe-7]. For  process could be of importance for the current generation
more details and references regarding these investigatiorand heating of plasmas in thermonuclear fusion projects.
the reader is referred to Rg6]. This general transition process from chaotic motion to AR
In a recent publicatiofi8] we have shown that there is a acceleration is exposed and explored in Sec. Il, where we
possibility to remedy the first shortcoming inherently associ-solve numerically the equations of motion for various param-
ated with this process by a mechanism that allows for pareters and initial conditions of the system. In order to exhibit
ticles far away from the AR conditions to get pushed intoclearly the essential features of this process, we present the
these conditions, staying there for a considerable length aolutions of equations of motion both in real time and in
time. In Ref.[8] we limited ourselves to a specific configu- phase space. A convenient formalism for analyzing and pre-
ration of two circularly polarized electromagnetie.m) senting phase-space characteristics of the motion of the sys-
waves having the same amplitudes, wave numbers, and fréem is to use an Hamiltonian function expressed in action
guencies propagating in vacuum in opposite directions, thuangle variables. In a phase-space representation of these vari-
considering essentially a standing-wave configuration. An inables, time is of course eliminated. However, much insight
trinsic feature of the relativistic dynamics of electrons incan be gained when time evolution of the action variables is
such a configuration is the appearance of chaotic motioexplicitly exhibited. We thus present the time dependence of
manifested as a spread out band in the associated phase two actions in the same graph, which allows one to rec-
space. However, this stochastic motion does not necessaribgnize favorable conditions for possible applications, as we
prevail indefinitely since the particle, due to a possible ARwill explain later on. This type of graph also reveals regular
capture, might leave the stochastic sea and undertake a reguotions when the amplitudes of the waves are below thresh-
lar motion. This unexpected phenomenon might have promeld for stochasticity, chaotic motion when this threshold is

ising applications, which we will mention later on. crossed, and a transition state between stochastic and regular
The significance of our results might be somewhat restricmotion when AR capture is about to occur.
tive due to the special configuration considered in R&f. The possible existence of a chaotic band in phase space is

namely, the simplifying conditions associated with arather fortunate since it allows for particles being far away
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from the appropriate conditions for AR capture to wanderHamiltonian is independent of thg coordinate. For com-
and reach these privileged conditions. As the stochastic besleteness we repeat the steps leading to equations of motion
havior of the motion of the particle is important for fulfilling, as presented in Ref8]. Following the formalism as devel-

on a large scale, the requirements necessary for the AR aoped by Chen and Schmiff], we transform the coordinates
celeration of the electrons, it is desirable to have a straightand momenta into action angle variables via the relations
forward efficient way to detect the appearance of stochastic-

ity. This is readily accomplished by utilizing the usual 2lc 2leBy
surface of section technique. X= asmﬁ, Pyx= c co¥.

The prediction of the onset of this stochastic behavior in
phase space is an essential part of the analysis of this prolime is eliminated with the help of the generating function
lem and is dwelled upon in some detail in Sec. Ill. In that
section we derive approximate theoretical expressions for the F=(0—Koz— wyt)P,+(0+kiz— wt)P.
threshold, depending on the whole set of parameters and ini-
tial conditions. These predictions are compared then with thehe transformed Hamiltonian expressed in normalized vari-
numerical results obtained from the solutions of the equaaples is
tions of motion. The limitations and shortcomings of the pre- -
dictive power of these expressions are discussed in detail. H(l/,’¢,p¢,p¢):[1+Ai+A§+(klp¢_k2p¢)2
The fact that one can use an asymmetric configuration of

waves and still have the AR entrainment process operative +2(Py+Py)+2V2(Py+ P¢)(A_1$ing{>
allows for an acceleration of an ensemble of particles in a — o
preferential direction. It is found that the time-averaged par- +Azsing) +2A1Aco ¢~ )]

allel velocity of the particles can be very significant due to an

accumulation in time of accelerating steps and can thus result
in the generation of a current. A discussion of these aspects . L T _ _
of the analysis constitutes the major part of Sec. IV of thisW@E Y=0F/oP,=0—koz—wpt and_¢=JF/oP,=0

paper, in which we also outline avenues for future researcht K1z~ @1t, and the normalized actionsand P, are ex-
pressed in terms of the new momenta as

