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Trapping of fast magnetoacoustic waves close to aX line in a toroidal system
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The trapping of fast magnetoacoustic waves aroundXhine of a toroidal magnetic configuration is
investigated in the framework of ideal magnetohydrodynamics using a WKB approach. The frequency spec-
trum and the relevant eigenmodes are determined for the hyperbolic case, and for a divertorlike geometry.
Striking differences are pointed out, which are due to the breaking of the symmetry in the system.
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I. INTRODUCTION Il. THE WKB APPROACH

In the framework of the ideal MHD, the equation for a
We refer to az-periodic magnetic field configuration displacement fiel&(x,y,z) with frequencyw is
B(x,y) =B.&,+ B,(X,y), with constanB, andB,, parallel to R
the (x,y) plane, characterized by a null point @,, Dé=A4mpw?é+BX{VX[VX(BX §]}=0, @
Bp(0,0)=0 (X line), and consider ideal magnetohydrody-
namic (MHD) perturbations on a uniform, zer®, current-  wherep is the constant plasma density, and the operfat'm
less plasma. This model can be relevant to space plasma, ahigrmitian.
to laboratory plasma, e.g., the scrape-off lay®@OL) of a Within the WKB approach, we introduce a smallness pa-
divertor configuration in a rectified tokamak geometry. rametere, and look for asymptotic expansion of the solution.
Analyses of purely two-dimensiondRD) perturbations Following Ref.[4] and making use of the Weyl calcul(8],
(i.e., with noz dependendein similar systems, have been the diagonalization of the operatbrleads to decoupling of
made in Refs[1,2]. We address here the more general 3Dmode polarizations, and to a scalar wave equation for each
case, and point out the occurrence of new features in thscalar wave functionp(*) (to be defined beloyy which is
propagation of MHD waves, such as trapping of fast wavesvritten as
around theX line. The determination of the corresponding
frequency spectrum, and the related eigenmodes, is the main ANB =0, 2
goal of the present paper. Moreover, we account for the ef-
fects of deviations of the poloidal fielB, from the pure whereu denotes the single mode, ant is a scalar opera-
hyperbolic configuration usually considered in the literaturetor. It is obtained by applying the inverse of the Weyl trans-
and show how they can greatly affect the structure of thorm to the eigenvalua () of the Weyl symbolD(x,k) of
modes. the wave operatob (see Appendix The diagonalization of
The WKB analysis of fast modes in a current carryingthe matrixD(x,k) has to be performed up to first order in
cylindrical system (representing the core of a tokamak ¢.
plasma has been performed in Rgf3]. In the case of the The eigenvaluea (¥ are
X line, the main difference is the absence of the helical sym-
metry of the magnetic field lines. We use the WKB approach NP =4mpw?—k?B2 ©))
in the form presented by Littlejohn and Flyrid], which
reduces the problem to the solution of a scalar wave equaand
tion, and allows the extension of the analysis to the case of a
more general dielectric response. Following the ideal MHD NA=47pw?—(k-B)?, 4
model, we do not consider finite frequency effects, and the
problem of linear conversiofg], which will be the subject of Where F) and (A) denote fast and shear Alfaemodes,

a future investigation. respectively, and the third mode corresponds here to zero
This paper is organized as follows. The basic equationfequency. The relevant polarization vectpdefined in the
for the WKB solutions are presented in Sec. Il. The unper{X.K) phase spadecan be viewed as the eigenvectors of the

turbed configurations in the hyperbolic and divertorlike casedVeyl symbolD, and are

are introduced in Sec. lll. The eigenmode analysis of the fast

waves is performed in Sec. IV. Conclusions are given in Sec. AF) = BX(BXk) )
V. IBX(BXK)|’
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BX k In the configurations under consideratiangdoes not de-
:|B>< K" (6) pend onz, andk, is a constant of motion. Since the system is
periodic inz, k,=27n/L,, wheren is integer, and., is the
We note that in this specific case the first order termof Z Periodicity length.

