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Nonlinear drift-wave structures and their influence on patrticle transport
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The nonlinear dynamics of drift-wave turbulence and the resulting transport properties are considered in
two-dimensional situations. Here drift waves are driven unstable via either the universal instability or the drift
dissipative instability. Numerical simulations demonstrate that drift-wave turbulence contains monopolar, spa-
tially coherent structures. The latter are identified by some standard methods. It is shown that coherent
structures can account for convective particle transport in addition to the fluctuation-induced transport. An
approximate linear scaling between fluctuation-induced transport and driving strength is found. Estimates for
the convective particle transport are presenf8d.063-651X97)02105-3

PACS numbgs): 52.35.Kt, 52.35.Mw, 52.65.z

I. INTRODUCTION corporated self-consistently. Within the electrostatic approxi-
mation the anomalous patrticle current denfltyof a certain
The nonlinear, turbulent dynamics of drift waves is of speciegis defined as
considerable interest in low-temperature plasma physics as
well as in nuclear fusion research. It is widely believed that . C .
at the plasma edge of a toroidal confinement system, drift- I'= E(ﬁn ZxXV o) . 2
wave turbulence is responsible for the observed anomalous
transport. Important for the basic theoretical understandin

of nonlinear driftwaves is the Hasegawa-Mima equafibh ?t vanishes if only the adiabatic density response is taken into

account. In Eq(2), it is assumed that the magnetic fiehd
F(1-V?) e+ Knay¢:{¢,v2¢}, (1) p(_)in_ts into thez direction and the averaging) is performed
within a turbulent ensemble.

It is the simplest nonlinear one-field model for the evolution The huge amount of literature on anomalous particle
of electrostatic potential fluctuations (or density fluctua- transport caused by drift-wave fluctuations can at least be
tionsn, when a Boltzmann relation~ ¢ is assumeyin the  divided into two directions. In the first one, a microscopic
presence of a background density gradiegi=L, "= picture is favored. Starting from an appropriate kinetic equa-
— (d/dX)Inne. The nonlinearity appears through the Poissont!oni e.g. the ylaso_v _equatlon, the kinetic particle distribu-
bracket{ , }. The Hasegawa-Mima equation exhibits manytion functionf is split into an averaged paft) and a fluc-
interesting phenomena and serves as a paradigm of nonline@ting partsf, i.e.,
plasma physics. Solitary dipoles are solutions of &g

The Hasegawa-Mima equation contains no mechanism for f=(f)+of . ©)
instability and thus describes stab{endriver) nonlinear
drift waves. Therefore, it is not suitable for anomalous transintroducing the drift approximatior{f) is, to leading order,
port studies. However, many processes can drive drift wavedetermined by the drift-kinetic equation plus the so-called
unstable. Here we will restrict ourselves to the so-calledjuasilinear term. On the other hand, within the drift-wave
drift-dissipative instability[2] and the universal instability scaling(see belowy, 5f follows from the gyrokinetic equa-
[3]. Either wave-particle interactions or electron-ion colli- tion. The latter is a nonlinear, inhomogeneous, stochastic
sions keep the electrons from adjusting exactly to a Boltzequation. In order to solve it, one has to investigate the hi-
mann distribution in high-temperature plasm#k low-  erarchy of moments. The problem becomes very interesting
temperature plasmas, electron and ion collisions with neutradnd, as usual in turbulence theory, extremely difficult.
atoms become importaptUnstable drift waves are made Within the quasilinear transport theory, the calculations are
responsible for anomalous particle transport. simple (since the gyrokinetic equation is solved in its linear

In the past, many researchde—7] have contributed to form), but they are not very predictive. The inherently non-
the understanding of driftwave instabilities with subsequentinear theory, e.g., within the direct interaction approxima-
driftwave turbulence. Interesting questions are selftion, is a more serious attempt, but for any explicit compari-
organization, the appearance of coherent structureson with experiments it is too complicated. The latter reason
fluctuation-induced transport, broad wave-number and frestimulated the other direction followed in nonlinear drift-
guency spectra, etc. wave theory: the macroscopic approach. Here one starts from