—w1P,—w,Py, 3)

Il. STOCHASTICALLY INDUCED AUTORESONANCE = _ O — o
PROCESSES |=—5=PytPy, Pr=—=KiPy—keP,. (4
The important role that stochasticity plays in moving par- o
t'd?s t?, bring them in ﬁFfe trapping r.e9t1'°”5h'n phasfe SPace Ihe normalizations of the other quantities ate=H/mc?,
motivating our research for appropriate schemes for generafy _ _ — — _
ing stochastic motion of the particle. As is well knopii, a El'z_ EAl%lmcz’_;Z/ lel_r_nlcs,)/ tCZQt, dwé;z _‘;1'2//9’
single circularly polarized wave propagating parallel to a 127 K10 j z=3ze, [=13me, and 7, =F, .mc
magnetic field cannot serve as a candidate for this purpose \/E Q being t_he gyrofrequencgB,/mc. The Hamilton
since such a system is completely integrable. However, inequations of motion read

troducing an additional e.m. wave also circularly polarized

propagating in the opposite direction of the first wave can - oH — —

lead to the generation of stochastic motion, as was shown in =5 = 7| Ka(kiPy—koPy) +1

Ref.[8]. In this work we deal with the very specific example v

of a .standing—_v_vave configuration. Hereby we relax this re- A_lsin¢+A_zsinz,/x o

strictive condition and study the more general parameter —— |~ w,, 5)
space of the system. To this end we use a Hamiltonian for- V2(Py+Py)

malism for describing the relativistic motion of an electron L

moving in the presence of two circularly polarized e.m. . 9H S _

waves having, in principle, different amplitude wave num- p= P,y +ki(kiPy—kaPy)+1

bers and frequencies and propagating along a constant mag-

netic field B that is fixed in thez direction. A o A i
The Hamiltonian describing the dynamics of the system is + Assing + Agsing —wq, (6)
expressed in the standard manner as V2(Py+Py)
H={m?c*+ (cP+eA)?}'2 1) . H A, —
P,=——=——1[V2(Pg+P,)cosy+A;sin(¢— )],
The essential physics lies in the expression of the vector v P Y [Va(Py+PyJcositAssinté = )]

potential. Considering first two counterpropagating waves, )
the vector potential for this case will read

: A _
A=Boxey+ A{[sin(k;z— w;t)e]+[cogk;z— w;t)g, ]} Poy=——7=— 71 [V2(P g+ Py)cosp—Azsin(dp— )],
+ A[ —sin(ky,z+ wot) e ]+ [ cogkz+ wot) g ] (2) 8

Without loss of generality, we can chooBg=0 since the where
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FIG. 1. Canonical action®,, and P,, as functions of the nor- FIG. 2. Same as Fig. 1. The only change is in the initial condi-

malized timet, for a system consisting of two circularly polarized tions for the actions, which now rede|,o=3.7 andP jo=4.5.

e.m. waves propagating in opposite directions with normalized pa- - _

rametersA;=0.07, A,=0.02, k;=0.4, k,=0.2, w;=0.4, andw, v, P, KkP,—k;P,

=0.2. The initial values of the canonical action angle variables are ﬁz:? = 7 = f (10
P40=1.6, P, 0=1.5, ¢y=3.1, andy,=3.1. Symbols and normal-

ization are as defined in the text. The heavy and thin lines correFor an exact AR condition for the wave designed by index 1,

spond to the actionB,, andP,, respectively. the particle obeys the well-known relati¢mh]
_ YD LD \2 A2, A2 Q 1
y=[1+(kiPy—koP)°+2(Py+Py)+ AT+ A; y(1-B,)=—==—. (12)
— — w1 W
+2V2(P 4+ Py)(Asing+ Agsing) )
Using then Eq(9), we get
+2A1A,c08 ¢ — )12 1
=H+wiPy+ wzP,. ©) HF01Pyt 0Py = (kiPy—kePy) ===,
Note that the Hamiltoniahi is independent of time; it is thus Which results in
a constant of motion and is determined by the parameters 1
and initial values of the system. This system not being inte- ——H
grable forces us to analyze its solutions by using numerical _e _ *
techniques. Concentrating on the possibility to detect typical Py 2w, conseEPy, (12