. LA , . From the analysis of the ray trajectories, it is easily found
;ﬁ?'iihgsefsg]c ® is symmetric, as has been already pOIr]tedthat trapping of shear Alfwe waves does not occur. Fast

From Egs.(3) and (4), by means of the Weyl calculus waves can instead be trapped in a region close ttliee,

. gy which is a minimum ofB2. In fact, following [8], the ray
[Eas.(Ad), (A2), and(A1)], we obtain explicitly trajectories can be derived from the Hamiltonian

A

AP G P =47pw2pF+V. (B2V¢F)=0, ) 2mpw?

1 2
and h(X,k) 2k §2(X—,y) 0, (15)
ANA P =47pw2dP+(B-V)(B-V)pN=0. (8  Where the termk?/2 has the role of a kinetic energy, and
—2mwpw?/B? of a 2D potential. In the following, we shall
The displacement vecta, solution of Eq.(1), is then  consider the fast mode only.
related to¢, and 7, by the transform
lll. THE UNPERTURBED FIELD

1 X+ x'
&x)= WJ dX'dk¢(X')7(T,k) The planar fieldB,(x,y) can be represented by means of
a flux functiony(x,y),
Xexgik-(x—x")/e], 9
Bp(x.y)=ViXe,, (16
which has to be taken asymptotically to lowest ordeein
When the WKB ansatz is made to solve the equation fowith V2=0, sinceVx Bp,=0.

¢ for each mode, Here, we consider two different magnetic configurations.
_ In the first case, the flux function describes a pure hyperbolic
d(X)=Ax)exdiS(x)/e], (100 magnetic field:
the eikonalS and the amplitudé can be determined solving Bpo
the Hamilton-Jacobi equation f@&: Y= T(YZ—XZ), (17)
N(x,k)=0, (11

wherelL is a scale length, anl,, a scale poloidal field. The
field line projections on thex(y) plane (i.e., the curves

and the amplitude transport equation . g
= cons} are hyperbolae. The poloidal magnetic field com-

9 LN ponents ard3,=2B,0y/L andBy,=2B,x/L, andB? is
5 Aﬁ =0, (12 ety
B2= B§+4B§O—LQ—. (18

wherek(x) = dS/dx. Discussions relevant to the solution of
this equation can be found, e.g., in Rd®,9]. The function ) . o )
M(x,K) plays the role of the ray Hamiltonian for the scalar N the second case, a two-wire configuration is consid-

field ¢, and the ray trajectories are given by the Hamilton’s€red, in whichB, is due to two equal currents flowing in two
equations wires parallel to the axis, located ay=+L on they axis.

The corresponding flux function is

. 0N
X= -, (13@ B.nL X2_ 2+L2 2+4X2 2

ok = — pO In ( y 4) y ’ (19

2 L

. N - . .

k=— X (13b) and the magnetic field amplitude is
Evaluation of the integral9) by the stationary phase 2_R2 212 Xty

method gives B7=B; 4Bl (XP—y?+L%)%+ax%y? (20
Ex) = A x KA exiS(x)/e] with k=aS/ax (14) In the limit x>+ y?<L?, i.e., close to th& line, the two-

wire configuration approaches the hyperbolic configuration.
for each mode. Note that, in general, for each polarizatiohe contour plots ofy andB? for the two cases are shown in
the eigenmodes of the system are made by a proper supdrigs. 1-4. We note the presence of a region of increasing
position of integrals of the forn9). Moreover, at the caus- B? around theX point.
tics, where the plain WKB expressi¢h4) diverges, a proper In the following, dimensionless variables are ugedth-
treatment of the expressidf) is required. out change of notatign so that length, magnetic field, and
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FIG. 1. Contour lines of the flux functiosr defined by Eq(17),
in the neighborhood of thX point, in the &,y) plane.

time are measured, respectively, in units lof B,, and
ta=L\4mp/B,=L/cs, cp being the Alfven speed in the
field B,.

