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Trapping of fast magnetoacoustic waves close to anX line in a toroidal system
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The trapping of fast magnetoacoustic waves around theX line of a toroidal magnetic configuration is
investigated in the framework of ideal magnetohydrodynamics using a WKB approach. The frequency spec-
trum and the relevant eigenmodes are determined for the hyperbolic case, and for a divertorlike geometry.
Striking differences are pointed out, which are due to the breaking of the symmetry in the system.
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I. INTRODUCTION

We refer to az-periodic magnetic field configuratio
B(x,y)5Bzez1Bp(x,y), with constantBz andBp parallel to
the (x,y) plane, characterized by a null point ofBp ,
Bp(0,0)50 (X line!, and consider ideal magnetohydrod
namic ~MHD! perturbations on a uniform, zerob, current-
less plasma. This model can be relevant to space plasma
to laboratory plasma, e.g., the scrape-off layer~SOL! of a
divertor configuration in a rectified tokamak geometry.

Analyses of purely two-dimensional~2D! perturbations
~i.e., with no z dependence! in similar systems, have bee
made in Refs.@1,2#. We address here the more general
case, and point out the occurrence of new features in
propagation of MHD waves, such as trapping of fast wa
around theX line. The determination of the correspondin
frequency spectrum, and the related eigenmodes, is the
goal of the present paper. Moreover, we account for the
fects of deviations of the poloidal fieldBp from the pure
hyperbolic configuration usually considered in the literatu
and show how they can greatly affect the structure of
modes.

The WKB analysis of fast modes in a current carryi
cylindrical system ~representing the core of a tokama
plasma! has been performed in Ref.@3#. In the case of the
X line, the main difference is the absence of the helical sy
metry of the magnetic field lines. We use the WKB approa
in the form presented by Littlejohn and Flynn@4#, which
reduces the problem to the solution of a scalar wave eq
tion, and allows the extension of the analysis to the case
more general dielectric response. Following the ideal MH
model, we do not consider finite frequency effects, and
problem of linear conversion@5#, which will be the subject of
a future investigation.

This paper is organized as follows. The basic equati
for the WKB solutions are presented in Sec. II. The unp
turbed configurations in the hyperbolic and divertorlike ca
are introduced in Sec. III. The eigenmode analysis of the
waves is performed in Sec. IV. Conclusions are given in S
V.
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II. THE WKB APPROACH

In the framework of the ideal MHD, the equation for
displacement fieldj(x,y,z) with frequencyv is

D̂j[4prv2j1B3$¹3@¹3~B3j!#%50, ~1!

wherer is the constant plasma density, and the operatorD̂ is
Hermitian.

Within the WKB approach, we introduce a smallness p
rameter«, and look for asymptotic expansion of the solutio
Following Ref.@4# and making use of the Weyl calculus@6#,
the diagonalization of the operatorD̂ leads to decoupling of
mode polarizations, and to a scalar wave equation for e
scalar wave functionf (m) ~to be defined below!, which is
written as

l̂~m!f~m!50, ~2!

wherem denotes the single mode, andl̂ (m) is a scalar opera-
tor. It is obtained by applying the inverse of the Weyl tran
form to the eigenvaluel (m) of the Weyl symbolD(x,k) of
the wave operatorD̂ ~see Appendix!. The diagonalization of
the matrixD(x,k) has to be performed up to first order
«.

The eigenvaluesl (m) are

l~F !54prv22k2B2 ~3!

and

l~A!54prv22~k•B!2, ~4!

where (F) and (A) denote fast and shear Alfve´n modes,
respectively, and the third mode corresponds here to z
frequency. The relevant polarization vectors@defined in the
(x,k) phase space# can be viewed as the eigenvectors of t
Weyl symbolD, and are

t~F !5
B3~B3k!

uB3~B3k!u
, ~5!
5909 © 1997 The American Physical Society
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t~A!5
B3k

uB3ku
. ~6!

We note that in this specific case the first order term ol

vanishes sinceD̂ is symmetric, as has been already point
out in Ref.@7#.