AR accelerations, we find it convenient to present the nu-

merical solutions of the equations of motion as evolving inWe could of course have shown an analogous result by in-
time. An example for such a solution is shown in Fig. 1. Interchanging the roles oP, and P, for the AR condition
this figure we consider a set of parameters that correspondg1+ 8,) = Q/w,=1/w, and getting then the condition for

to a non-standing-wave configuratioA;=0.07, A,=0.02, AR capture as

ki=w;=0.4, k,=w,=0.2 assuming luminous waveg; 1
=w;, andk,=w,). By comparing this figure with Fig. 1 of ——H
Ref.[8], one realizes in a striking manner the nonpreferential Py= P2 _ onse P% . (13

nature of the standing-wave configuration for the operation- 20
ality of the AR mechanism. Furthermore, inspecting Fig. 1, L , »
one observes a main feature of the time dependence of the NOW. considering Eq(8), since for exact AR condition
two actionsP, andP . Indeed, following the heavy curve the Phasaﬁ a_nd the actiorP, are constants, the Integration
corresponding to the time evolution of the acti®p with the of this equation leads to_an unI|m|ted_grovvth of the a_ct|on
associated actio , represented by the thin curve, one im- P,. However, exact AR is an abstraction even for a single-
mediately observes that whéh, starts to increase consider- wave configuration due to the spread of the initial conditions;
ably the other action remains essentially constant. This cort 1S certainly so for a two-v.vave.cpnflguratlon. In general,
related behavior of the two actions can be understood by"® should not expect an indefinite growth of one of the
inspecting the equations of motion when expressed via the ctions, but rather a bell-shaped structure reflecting the slow

original variables. Indeed, considering, for example, . variation in_ tim_e of the corresponc_zling phasg. . .
wegthus obtain 9 ple, @ Indeed, in Fig. 2 we show a typical behavior, in which we

observe successive AR captures manifested as bell structures
dob Q L o for one of the actiongthe heavy cu_rv)ecorrelated yvith the
g~ 1B+ > [1+A()+A)], _Ie_iseir;tlzlilrxagtclnjrgztsar;z (;fethe associated acttte thin ling.
parated by time intervals where the
AR is not operative and the system undergoes stochastic mo-
where tion. One should realize that the two actions are on the same
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FIG. 3. Same as Fig. 1. The changes are in the following pa- 5 Cog 2
rameters and initial conditions, which now re#d=0.03, A, e TR i 6“6
=0.01, k;=w;=0.4, ky=w,=0.2, P4=3.8, P,=14, ¢ R R S C e
=3.1, andyy=3.1. i
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footing and might interchange their roles during the course ) ) S )
of the interaction. As can be seen in Fig. 3, in an earlier stage F'C: 4. Particle trajectories in phase space, (y) with
b tha® . ch iderablv. while.. stavs yY(mod2m) viewed at successive crossings of the cut plane defined
One OLSErVes ¢ changes consl _era Y, N4 y ay the conditionp=0. The configuration parameters and initial
almost constant; in a later stage, their roles are interchanged: . — ral — el —
. - 2~ conditions areA;=0.07, A,=0.05, k;=0.45, k,=0.4, w,=0.45,
Consequently, the parallel velocity of the particle will

- ; . . . w;=0.4, Pyo=1.6, Pyu=3.1, po=2.1, and¢=2.12. Numbers
change its direction during the course of the motion. associated with the given crossings correspond to the time sequence

The appearance of intervals of stochastic motion we havgs found from the numerical calculation. The numbered crossing
been referring to can be seen in a transparent manner wheints have been enlarged somewhat for visualization convenience.
viewing the motion in phase space. To this end we solved
numerically the equations of motids)—(8) and present the . gH*
results in phase space using the surface of section technique.y=