In recent years it has been found out how the mddgl a truncated system of momentum equations and splits the
has to be extended in order to understand in more details th@dasmadynamical as well as the electrodynamical variables
above-mentioned problems. Especially for transport studiesnto averaged and fluctuating parts. Within the drift-wave
the phase shift between densitgn) and potential §¢) scaling(see below a closed nonlinear system of stochastic
fluctuations ¢ indicates fluctuating quantitiehas to be in- equations is derived that can be solvatlleast numerically.
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Usually, also analytically some conclusions can be drawn omvhere w,; is the ion plasma frequency, we obtain an equa-
the basis of scaling arguments. In this paper we follow thation for the electrostatic potentigl, which still contains the
second, macroscopic approach in order to get some insiglparallel electric current density . The latter is determined
into the anomalous transport caused by nonlinear driftwavedy Ohm’s law, which closes the system. Here the resistivity

The paper is organized as follows. Sec. Il we present a;~4qwei/wg appears and, of course, through the electron
short discussion of a macroscopic two-field model for driven ¢

. X ) V= pressure the electron density remains as a variable.
drift waves. A focus will be on the reduction to a one-field ™ gjgnificant for the driftwave models is the normalization
model, which can describe either dissipative or universal in-

stabilities. In Sec. lll we present numerical results based on eo L, Sng Ly, tce

the two-dimensional nonlinear driftwave models and discuss T p——>€0, P p——>n, L__)t’

the impacts of the different nonlinear terms on the dynamics. ers 00 Fs .

The main part of the section is devoted to the transport prop- (4)
erties predicted by the model. There we show that the trans- il

port caused by driftwave turbulence consists at least of two psV,—V,, 'Z—n—>,u,

parts. One is the fluctuation-induced transport, which is de- PsCs

pendent on a phase shift between the potential and density. . .
hereps=c¢/(); as the ion gyroradius at electron tempera-

The other component is due to the movement of cohere T (T m¥2 Th llel derivati |
structures parallel to the density gradient. For typical tokalur® andcs=(Te/m;)== The paralle| derivatives are normal-

mak parameters some estimates of the particle transport al

presented in the Appendix. The paper is concluded by a short LT, |12
summary in Sec. IV. LIIZ(L) . LV— Y. (5)
Me Cs Ve
Il. MODEL After all t_hese steps we are left with two coupled equatic_)ns:
S N an equation fok (which has been mentioned already during
A. Dissipative instability the above discussiprand an equation fon (which is the

If collisions between electrons and ions drive a drift wave€lectron continuity equation witfy being determined by
unstable, a two-fluid approach can be used. We assume maghm'’s law. It is appropriate to introduce: =V~ and the
netized ions and use a shearless slab geometry with a we&oisson brackefe, y}=zXVe- V.

background density gradient in tiedirection. For that situ- For T;/T,<<1 we then can write the basic equations as
ation, the basic model has been presented already at several
places[8—11], so that for the following it is only necessary &tw+{gp,w}—,uV2w=Vﬁ(n—cp), (6)
to summarize the main assumptions.

The momentum balance of the ions is (#gK();) ap- &tn-i-{(p,n}-i-&y(p:Vﬁ(n—(P)_ @)