From Eqs.~3! and ~4!, by means of the Weyl calculu
@Eqs.~A4!, ~A2!, and~A1!#, we obtain explicitly

l̂~F !f~F !54prv2f~F !1¹•~B2¹f~F !!50, ~7!

and

l̂~A!f~A!54prv2f~A!1~B•¹!~B•¹!f~A!50. ~8!

The displacement vectorj, solution of Eq.~1!, is then
related tof, andt, by the transform

j~x!5
1

~2p«!3
E dx8dkf~x8!tS x1x8

2
,kD

3exp@ ik•~x2x8!/«#, ~9!

which has to be taken asymptotically to lowest order in«.
When the WKB ansatz is made to solve the equation

f for each mode,

f~x!5A~x!exp@ iS~x!/«#, ~10!

the eikonalS and the amplitudeA can be determined solvin
the Hamilton-Jacobi equation forS:

l~x,k!50, ~11!

and the amplitude transport equation

]

]x
•SA2

]l

]k D50, ~12!

wherek(x)5]S/]x. Discussions relevant to the solution
this equation can be found, e.g., in Refs.@8,9#. The function
l(x,k) plays the role of the ray Hamiltonian for the scal
field f, and the ray trajectories are given by the Hamilton
equations

ẋ5
]l

]k
, ~13a!

k̇52
]l

]x
. ~13b!

Evaluation of the integral~9! by the stationary phas
method gives

j~x!5t~x,k!A~x!exp@ iS~x!/«# with k5]S/]x ~14!

for each mode. Note that, in general, for each polarizat
the eigenmodes of the system are made by a proper su
position of integrals of the form~9!. Moreover, at the caus
tics, where the plain WKB expression~14! diverges, a proper
treatment of the expression~9! is required.
d

r

n
er-

In the configurations under consideration,l does not de-
pend onz, andkz is a constant of motion. Since the system
periodic inz, kz52pn/Lz , wheren is integer, andLz is the
z periodicity length.

From the analysis of the ray trajectories, it is easily fou
that trapping of shear Alfve´n waves does not occur. Fa
waves can instead be trapped in a region close to theX line,
which is a minimum ofB2. In fact, following @8#, the ray
trajectories can be derived from the Hamiltonian

h~x,k!5
1

2
k22

2prv2

B2~x,y!
50, ~15!

where the termk2/2 has the role of a kinetic energy, an
22prv2/B2 of a 2D potential. In the following, we shal
consider the fast mode only.

III. THE UNPERTURBED FIELD

The planar fieldBp(x,y) can be represented by means
a flux functionc(x,y),

Bp~x,y!5¹c3ez , ~16!

with ¹2c50, since¹3Bp50.
Here, we consider two different magnetic configuratio

In the first case, the flux function describes a pure hyperb
magnetic field:

c5
Bp0

L
~y22x2!, ~17!

whereL is a scale length, andBp0 a scale poloidal field. The
field line projections on the (x,y) plane ~i.e., the curves
c5 const! are hyperbolae. The poloidal magnetic field com
ponents areBx52Bp0y/L andBy52Bp0x/L, andB

2 is

B25Bz
214Bp0

2 ~x21y2!

L2
. ~18!

In the second case, a two-wire configuration is cons
ered, in whichBp is due to two equal currents flowing in tw
wires parallel to thez axis, located aty56L on they axis.
The corresponding flux function is

c52
Bp0L

2
lnF ~x22y21L2!214x2y2

L4 G , ~19!

and the magnetic field amplitude is

B25Bz
214Bp0

2 L2
x21y2

~x22y21L2!214x2y2
. ~20!

In the limit x21y2!L2, i.e., close to theX line, the two-
wire configuration approaches the hyperbolic configurati
The contour plots ofc andB2 for the two cases are shown i
Figs. 1–4. We note the presence of a region of increas
B2 around theX point.

In the following, dimensionless variables are used~with-
out change of notation!, so that length, magnetic field, an
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55 5911TRAPPING OF FAST MAGNETOACOUSTIC WAVES . . .
time are measured, respectively, in units ofL, Bz , and
tA5LA4pr/Bz5L/cA , cA being the Alfvén speed in the
field Bz .