The cut plane we use is determined by the conditign ( Py

=0,mod2r). The conjugate action and angl® [,) are PP )+1+A_1$in¢+A_zsinw
resented as a point in this plane. Recalling tHat a con- =~ | Ka(KiFgT Ko T e | T W2,
p p p g 1z 2(P,+P,)

stant, the points in the cut plane determine completely the
dynamics of the system. In Fig. 4 we present such a phase- 14
space portrait of the motion of the particle. Following the

successive crossing points in time, we observe that the par- gH* — —

ticle starts to undergo AR acceleration once it arrives at ap¢: FE ; ki(kiPytkaPy)+1

propriate conditions of phase and action. Once it has been set

into this capture coursécrossing number 202the particle A_lsin¢+A_25in¢ o

completes a bell structure in phase space returning to the t—F/—— |~ w1, (19
stochastic segpoint 635. Wandering stochastically, the par- 2(Py+Py)

ticle arrives at the right condition@oint 7332. It is set again Py ™
into an acceleration course and so on. The wandering penod{z,w: _ __ 72 [V2(P,+ P¢)cosp+A_13in(¢— 01,

in phase spac@oints between 635 and 7B2re the intervals Y

referred to previously as stochastic. (16)
The mobility of the electrons provided by the existence of _ _

a stochastic region in phase space allowing for successive IH* A — .

AR captures is a rather general property of the system undef" 6=~ b v [V2(Py+Py)cosp=Azsin(o— )],

consideration. Indeed, the type of behavior seen in Fig. 4, (17)

whereA;>A, andk;>k,, holds as well as wheA,>A,,
as can be seen in Fig. 5, and also holds wkgnk,. How-
ever, when the condition of counterpropagation of the waves — — — =
is violated and one considers copropagating waves no sto-  Y=[1+(kiPy+tkoP )"+ 2(Py+P,)+ AT+ A3
chastic region is available for the particles and thus the suc-

where

cessive bell structures, randomly generated, can no longer be F2V2(PyFPy)(Assin ¢+ Agsin i)
realized. To see this we consider the set of equati8)s(9) +2A,A, cog ¢— ) ]2

in which k, is replaced by-k, accounting for the copropa- _
gation of the two waves. This set will read =H*+ w,P,+w,Py, (18



20

FIG. 5. Same as Fig. 4. The only change is in the amplitudes o
¢

the waves, which now reaél;=0.048 andA,=0.07.

H* being a constant of motion, designated specially for th

copropagating case.

Considering the new time variabtedefined by the rela-
tion ds=dt/y and using the expression gfas given by Eq.
(18), the system of equations of motion will read

dy - S
1//’=E=¢//y=l—w2H*+(k§—a7;)P¢+(klk2
wron)P +A_13in¢+A_zsinz//
G T (P, P,
(19
' do - —* (22 T L
¢'=Gg=dy=1-wH" +(K[-aD)P,+ (kik,
wro3) A_lsin¢>+A_25in¢//
“102 J2(P,+P,)
(20
, dp, .
Py="gs ~FPv7
= —A\2(P,+ P, cosy—AAssin(¢— ), (21)
’ dp¢ .
Po="as ~Fo7
= —A2(P 4+ P,)cosp+AjASIN(b— ). (22)

Assumingk_lzw_l andk_2=w_2 and subtracting Eq20) from
Eqg. (19), we get

' —¢'= (w1~

wy)H*=cy=const.

This constant allows us to express one phase in terms of the

other as
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=+ Cost &o, (23)
where &, is a phase constant of integration. This relation
allows for a decoupling of the two degrees of freedom lead-
ing to a separate interaction of the two waves with the par-
ticle, which turns out to be completely integrable. For a de-
tailed derivation of this statement we refer the reader to the
Appendix. Note that this result is still valid when the polar-
ization of the waves is changed.