proximately solved by the drift velocities. The gyrofrequen-
cies areQ),=q,B/m,c for a=e,i and go=—e. At this  This is the quite-well-accepted two-field model for colli-
stage the drift ordering~ d;,~ k,,: = — d4Inny~O(e) should  sional drift waves. The model equations essentially reduce to
be mentioned, which is inherently used during all deriva-the set of equations for the electric potentiahnd the den-
tions. It means that the amplitudes of the fluctuations, the&ity n introduced by Hasegawa and Wakatdfi8]. The
time variations, and the macroscopic density inhomogeneitynodel equationg6) and (7) should be further reduced for
(KnELgl) are small and of the same order. The perpendicutwo reasons(i) They are formulated in three-dimensional
lar space variationgon the scale of the ion gyroradiyg at  space and computer simulations with sufficient resolution are
electron temperatuyeof the fluctuations are not scaled. In- still hard to obtain in three dimensionéi) We have two
serting the ion drift velocitywhere an ion viscosity ;) coupled equations; then any reasonable simplification to a
term has been added to take into account the dissipative e$ufficiently accurate one-field model will allow one to get
fectg into the ion continuity equation, we obtain, up to sec-further insight into the analytical properties and will reduce
ond order within the driftwave scaling, an equation that dethe required computer time.
termines the time variation of the ion density fluctuation The first point(i) is most serious since there might be a
on;. In the following, noy (a constant densilyis used for  significant nonlinear energy transfer kp=k;. Because of
normalization, while the background density is inhomo- limitations in coupling time and memory, we do not elabo-
geneous. Inserting the relevant drift velocities into the elecrate on such processes when replacm@a—k” =-51,
tron continuity equation, we obtain a similar equation for thei.e. using an effectivénondimensionalparallel wave num-
density fluctuationSng=ng— ny,. TheEXB velocity is kept, ber. The second poirtii) is not so serious since from the
but the nonlinear electron polarization drift is neglected sincé?hysical point of view, in the near-adiabatic limit, an itera-
|Q¢|>Q; holds. The paralleito the magnetic fieldelectric ~ tion is somehow stringent. Near adiabaticity me@arsw ex-
current densityj| is within a so-called 2-dimensional model ~plicitly written in dimensional quantitigs
(vi|=0) assumed to be dominated by the electrons. This
assumption excludes the sound branch in which we are not 5= 1 _ (Veilvrek)) <1 ®)
interested. KiLf  kjLn(velcs)

Subtracting the electron continuity equation from the ion
continuity equation, using quasineutrality fcmgi>9i2, This is satisfied in the weakly resistive case.
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To proceed further, we first build the difference of Egs.tion of the paramete#é. In the dissipative case is defined

(6) and(7) and, in addition, solve Ed6) for n. Inserting that as 6= 5co||:(mecs”ei/LnTe)kH_2v whereas in the kinetic

expansion fom into the first relation, one obtains an equa- case we US@= 6, yngai™ \/W_/Z\/W(l/l—anD- Which ex-

tion that is suitable to an iteration process based on conditiopression is important depends on the ratio

(8). The (up to first ordey iterated version reads

1) 2 v
&t(l—VZ)(p-l-&y(p-i-,uVZVzgo-l—{Vz(p,cp} coll _ \ﬁ Vei (14)
OLandau ™o tekll
= 60y(di+dy) o+ 8{ @, (9 +dy) o} 9

(in non-normalized unids Note that an effective collision

Within the same accuracy the densitycan be computed  frequency induced by wave-particle interactions can be de-
from the electrostatic fielg through fined by

n=¢—05(d+dy)e. (10 p
Veff+ = \@Utekll . (15

B. Universal instability

When the temperature of the plasma is high enough, bi-
nary collisions become infrequent and kinetic effects are
more important. The wave-particle interactiging., Landau Because of the second order in time, E®).still contains
damping then are responsible for the so-called universal in-a fake mode. The latter corresponds to the density-relaxation
stability. As the ions are assumed to be cold, we only have tprocess[described, e.g., in the Landau case, by E@®)],
use a kinetic description for the electrons. For the latter, bewhich takes place on a small time scale.
cause of|Q|>Q;, a linearization of the electron gyroki- But within the near-adiabatic approximation it is consis-
netic equatior{12] is sufficient to calculate the phase shift tent to iterate further, i.e., to replace all time derivatives on
(besides the adiabatic respopsé&sing the drift velocity the right-hand sidérhs) of Eq. (9) by