IV. ANALYSIS OF THE EIGENMODES

In the hyperbolic case, the ray Hamiltonian~3! reads, in
cylindrical coordinates (r ,q,z),

l~r ,q,kr ,kq ,kz!5v22S kr21 kq
2

r 2
1kz

2D ~11a2r 2!, ~21!

where the covariant componentskr ,kq ,kz are the momenta
conjugate tor ,q,z, r 25x21y2, anda52Bp0 /Bz .

In this case, the problem is reduced to quadrature, w
kq5const5m being an integral of motion, andkr given by

kr
25

v2

11a2r 2
2
m2

r 2
2kz

2. ~22!

FIG. 1. Contour lines of the flux functionc defined by Eq.~17!,
in the neighborhood of theX point, in the (x,y) plane.

FIG. 2. Contour lines of the flux functionc defined by Eq.~19!,
in the neighborhood of theX point, in the (x,y) plane.
h

In the framework of the geometrical optics, wave prop
gation occurs forkr

2>0. This condition can be met i
v2>vmin

2 5(am1kz)
2. At any frequency belowvmin , the

mode is evanescent, so that this requirement gives a lo
bound to the spectrum. The roots of the equationkr

2(r )50
give the radii of the caustics, which are cylindrical surfac
coaxial to thez axis. In the casekz50 ~analyzed in Refs.
@1,2#!, this equation has no solutions form50 ~axisymmetric
modes!, and propagation is allowed for any value ofr . For
mÞ0, there is one solution, corresponding to an inter
caustic where reflection of the incoming rays takes pla
this caustic limits a region of no propagation around theX
point. In the general casekzÞ0, there are two solutionsr 1
and r 2, so that the ray trajectory is trapped in the regi
r 1<r<r 2, inside two caustics. The shape of the accessibi
region is determined by the quantum numberm. Form50,
the internal caustic disappears (r 150), and the trapping re-
gion contains theX point.

FIG. 3. Contour lines of the magnetic field amplitude given
Eq. ~18!, in the neighborhood of theX point, in the (x,y) plane.

FIG. 4. Contour lines of the magnetic field amplitude given
Eq. ~20!, in the neighborhood of theX point, in the (x,y) plane.
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The eigenfrequencies of the system can be obtained f
the semiclassical quantization rule for the radial action

Jr5Jr~v,n,m![
1

pEr1
r2
krdr5nr1

1

2
, ~23!

wherenr is the radial quantum number. The eigenvalue sp
trum v2(nr ,m,n) is given implicitly by Eq. ~23!. For the
parabolic profile ofB2 under consideration,Jr can be ex-
pressed by means of elliptic integrals, and the spectrum
be evaluated numerically. No degeneracy is foreseen in
~23!.

An example of a single, ‘‘rose’’-shaped, ray trajector
projected in the (x,y) plane, is shown in Fig. 5. As discusse
above, wave propagation occurs in a well-defined region
limited by two caustics defined byr 1<r<r 2, and the region
containing theX line is not accessible to the wave.

The WKB eigenfunctions are given by a proper super
sition of terms~10!. From Eqs.~11! and ~12!, we obtain for
the eikonal function S, and the amplitude A,
S(r ,q,z)5* rkrdr1mq1kzz , and rkrB

2A25 const, with
kr given by Eq.~22!. The solution, diverging at the caustic
then can be made continuous by standard techniques.
solution thus obtained is a very good approximation of
solution of the wave equation~7!, which, putting
w5w̃(r )exp(imq1ikzz), is written as~in dimensionless vari-
ables!

1

r

]

]r S rB2
]w̃

]r D1Fv22B2Sm2

r 2
2kz

2D G w̃50. ~24!

A representation of the eigenfunctionw̃(r )exp(imq) is
shown in Fig. 6 for the same parameters as in Fig. 5.

A fully analytical treatment can be performed in the lim
of wave propagation mostly along thez axis, and weak po-
loidal field, i.e., for kz

2@k'
25kr

21m2/r 2, and a2r 2!1. In
this case, the Hamiltonian~21! can be approximated b
means of the following Hamiltonian, where the termk'

2Bp
2

has been dropped:

FIG. 5. Example of a ray trajectory projected in the (x,y) plane,
for the case of the pure hyperbolic magnetic field. The chosen
rameters area51/3, L/Lz51/3, n51000,m55, andnr50.
m
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l~r ,kr ,kq ,kz!5v22S kr21 kq
2

r 2
1kz

2B2D . ~25!