The counterpropagation of the waves is thus essential for
generating stochastic motion; however, the conditions for
onset of such a motion involve the whole set of parameters
of the system and will be dealt in Sec. Ill. The location of the
stochastic band in phase space considering the nonsymmetric
counterpropagating waves configuration can be displaced by
an appropriate change of the parameters of the system. We
show this in the two frames in Fig. 6. Figurdap corre-
sponds to the parameter s&;=0.07, A,=0.05, k;=w,
=0.47, k;=0;=0.4, P,=15, P,=3.1, ¢p=2.1, and
0=2.12, which results ina stochastlc band centered around
=0.81. By changing the parameter setAg=0.07, A,
=0.05, k;=w;=0.35, k,=w,=0.4, P4,,=1.6, P,,=3.1,
$o=4.1, andyy=3.12, the center of the stochastic band is
€noved t0P¢:2 2, as can be seen in Fig(bp. As is well
known, the size of the stochastic layers depends on the mag-
nitudes of the two waves considered. The importance of the
flexibility of locating the stochastic layers in phase space will
be elaborated upon in Sec. IV.

[ll. THRESHOLD FOR THE ONSET OF STOCHASTICITY

The system under consideration is rather rich in indepen-
dent parameters as well as initial conditions fixing the mo-
tion of the particle. As such its behavior is expected to be an
involved and intricated one. We then are going to search for
global estimates for the conditions of the onset of stochastic-
ity; refined estimates will be out of order here. The standard
mechanism leading to a rough reliable estimate for the
threshold of stochasticity is based on the notion of resonance
overlap[10]. This sets the framework of our analysis. Start-
ing from equations of motio5)—(8), we want to transform
them into a form from which the overlapping criterion can be
deduced. To this end, we find it convenient here to introduce
also the proper time, namelg, defined by the relationls
=dt/y. The equations of motion are derived in a similar
way to what was done in Sec. Il and read

o dy lﬁ 1-KGH= 2k;koP Alsin¢+A_zsin<//
P 2 Pt —F/————
ds V2(P,+P,)
(24
do - A_lsin¢+A_Zsinz,//
'=—=¢y=1-kiH-2k{k;P )+ ——————
¢ ds oy 1 1Ky, 2(P¢+Pl,,)
(25
,_dP, . — o5

A1AzSIN¢— ), (26)
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As can be seen by inspection, the equations of ma@2dh-
(27) are derivable from the Hamiltonian

H=—2k;koP 4P+ (1—kiH)P 4+ (1—kH)P,
+2(P 4+ P)[Asing + A, siny]
+AAcod = o),

where P,,¢) and P,,) are conjugated pairs of action
angle variables. Note that once the parameters and initial
values of the system are given, the Hamiltonian describing
the motion in real timeH determines the Hamiltonian in
proper timeH through the relation

(30

o H2—1-A2-AZ

a 2
Considering the phase space associated with the conjugated
pair (P,,¢), we want to know under what conditions the
phaseg will undertake a stochastic behavior. To this end we
derive the fundamental equation governing the change of this
phase. Thus, taking the derivative with respect to the proper
time s of Eq. (25 and using the whole set of equations of
motion, one obtains straightforwardly the equation

o U=k -2kikoPy)
V2(Py+P,)
™ [1—kH+2K1ko(2P 4 Py)]
+ 2k koA ASIN( = )

N (ASing+ Asing) (A, cosp+ A,cos))
P,+P, :

(ZS”

cosy

(3D

ConsideringA_l andA_2 to be small quantities, we group the
terms on the right-hand side of this equation in first order and
second order in these quantities. Equatidh) will read

FIG. 6. Same as Fig. 4 showing the displacement of the stochas-

tic band in phase spac€a) corresponds to the parametedg
=0.07,A,=0.05,k;=w,=0.47, andk,= w,= 0.4, with the initial
conditionsP 4=1.5, P,0=3.1, ¢o=2.1, andyyy=2.12. (b) corre-
sponds to the parametefg=0.07, A,=0.05, k;=w;=0.35, and
k,=w,=0.4, with the initial conditionsP 4o=1.6, P,,=3.1, ¢y
=4.1, andyy=3.12.

dpP

' b _ ¢ N/

+A1ASING— ). (27)
For future reference, we introduce the variablas the dif-
ference of the phasesand . From Eqs(24)—(27) one gets
immediately

£'=¢'— ' =2kiky(Py—P,) +(kp—k)H,  (28)
1= =21 (A,cosp+ A,cosp). (29)