Up, We have

C. Dynamical model being of first order in time

c?t(p—>—(1—Vz)fl[&ygo-i-,LLVZVZ(p-i-{VZ(p,(p}]

.- - e V= _p-
98t e+v)0,0fe+vp V. feotvp V) e ——Ejd, feo~0. =T(¢)=-P Lo+{V?¢,0}], (16)
e

(1) whereP=1-V2 and L=3y+ 83,V*+ uV?V2 Then a one-

Note that this form originates from the usual kinetic descrip—f'QId model is obtained in the form

tion after introducing the variableréu (magnetic moment

V) o+ + uV2V2,+ V2
w (kinetic energy, and ¢ (gyroanglg. We have also used HA=V)etdyet uV Ve H{V e, 0}

the drift ordering(i.e., the electron distributiorf, is ex- =—8[P dy—P L) Lo+P 9~ P1L)
panded in terms of the smallness paramedgerassuming a B PP, o2
quasi-Maxwellian fq, in lowest order. Introducing X{V70,0}+P H{V7%, T()} + P 1V T(¢), ¢}
0} ==K (kwi/Qe), the linear density response is in Fou- ~{e, 0,0+ T)}]. (17)

rier spacq k is here an abbreviation foﬂZ(w)]
. Equation(17) is the basic analytical model of this paper. The
_ R w15 Pk idea to use such a model was suggested by Crotinger and
Ne=No[ 1+ 18w we )] Te ' (12 Dupree[9]. Note that the terms on the rhs, although suggest-
- ing some complications, are straightforward to incorporate
with (dimensional §= \'m/2(11k|ve). This is similar to Eq.  into a standard numerical code for solving an equation of the
(10). The other kinetic electron contributions afia the  Hasegawa-Mima type. Here it is important to note the differ-
drift-wave scaling one order of magnitude smaller and thus ence between Eq17) and the widely use@ models. In the
they will be neglected. The ions are described in the samgatter, the partial time derivatives on the rhs of E) are
way as in the previous case of the dissipative instability.  simplified by making use of the linear dispersion relation for
Combining the ion dynamics with the electron responsedrift waves. That corresponds to a weak-turbulence approach
in a quasineutral situation, we obtain with the normalizationwhere the modes still obey a fixed relation between wave
(4) again Eqg. (9). Note, however, that in this non- vectors and frequencigd3]. When comparing, e.g., to the
dimensional description the dimensionless quantityresult of Kono and Miyashitf14], we formally obtain the
8:=\m/2\me/mi(L/L,[kj|) has to be used. Comparing with |atter model by neglecting in Eq9) the Ex B nonlinearity
Egs.(5) and(8) we recognize that one has the parallel lengththe |ast term on the rhand partially replacing in the phase-

scale shift term 9,——4d,. For comparison we write the Kono-
- Miyashita resul{ Eq. (18) of their papef14]] in our notation
L=V =L, 13 s
= Vm

e

(1—V?) o+ d,0+uV3V2p+{V3p,
instead of Eq(5). It should be emphasized that the differ- 3 Yot dyetu e+ {Vieel

ence to the dissipative drift instability lies within the defini- =—00y(di+dy) . (18
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This and otheri§ models prove useful when the general

aspects of nonlinear processes in the presence of a so-called

vector nonlinearity are studied. However, when drift-wave 0
applications are considered, theses models are only of lim-

ited use. For example, as we shall show in the next section,

the dipole vortex self-organization being a generic feature of

Eq. (18) does not occur in the more general models. This has
important consequences for the transport, as will be dis- -0.2
cussed now.