The above Hamiltonian can be formally referred to the
motion of a particle with kinetic energy 2kr

2 in the effective
potential V(r )5kq

2 /r 21kz
2B2. The corresponding wave

equation~obtained inverting the Weyl symbol! is

1

r

]

]r S r ]w̃

]r D1Fv22
m2

r 2
2kz

2~11a2r 2!G w̃50. ~26!

This equation is a Schro¨dinger equation in the
effective potential V(r ), and has the solution
w̃5r umuexp(2akzr

2/2)Lnr
umu(akzr

2), Lnr
umu being the general-

ized Laguerre polynomial. The quantum numbernr is related
to v by the equation

v2~nr ,m,n!5kz
212akz~2nr1umu11!. ~27!

Equation~27! gives the eigenfrequencies explicitly in term
of the quantum number set (nr ,m,n), and coincides exactly
with the WKB spectrum obtained by applying the quantiz
tion rule ~23! to the Hamiltonian~25!, since the potential is
that of a ~cylindrical! harmonic oscillator. In this case, th
spectrum is degenerate, and the angular precession is
Equation~26! can be directly obtained from Eq.~24! by sim-
ply dropping the term ¹'•(a

2r 2¹'w̃)[a2@1/r ]/
]r (r 3]w̃/]r )2m2w̃#. The contribution of this term to the
eigenfrequency can be easily computed by means of pe
bation theory@10#. Normalizing the radial coordinater over
Aakz, the perturbation parameter is identified asa/kz . The
frequency spectrum, up to first order ina/kz , is

v2~nr ,m,n!5kz
212akz~2nr1umu11!

1a2~2nr
212nr121m212nr umu1umu!.

~28!

Note that the degeneracy in Eq.~27! is now removed.
In the case of the two-wire magnetic configuration, d

scribed by Eqs.~19! and ~20!, trapping of the fast wave in

a-

FIG. 6. Plot of the eigenfunctionw̃(r )cos(mq), solution of Eq.
~24!, for the same parameters as in Fig. 5.
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55 5913TRAPPING OF FAST MAGNETOACOUSTIC WAVES . . .
the region around theX point can occur for large enoug
kz . For low values ofkz , only traveling waves are found
The pattern of the trapped ray trajectories is considera
different from that predicted in the asymptotic limit, as c
be seen in Fig. 7, where a ray trajectory is represented
parameters very close to those of Fig. 5. Now, only o
caustic is still present, and the region containing theX line is
accessible to the wave. Since the magnetic field amplit
~20! depends on both the canonical coordinatesr and q,
kq is no longer a constant of motion. Its variation allows t
wave to propagate into the region aroundr50.

To exploit the observed differences of the ray topology
the two magnetic configurations, we consider the followi
Hamiltonian, obtained by taking into account terms of ord
O(r 4) in the series expansion of the magnetic field amplitu
~20! around theX point:

l~r ,q,kr ,kq ,kz!5v22S kz21kr
21

kq
2

r 2 D
3~11a2r 222a2r 4cos2q!. ~29!

The ray trajectories obtained from this Hamiltonian show
same topology as those computed by inserting in the Ha
tonian the exact magnetic field~20!, as far as they are con
fined in the region close to theX point.

In the same limit performed previously,„i.e.,
kz
2@k'

25kx
21ky

2 @see Eq.~25!#…, the Hamiltonian~29! is
separable when expressed in Cartesian canonical coordi
(x,kx ,y,ky), and corresponds to two uncoupled nonlinear
cillators:

l~x,y,kx ,ky ,kz!5v22kz
22@Hx~x,kx!1Hy~y,ky!#

5v22kz
22@kx

21a2kz
2~x222x4!1ky

2

1a2kz
2~y212y4!#. ~30!

In this approximation, the problem is reduced to quadratu
i.e., Hx(x,kx)5H̄x , andHy(y,ky)5H̄y , whereH̄x and H̄y

FIG. 7. Example of a ray trajectory projected in the (x,y) plane,
for the case of the two-wire configuration. The chosen parame
are very close to those in Fig. 5.
ly
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e

e
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are two constants satisfyingH̄x1H̄y5v22kz
2 . The ray dy-

namics is given by the superposition of two independent
periodic motions~with different frequencies! between the
turning pointsx(6)56ux̄u, and y(6)56u ȳu, which are the
roots of the equations

kx
25H̄x2a2kz

2~x222x4!50,
~31!

ky
25H̄y2a2kz

2~y212y4!50.