¢"=1,cosp+1,co84+[0O(2) termd, (32

where

— 1—kyH—2kk,P,,

|OEA1
V2(P4+P,)
1=A2 :
V2(P,+P,)

Second-order quantities, when not resonating can be ne-
glected. Under such conditions, we can write approximately
the equation governing the change in the phase

¢"=lgcosp+1,c08 p—C15+¢1),
where cl=2k1k2(P¢—P¢)+(k_2—k_1)H_and &, is a phase
constant of integration. In deriving this equation use has
been made of Eq28), assumingP , and P, to be constant
terms and taken to have their initial valuBg, and P .

(33
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FIG. 7. Normalized threshold values El andAi2 for which FIG. 8. Normalized threshold values gl andAi2 for which

stochasticity sets in according to E@4) for a particle having the  stochasticity sets in according to E@8) for a particle having the
initial conditionsP 40=0.3, P,0=1.25, $y=3.5, #p=3.1, andk, initial conditions P 4,=0.08, P,,0=0.06, ¢=3.5, $p=3.1, and
=0.6. The different curves correspond to three different values ok,=0.6. The different curves correspond to three different values
k, (0.2, 0.3, and 0.¢ indicated in the figure. The points represented of k, (0.4, 0.5, and 0.8 The points represented by the symbe|s

by the symbols+, +, and O correspond to the threshold values +, and O correspond to the threshold values found from the nu-
found from the numerical dat&,=0.2, 0.3, and 0.4, respectively. merical datak,=0.4, 0.5, and 0.8, respectively.

Such an assumption is consistent with keeping only firsta case the natural variable to consider will{&nd one has
order quantities since their deviations from initial conditionsto proceed to derive its governing equation in order to arrive
are by themselves first-order quantities. Under this same aat the appropriate threshold for stochasticity. To this end we
sumption,l, andl; are constant quantities. Equations of thederive with respect te Eq. (28), and using Eqs(26) and
form (33) have been treated extensively in the literature, now27) one finds immediately

being textbook material. We quote thus here the theoretical

expression for the threshold for stochasticity for such a case &= Ak KoA1ALSiNE— 2K 1K, /2(p¢+ P,
[11]. — _
X[(Aicosp—A,cos))]. (35
—2\/E+2\/E>0 67 (34 l 2
71 Cy s Inspecting Eqs(24) and (25) for ¢/ and ¢, one observes

o _ . that for small values of the initial actior3,, and P for
In order to test the validity of our analysis, we solve numeri-yhich the previous criterion has failed, one gets rather high
cally the equations of motion searching for the threshold,g)yes for these frequencies, although their difference is
values of the amplitudes of the waves for which stochasticity agther small. On the time scale of variation &f g, and ¢
sets in. In Fig. 7 we plot, for a given set of initial conditions, s oscillate fastly and their averaged behavior is to be
the threshold values ok, andA;, which induce stochastic |ooked at. Applying such a procedure to Eg9) yields im-
motion, considering some representative values of the wavgediately the approximate constancy of the sum of the ac-
numbersk; andk,. The full curves in this figure give the tionsl. Now we rewrite Eq(35), expressing the dynamical
threshold values as predicted by E84), the numerical data phasesp and, exhibiting explicitly their deviation from the
are given by the graphical symbdlsee captioncorrespond-  central phasg as
ing, respectively, to the casés=0.2, 0.3, and 0.4. As is

seen from this figure, the agreement is quite reasonable. &' = Ak koA ALSIng— 2K K, /2(p¢+ P,
However, by changing significantly the initial values, espe- _ _
cially those of the actions, the agreement deteriorates consid- X[ACc0g €+ i) —Ay,cod E— @) ]. (36

erably. In order to understand this discrepancy we have to go

back to the assumptions underlying our derivation of theThis governing equation describes the variatior¢ afue to
threshold given in Eq(34). By inspecting both the initial three oscillating terms. Resonance motion can, in principle,
conditions and structure of the terms in E81), one realizes be associated with every one of these oscillations and can be
immediately that choosinB 4, andP ,, very small, we have represented as islands in phase space. We thus expect three
underminded the ordering scheme we have proposed. Inde€dland structures: one centered around zero frequency and the
if P o+ Pyo is too small, the last terms that have been con-other two shifted with respect to this central island on both
sidered of second order attain now values comparable to thes sides. However, their distance from this central island will
values ofly andl,. Moreover, by choosin® 4o+ P, small  be different, reflecting the difference in frequenglyandy/'.