llI. DYNAMICS AND TRANSPORT

A. General aspects 7/ -0.4

Equation(17) was solved numerically using a standard
pseudospectral code with a combined Crank-Nicholson and
leapfrog time stepping. The grid size was chosen to be be-
tween 57 and 20r, with a spatial resolution between -0.6
128%x128 and 51X 512 grid points(at maximum. All cal-
culations were carried out on an IBM RS6000 workstation.
As initial conditions we used ik-space Gaussian distributed
noise. Periodic boundary conditions were imposed in both -0.8
directions. Before reporting the different feature of convec- )
tive transport by monopolar structures, we present the overall
picture as it is also known from other simulations. This is to

show that our simulations agree in all known aspects with 0 1 2 3 4 5
previous ones, and this gives confidence in the present find- k
ings. y

After a linear growth of the unstable modétypical

growth rates are depicted in Fig) honlinearities begin to

dominate the dynamics when a certain threshold in the am- FIG. 1. Imaginary par of the linear frequency versusk, for
plitude ¢ is reached. The linear waves then break up intdkx = 0 (solid line), 1 (dotted ling, and 2(broken ling. The other
structures of limited lifetimest(;,~80) and sizes of several Parameters aré=0.5 andw=0.03.

ps. The structures move somewhat irregularly through the L . .
plsasma, but on the average they travel with the diamagnetiES tempor?" eVO"%"‘?” is of interest. Figure¢a a}nd 3b)
drift in the y direction. Their motion will be discussed in show the time variations of energy akg},, respectively. An

more detail below. Typical contour plots of the potential areOSCi"""tc.)ry .beh'avior in bo_th q'uantities can be noted. A typi-
shown in Fig. 2. The turbulence saturates in a dynamic ‘T"I oscillation is m_ark_ed in F'g'(a). and shown enlarged in
equilibrium being determined by the balance between driv'9- 3b). The oscillation can be interpreted as follows. At

ing and damping. The saturation amplitudes of the normalt® P€ginning of each cycle the energy is low and the effec-

ized potentialp are of the order one, i.e., within the allowed [V€ Wave number is largéall quantities compared to their
scaling. res_pectlve_ mean valugsThen, an inverse cas_cade begins
Next, it is interesting to look at the time evolutions of during which k,, decreases and the energy increaties

energy and enstrophy. The latter are defined by small damping At some point this process is stopped and
’ the energy is rapidly transported into higher wave numbers,

where it is dissipated. Thuk,, increases and energy de-
E=J’ d’r[@®+(Ve)?], creases and the cycle is ready to start again. This oscillation
mechanism is closely related to the saturation mechanism of
Eq. (17). The oscillations follow from a two-shell model
_ 2 2 2 \2 [15,16. Here we will not comment further on this behavior.
W_I drl(Ve) ™+ (Vi) l, (19 But it is important to note that the additionéio the ion
polarization-drift nonlinearity of the Hasegawa-Mima equa-
respectively. They are conserved in the adiabatic limition) nonlinearities on the rhs of E17) are providing the
(6=0). In the latter caséi.e., for the Hasegawa-Mima equa- saturation c_>f the system and. stop the inverse cascade of the
tion), an inverse cascade of energy towards the lowest wavg"€rgy- This leads to thet first glance quite unexpected
numbers and a direct cascade of enstrophy towards the |aréeature that the saturation amplitude of the potential fluctua-
|

est wave numbers is knowt,13). We have similar cascades 1ONS decreas_eslwith increasing. nonadiabaticity parameter
here. In this context we define an effective wave number ©- That behavior is demonstrated in Fig. 4, where the average

amplitude of the potential|¢|) is depicted as a function of
8. The shown decrease of the average potential amplitude
K= \/KV (20 reflects the fact that nonlinear phase shifts influence directly
av E’ the driving term. Note that the density-potential relat{tf)
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FIG. 2. Contour plots in
(x,y) space L=10mw) of the time
development of the potentia as
given by Eq.(37). Shown are con-
tour lines with a spacing ofiz.
The parameters aréa) t=100,
dz=0.45, (b) t=400, dz=0.48,
(c) t=500,dz=0.48, (d) t=1000,
dz=0.48. The other parameters
are 6=0.5 andu=0.03.