IV. ANALYSIS OF THE EIGENMODES

In the hyperbolic case, the ray Hamiltoni&B) reads, in
cylindrical coordinatesr(,9,z),

2

k
AT, 9K Ky k) = 02— k,2+7"2—+k22 (1+a%?), (21)

where the covariant componerks,ky ,k, are the momenta
conjugate tar,9,z, r’=x*+y?, anda=2B/B;.

In this case, the problem is reduced to quadrature, with

ks=const=m being an integral of motion, arkl given by

2 2

2 w m 2
k=11 ,72 72 K" (22)
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FIG. 2. Contour lines of the flux functiosr defined by Eq(19),
in the neighborhood of thX point, in the &,y) plane.
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FIG. 3. Contour lines of the magnetic field amplitude given by
Eq. (18), in the neighborhood of th¥ point, in the &,y) plane.

In the framework of the geometrical optics, wave propa-
gation occurs fork’=0. This condition can be met if
w?= w3, =(am+k,)?. At any frequency belowsy,, the
mode is evanescent, so that this requirement gives a lower
bound to the spectrum. The roots of the equakigi{r)=0
give the radii of the caustics, which are cylindrical surfaces
coaxial to thez axis. In the casé,=0 (analyzed in Refs.
[1,2]), this equation has no solutions fior=0 (axisymmetric
modes, and propagation is allowed for any value rofFor
m#0, there is one solution, corresponding to an internal
caustic where reflection of the incoming rays takes place:
this caustic limits a region of no propagation around e
point. In the general cade,# 0, there are two solutions;
andr,, so that the ray trajectory is trapped in the region
r{<r=r,, inside two caustics. The shape of the accessibility
region is determined by the quantum numberFor m=0,
the internal caustic disappeans, €0), and the trapping re-
gion contains theX point.
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FIG. 4. Contour lines of the magnetic field amplitude given by
Eq. (20), in the neighborhood of th¥ point, in the &,y) plane.
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. . . FIG. 6. Plot of the eigenfunctiop(r)cosfnd), solution of Eq.
FIG. 5. Example of a ray trajectory projected in they) plane, (24), for the same parameters as in Fig. 5.

for the case of the pure hyperbolic magnetic field. The chosen pa-
rameters arer=1/3, L/L,=1/3, n=1000,m=5, andn,=0.

k2
ALK, Ky k) = w?— k$+r—§+k532). (25)

The eigenfrequencies of the system can be obtained from
the semiclassical quantization rule for the radial action o
The above Hamiltonian can be formally referred to the 1D

motion of a particle with kinetic energyK?_ in the effective
potential V(r)=k3/r2+k2B?. The corresponding wave
equation(obtained inverting the Weyl symbois
wheren, is the radial quantum number. The eigenvalue spec- -
trum »?(n,,m,n) is given implicitly by Eq.(23). For the 19 raﬁ)
parabolic profile ofB? under consideration), can be ex- rar\ or
pressed by means of elliptic integrals, and the spectrum can ) . . . ]
be evaluated numerically. No degeneracy is foreseen in EqLNiS equation is a Schdinger equation in the
(23). gffectlve potential V(r), and has the solution
An example of a single, “rose”-shaped, ray trajectory, <p=r|m|exp(—akzr2/2)LLT‘(akzr2), |_|nn:| being the general-
projected in theX,y) plane, is shown in Fig. 5. As discussed ized Laguerre polynomial. The quantum numbeis related
above, wave propagation occurs in a well-defined region deto » by the equation
limited by two caustics defined by <r=<r,, and the region
containing theX line is not accessible to the wave. ®?(N;,m,N) =k, +2ak,(2n.+|m|+1). (27)
The WKB eigenfunctions are given roper rpo- . . : .
sitioneof termg(gg). llir(;:rtnoEZ:(flg ar?d (%)?vf/)eogstaisrllj?gr po Equation(27) gives the eigenfrequencies epr!C|tIy in terms
the eikonal function S, and the amplitude A, Of. the quantum number sem,(im,n), and coynmdes exact!y
S(r,9,2)= [k, dr+ mo+k,z , andrk,B2A2= const, with with the WKB spectrum obtained by applying the quantiza-

k, given by Eq.(22). The solution, diverging at the caustics, tion rule (23) to the Hamiltonian(25), since the potential is

then can be made continuous by standard techniques. Tiigaéc?rfu;(?zl'gg”gﬁgrggm::éc tﬁicglr?tﬂarm :Zfegzi?)?{ itsr,]?ost
solution thus obtained is a very good approximation of th P 9 ’ 9 P '