we let the two initial frequencies be of comparable magni-From our previous experiendé2], we know that onset of
tude and their difference rather small. This permits for thestochasticity is determined by the overlap of the central is-
beat frequency’ to be slowly varying, which is a character- |and with its most neighboring one; the more distant island
istic_of a resonating behavior. This resonating termplays a secondary role and can be neglected. For practical
2k, koA Azsin(¢— ) might be even the leading term in Eq. purposes, considering, for example, the parameters of Fig. 8,
(31, thus breaking our proposed ordering scheme. For sucWe thus end up with the equation
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5,,: 4k1k2A1A2$in§+ 2k1k2A2 \/2( P¢+ Pz//) 35 -
X €O &~ wyoS— ¢o), (37) sl
where w 4= — 2k1koP 0+ 1—kiH, ¢q is a constant of in- 25 .
tegration phase, and fast oscillating terms have been ne- -
glected in Eq.(36). Equation(37) is similar to Eq.(33) and 20
leads to the threshold condition [
B 156
J VA )
24K koA AL+ 2~ 2K KoALV2(P 4o+ P A
op= 1K2A1A2 1KaA2V2( 0 ¢O)>0.67. 10l
® g0 Lo
(38 sfo°
We test this criterion for the onset of stochasticity by com- of )

paring it with the numerical data. This comparison is shown
in Fig. 8. As can be seen from this figure, the agreementis st o i
quite satisfactory. The validity of this criterion is of course 0 Wy

not limited to the specific set of parameters considered in

Fig. 8, but holds generally when the underlying conditions FiG. 9. Particle trajectories in phase spade, () with ¢
and limitations as stated above are met. Note, finally, thatmod2r) as in Fig. 4, with the indices of refraction different from 1.
since the phaseg and ¢ play symmetric roles, they could The configuration parameters and initial conditions mrel.1, A,
have been interchanged, leading to an expression for theg g7, a,=0.21, k;=0.33, k,=0.33, ©;=0.3, @,;=0.3, Po
threshold equivalent to the one given in relati@) when -1 o P,0=3.1, ¢po=2.0, andy,=4.61.

fulfilling the appropriate conditions.

U, PZ k1P¢_ kZP(//
IV. APPLICATIONS OF AUTORESONANCE c vy H +klp¢+k_2p¢’
ACCELERATION
one notices that wheR, say, increases greatly whikg, is
bout constant3, tends to 1.
The time-averaged parallel velocity of the particle during

The possibility of creating a stochastic band removes on
of the major obstacles of applying the AR process for usefu

purposes. Th.|s stems 'from the fact that due to the existenGfe AR process is considerably higher than the upper border
of a stochastic region in phase space, the electrons acquIr€sRthe stochastic band from which it was emitted. The valid-
mobility that enables them to arrive at favorable conditionSyy of this observation is based on the asymmetry in the bell
for AR interaction they did not possess originally. These.girection with respect to the stochastic layer of one of the
Ctions. Explicitly, we show that when one action, say,

observations are based on the analysis of the system consi
ering the waves propagating in vacuum«1). For a propa- P, undergoes an AR process it cannot attain values below a
fixed minimum bound, while in the positive direction it can

gating medium characterized by an index different from 1
have, in principle, an unlimited grow. Indeed, wheg un-

but still very close to 1, our conclusions are still valid. How-
aergoes an AR interaction, relatiqil) is approximately

reduced somewhat as compared to kel case. . PN _ N
This feature is shown in Fig. 9, where we present a phase\{a“d’ thus y(1=B2) =y~ k1P + koP,=1k;. Eliminating

space plot P,,,y) for the case: n=1.1. As is clearly seen ¥ by using relation (4) we get kyP,=ka(I—Py)+y

in this figure, two rather broad bell structures spread out on a 1/ki and Pg=(kal +y—1/k;)/(kytk;). Since | takes
large part of thg0,2] phase range are generated from theOnly positive values ang=1, P, cannot reach AR values
stochastic layer. When considering plasmas with higher antielow P ni,=(1—1/k;)/(k;+k3). Similarly, whenP, un-
higher index of refraction, the effectiveness of the ARdergoes an AR interaction, its minimum attainable value will
mechanism reduces until it ceases to be operative whebe P, in=(1—-1/k;)/(ky+ky).