is not fixed in time, but depends aRhe. The reason is the from observations of the simulation pictures with the naked
presence of nonlinear terms of higher than quadratic order. &ye by some quantitative criterion. There exist several defi-
consequence of this is the so-called damping of structures, aritions of coherent structures in literature. Here we use an
effect missed by others models and weak turbulence de- identification going back to Weid4.7]. Let us introduce the

scriptions. negative Gaussian curvature of the stream function
This saturation scenario is consistent with the observed
6 dependence dof,,; see Fig. 5. With increasing, the in- Lo,
) . . W:=—(0°— w9), (21
verse cascade is stopped at an earlier stage, thus providing a 4

saturated turbulence with a highley, and a lower saturation
amplitude. It is worthwhile to note that for highég, the where o= (a,u— d,v)2+ (a,u+ )2 is the rate of defor-
system is pushed into a state where the nonlinearities become 5 yuoox

. _ 2 . .. = =
more important compared to the linear terms. That is no gtlon,w—V ¢ 1S .the vorticity, ‘f"”d“.’” are theE>§B Ve
only because of the amplitudes of but also due to the ocity components in th& z_;mdy directions, respectively. As
higherk values involved has been proved by Weissy measures whether two par-

ticles will separate \(V>0) or not W<0) when following

the frozen streamlines. In this way, a flow can be separated

into structures and fluctuation, and we identify nonseparating
Now we report on the transport properties being observetrajectories (W<<0) as belonging to stuctures. Figure 6

in the model(17). The numerical results suggest that theshows the decomposition of a typical field distribution into

particle transport consists of two distinct contributions, onestructures and fluctuations as obtained by this method. It can

being caused by the motion of coherent structime®to. It  be seen that all structures contain a local extrenforaxi-

is important to confirm this conjectur@sually resulting mum or minimum of the potential. Following the motion of

B. Identification of monopolar structures
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0.2 0.4 5 0.6 0.8 1

FIG. 4. Averaged saturation amplitudler|) versus the nonadia-
baticity parametep.

whereM signifies maxima or minima, and,, is the corre-
. , . sponding extremum value of the potential. Thendx co-
ordinates of structures statistically averaged in this way are

1780 1800 1820 t 1840 reported in Fig. 8. This figure clearly shows that both

maxima and minima move in the direction with the same
(diamagnetit velocity, whereas when the motion in the

FIG. 3. EnergyE (dotted ling and effective wave numbe,,
(full line) versus timet. The oscillation period marked ifg) is

shown in more detail irfb).

these extrema, it has turned out that one can implement nu-
merically a simple algorithm for statistical evaluatiors:
Search for all local extrema in a tintg and register their
positions. (i) At time t;, the nearest extremum within a
neighborhood (t; —tg),v being the velocity of the structure,
can be identified as the successor of the previous structure.
(iii) If no successor is found, the structure has vanished.
Structures with no precessor are added to the(iist.When
monitoring displacements of the structures only events are
counted that last longer than an eddy turnover tigpe Fig 7
shows the time development of tlyeand x positions of a
single specific structure. Next, we define positions vectors
EM pointing to the midpoints of the structurés. We con-
sider density humps and density dips separately. Weighting
the contribution of each humfor dip, respectively by the
corresponding trapped density, we define a mean position

vectorR for maxima(or minima, respectivelythrough

ﬁ(t>=§ Auleul, (22)

k

14 T T T T T
v

13 E

(WA

LI}

06 | | |
02 03 04 0.5 0.6

d

07 08 09

FIG. 5. Effective wave numbek,, versus the nonadiabaticity

parameters.
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FIG. 6. Decomposition ofa) a field into (b) structures andc)
fluctuations. In(a), a contour plot of the potentiap at t=320 for
8=0.5 andu=0.05 is shown. This field is decomposed irtn
structures andc) fluctuations.