: - : : eEquation(26) can be directly obtained from E(R4) by sim-
b s e e . P GODEG et T, (a1 )= i
gblei) =n ar(r3delar)—m?g]. The contribution of this term to the

eigenfrequency can be easily computed by means of pertur-

1(r2 1
.JrZJr(ou,er)E;fr k.dr=n,+ > (23
1

2

m ~
+ wZ—r—z—k§(1+a2r2) 2=0. (26

19 Jg m2 S\ ]~ bation theory{10]. Normalizing the radial coordinateover
Tar ”32? + wz_Bz(r—z_kz”qJ:O- (24 ak,, the perturbation parameter is identified @k,. The

frequency spectrum, up to first order drk,, is

A representation of the eigenfunctiot(r)expimd) is
shown in Fig. 6 for the same parameters as in Fig. 5.

A fully analytical treatment can be performed in the limit
of wave propagation mostly along tleaxis, and weak po-
loidal field, i.e., fork?>k%=k?+m?/r?, and ¢’r?<1. In
this case, the Hamiltonia21) can be approximated by Note that the degeneracy in E@7) is now removed.
means of the following Hamiltonian, where the tehﬁBf, In the case of the two-wire magnetic configuration, de-
has been dropped: scribed by Eqs(19) and (20), trapping of the fast wave in

?(n,,m,n)=k2+2ak,(2n,+|m|+1)

+a?(2n?+2n,+ 2+ m?+2n,|m|+|m|).
(28)
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. . . FIG. 8. Plot of the eigenfunctiom(x,y), solution of Eq.(34),
FIG. 7. Example of a ray trajectory projected in the() plane, for ny,=1,n,=4, andn=1000. The corresponding trajectory is that

for the case of the two-wire configuration. The chosen parameters B
- Shown in Fig. 7.
are very close to those in Fig. 5.

the region around th& point can occur for large enough @'€ WO constants satisfyirtd,+H, = w?—K;. The ray dy-

k,. For low values ofk,, only traveling waves are found. Namics is given by the superposition of two independent 1D
The pattern of the trapped ray trajectories is considerabljperiodic motions(with different frequenciesbetween the
different from that predicted in the asymptotic limit, as canturning pointsx*)=[x], andy{*)==[y[, which are the

be seen in Fig. 7, where a ray trajectory is represented fdioots of the equations

arameters very close to those of Fig. 5. Now, only one —
o ! o y ki=H,— a?ki(x*—2x*) =0,

caustic is still present, and the region containingXhiae is x (31)
accessible to the wave. Since the magnetic field amplitude , — 5

(20) depends on both the canonical coordinateand ¥, ky=H,— a’k3(y*+2y*)=0.

ks is no longer a constant of motion. Its variation allows the ) o ) )
wave to propagate into the region around0. The resulting caustic in thex(y) plane is a rectangle of sides

To exploit the observed differences of the ray topology in2/X[ and 2y] centered in the origin, and with sides parallel
the two magnetic configurations, we consider the followingt© the coordinate axes. _
Hamiltonian, obtained by taking into account terms of order The frequency spectrum can be found by applying the
O(r?) in the series expansion of the magnetic field amp"tudesemlclassmal guantization rule to each oscillator separately:
(20) around theX point:

2

Jy=Jy(Hy —zkad !
) , kﬂ X x( xan)=; 0 X X_nx+§:
K~ + Kk, +-z

ALK Ky Ky) = 02— (32)