reaching high values ofh. Accordingly, the bells in the The asymmetry ascertained by the last argument still does
phase space reduce until they essentially disappear. A deet guarantee a preferential direction of motion for the par-
tailed analysis regarding the validity and limitation of the ticle, since, as we have shown in Fig. 3, the particle can in
multiple autoresonance entrainment mechanism for the cashe course of its motion change its parallel directionality.
n#1.1 is planned to be presented in a future paper. Here welowever, for a large bulk of particles one can avoid this
consider plasmas for which the AR mechanism is operativgossibility by choosing properly the parameters of the waves.
and note that the simultaneous appearance of a pronouncéthe criterion for such a proper choice is to have conditions
bell structure for one of the actions, while the other oneappropriate for having multiple AR captures fulfilled for one
remains essentially constant, has important implications reaction but not for the other. We recall that these conditions
garding the velocity limit the particle can attain. Indeed, con-are that(a) the motion should be stochastic afiml the values
sidering the expression f@, as given in Eq(10) and writ-  of the actions in the stochastic range should be such that the
ing convenientlyB, as appropriate AR condition given by E@l2) or (13) is ap-
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proximately fulfilled. We thus have to choose these param- APPENDIX
eters so that the width of the stochastic band will be such that . . . .
In this appendix we show the complete integrability of the

this layer will be outside the range for AR capture for one Ofgystem of equationfl9)—(22). As an introductory step we

the actions and not for the other. For example, to avoid struc . .
tures such as those in Fig. 3, we should choose paramete%press in Eq(20) the phasey in terms of the phase and

such that the upper bound of the stochastic layer, for th%gg) p\:;)epe:e;ume using Eq23). Adding then Eqs(21) and
momentumP 4, lies in the range 1.75-4.00. ' 9
Choosing properly the parameters of the waves, we thus ' _ A A
can generate a bulk of particles moving in a preferential di- R A1C0Sp = ArC08 ¢+ CoS+ L),
rection, having a considerable time-averaged parallel veloGyhereR= m_ Equation(20) will then read
ity. The possibility to have such a unidirectional motion is of e .
course the key to generating a current drive in a plasma. __— A;sing+A,sin( ¢+ cos+ &)
Moreover, let us note that during an AR process, no substan- ¢'=1l-wH*+ R .
tial amount of energy or momentum is transferred from the
waves to the particle in the perpendicular direction. IndeedNow we perform the transformations=R cos¢ and y

Considering the explicit expression fOE ) =R sin ¢. For these variables we get
v, P, V2(Py+Py) X'=—y(1—wH*) — A;— A,cogCos+ &),

H+kPytkoP, = =

i e y' =x(1—wH*)+Assin(cos+ &),

one realizes immediately that when one of the actions inic hich .
creases greatly;;, —0. rom which we ge

X"+ (1~ 1H* )2x= Al (207 — w5)H* — 1]sin(Cos+ &),

V. CONCLUSION (1= @ HY) X =Agl (201~ @) Isin(cos+ &o)

which describes a driven harmonic linear oscillator system,

We have presented the basic physics underlying th9\/hich is of course completely integrable. In a similar man-

scheme for generating currents in fusion plasmas and empha- P .
sizing its qualitative aspects. A quantitative evaluation of aﬁer, eliminating the phas in favor of the phase/, we get

practical current drive having its origin in the multiple AR X”+(1—w_2m)2X=A_1[1+(w_l—Zw_z)m]sin(coer &),
acceleration mechanism described in this paper is presently
under study and is planned to be reported in a future papewhere nowX=R cosV.
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