The resulting caustic in the (x,y) plane is a rectangle of side
2ux̄u and 2u ȳu centered in the origin, and with sides parall
to the coordinate axes.

The frequency spectrum can be found by applying
semiclassical quantization rule to each oscillator separat

Jx5Jx~H̄x ,n![
2

pE0
x̄
kxdx5nx1

1

2
,

~32!

Jy5Jy~H̄y ,n![
2

pE0
ȳ
kydy5ny1

1

2
,

where the action integralsJx and Jy can be expressed in
terms of elliptic integrals. In the relevant limitn@nx ,ny , an
approximate explicit form of Eq.~32! can be found:

v2~n,nx ,ny!5kz
212akz~nx1ny11!

23@~nx1
1
2 !22~ny1

1
2 !2#. ~33!

The parameter characterizing the deviation with respec
cylindrical symmetry of the magnetic field amplitude can
found by normalizing the spatial variables,x and y, over
Aakz. In this case, one obtains (akz)

21. The expression~33!
can be obtained also by means of the perturbation the
applied to the Hamiltonian~30!, at first order in the small-
ness parameter (akz)

21. Comparing Eq.~33! with Eq. ~27!,
it is found that the breaking of axial symmetry introduces
additional term, which removes the degeneracy in the eig

FIG. 8. Plot of the eigenfunctionw̃(x,y), solution of Eq.~34!,
for nx51, ny54, andn51000. The corresponding trajectory is th
shown in Fig. 7.
rs
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5914 55DANIELA FARINA AND ROBERTO POZZOLI
frequencies. The eigenfrequencies~33! merge into the eigen
frequencies~27! in the limit (akz)

21→0 ~with the corre-
spondence 2nr1umu5nx1ny). This can be understood sinc
the linear size of the caustic scales as (akz)

21.
In the considered limit, the wave equation~7! is written as

S ]2

]x2
1

]2

]y2D w̃~x,y!

1@v22kz
22a2kz

2~x222x41y212y4!#w̃~x,y!50, ~34!

with w5w̃(x,y)exp(ikzz). The above equation can be solve
by separation of variables. The solution corresponding to
case plotted in Fig. 7 is shown in Fig. 8. Note that the str
ture of the eigenfunction is different from that found in th
hyperbolic configuration.

V. CONCLUSIONS

We have investigated the frequency spectrum, and
corresponding eigenfunctions relevant to fast waves trap
around aX line, and have explicitly considered the hype
bolic configuration of the magnetic field and the two-wi
configuration. We observe that, for a given eigenfrequen
an eigenfunction of the system characterizes in a unique
the structure of the mode only when degeneracy is abs
This actually occurs in the case of the pure hyperbolic c
figuration, and of the two-wire configuration. The eigenfun
tions relevant to the two different magnetic configuratio
have a quite different structure even in a region close to
X point.

We then conclude that the structure of the fast wa
trapped around aX line is very sensitive to the actual mag
h
-

e
-

e
ed

y,
ay
nt.
-
-
s
e

s

netic configuration. Even arbitrary small perturbations of t
magnetic field, which break the symmetry of the pure hyp
bolic configuration, can strongly modify the wave pattern
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APPENDIX

We recall here, following Refs.@4,6#, the definitions of
the Weyl symbol used in the text. Let us consider the eq
tion

Âc50, ~A1!

where the operatorÂ is Hermitian. Using the configuration
space representation, this equation can be written in the f

E dx8A~x,x8!c~x8!50, ~A2!

whereA is the kernel.
The Weyl symbol of the operatorÂ is defined as

A~x,k!5E dsAS x1
s

2
,x2

s

2Dexp@2 ik•s/«#. ~A3!

The inverse of the Weyl symbol is defined as

A~x,x8!5
1

~2p«!3
E dx8AS x1x8

2
,kDexp@ ik•~x2x8!/«#.

~A4!
-
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