— 2 (v 1
X(1+a’r?—2a%r*cos29). (29 Jy=Jy(Hy,n)E;f kydy=ny+ 3,
0

The ray trajectories obtained from this Hamiltonian show the . )
same topology as those computed by inserting in the HamilVhere the action integrals, and J, can be expressed in
tonian the exact magnetic fiel@0), as far as they are con- t€rms of elliptic integrals. In the relevant limmie>n, ,ny, an
fined in the region close to thé point. approximate explicit form of Eq32) can be found:

In the same limit performed previously,(i.e.,

2 _ L2
2> K2 =k2+K2 [see Eq.(25)]), the Hamiltonian(29) is (N, Ny) =k + 2ak(nytny 1)

separable when expressed in Cartesian canonical coordinates —3[(n,+ 1)2—(n,+ 1)2]. (33)
(x,ky,Y,ky), and corresponds to two uncoupled nonlinear os- X2 o2
cillators: The parameter characterizing the deviation with respect to

cylindrical symmetry of the magnetic field amplitude can be

_ . 2_1,2_
A%, Ky Ky k) = 07—k = [Hx(X, ko +Hy(y. ky)] found by normalizing the spatial variables,andy, over

= w2— K2~ [K2+ a®K2(x2— 2x%) + K2 Vak,. In this case, one obtainsk,) ~*. The expressiof33)
° o ‘ Y can be obtained also by means of the perturbation theory
+a?k2(y?+2yH]. (30)  applied to the Hamiltoniari30), at first order in the small-

_ o _ ness parameterk,) ~*. Comparing Eq(33) with Eq. (27),
In this approximation, the problem is reduced to quadratureit is found that the breaking of axial symmetry introduces an

i.e., Hy(x,k) =H,, andH,(y,k,))=H,, whereH, andH,  additional term, which removes the degeneracy in the eigen-
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frequencies. The eigenfrequenci@8) merge into the eigen- netic configuration. Even arbitrary small perturbations of the
frequencies(27) in the limit (ak,)"1—0 (with the corre- magnetic field, which break the symmetry of the pure hyper-
spondence &, +|m|=n,+ny). This can be understood since bolic configuration, can strongly modify the wave pattern.
the linear size of the caustic scales ak) 1.

In the considered limit, the wave equatiGf) is written as ACKNOWLEDGMENT
32 9%\ We thank Allan Kaufman for useful discussions.
2T EY: o(X,y)

) ) APPENDIX
+Hw? =k — k(X2 = 2x*+y?+ 2y Je(x,y) =0, (34) We recall here, following Refd4,6], the definitions of
with ¢=3(x,y)exp(k,2). The above equation can be solved the Weyl symbol used in the text. Let us consider the equa-
by separation of variables. The solution corresponding to théon
case plotted in Fig. 7 is shown in Fig. 8. Note that the struc- A
ture of the eigenfunction is different from that found in the Ag=0, (A1)

hyperbolic configuration. ~ -, . , ,
where the operatoA is Hermitian. Using the configuration

V. CONCLUSIONS space representation, this equation can be written in the form
We havg inv:_astigated_the frequency spectrum, and the J' dx’ A X' ) X' ) =0, (A2)

corresponding eigenfunctions relevant to fast waves trapped

around aX line, and have explicitly considered the hyper- .

bolic configuration of the magnetic field and the two-wire Where A is the kernel, i

configuration. We observe that, for a given eigenfrequency, The Weyl symbol of the operatak is defined as

an eigenfunction of the system characterizes in a unique way

the structure of the mode only when degeneracy is absent.

This actually occurs in the case of the pure hyperbolic con-

figuration, and of the two-wire configuration. The eigenfunc-

tions relevant to the two different magnetic configurationsThe inverse of the Weyl symbol is defined as

have a quite different structure even in a region close to the

s s
A(x,k)=f dsA| x+ E,X—E exd —ik-ge]. (A3)

X point. Ax) = —— [ aal 2w exetik: (x—x')/e ]
We then conclude that the structure of the fast waves ' (2me)® 2 '
trapped around X line is very sensitive to the actual mag- (A4)
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