direction is considered they move oppositely each other

L L L L
1600 1700 t

100 |

20

s s ) L
1800 1700 t

FIG. 7. Exact positionga) y and (b) x of maxima(heavy ling
and minima(thin line), respectively, of a specific structure versus
time t.

tion to the tranport is the so-called fluctuation-induced trans-
port, which is due to dslight) phase shift between density
and potential fluctuations. The second component of the
transport is due to the movement of coherent structures in the
x direction. A monopolar structure contains a certain amount
of density. If the structure itself moves parallel to the density
gradient it produces a particle flux since it takieapped
density along the gradient. The density content of a structure
can be estimated. Although the velocity of the structures can-
not be determined from first principles, estimates will be
given below. We will now work out the above-mentioned
phenomena in more detail.

C. Fluctuation-induced transport

(maxima down the density gradient and minima up the den- The x component of the particle flow along the back-

sity gradient. Thus, obviously, the structures are not dipole-ground density gradient due to fluctuatiods and S is
like. Instead of the modon solutions of the Hasegawa-Mimgjefined as

equation, monopolar structures play the dominat fa&.

We are thus led to the following scenario. One contribu-

T =(3ndv,). (23)
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FIG. 8. Averaged position&) y and (b) x of maxima(heavy

1
1200

0.6 1.8 2.4

— FIG. 9. Dimensionless particle floW,,,, versus magnetic-field
strengthB for §=0.4 in Eq.(37) (solid line). For comparsion, re-
~ sults for the two-field model16) and(17) are given by the broken

Note that in anomalous transport theories no linear relation

between the fluxes and the thermodynamic forces exists.
That means thaD can still depend onk,. A positive D

means that particles move down the density gradient. The

line) and minima(thin line), respectively, of structures versus time fluctuation-induced part of the diffusion coefficient will be

t.

written as

The averaging process can be performed via

DT:

2

- 1 (T 1 (L 1 (L - . .
(f(x,t))= lim _f dt_J dy_f dzf(x,t). (24) The dimensionless flow
TJo Ly 0 L,Jo

T—w

In the electrostatic limit, the velocity is thex B drift; its

X component issv,= — (¢/Bg) dy .

external magnetic field or the instability drive, we introduce
dimensionless quantitigsising the relation$4)] and arrive

at

Noo
Fx:'_P§C§E§<n&y¢y
n

An effective diffusion coefficienD will be determined from

FX: - DVXn:DKnnoo.

PsCs
= (- (n ). @7
L pum=—(n ‘9y‘P> (28)

still has to be determined from numerics. It incorporates all

. C/E ' ' aspects of the turbulent dynamics on the fluctuation-induced
To examine the variation of the particle flow with the transport. Note thaf ., is positive whenever , is positive.

The scaling of the diffusion with the magnetic-field
strength is of interest. In dimensionless quantities a variation

of the magnetic-field strength results in a change of the
length of the integration domain. The reference magnetic
field B was chosen to correspond to a lengthLot 10s.

(29

Then, for several values oB the resulting fluctuation-

induced transport was determined numerically.
Figure 9 showd",,, versus magnetic-field strengi It

can be seen thdf,, is independent of the magnetic-field

strength. In other words, the boundaries have no or little

(26)

effect on the dimensionless floW,,,. This is sometimes
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0.6 T | I — Dr _ /™M Amip

IMum- 2

DcoII Mg I-n num (3 )
Here N mp=vy; /v; is the mean free path of the ions. The
fluctuation-induced transport dominates in a weak collisional
regime where the mean free path is equal to or longer than
the characteristic length of the density gradient.

0.4L ‘ _ If we use b, in dimensional form
f 5 :eznooncsLﬁ @3
num .
relation (30) allows us to rewrite Eq(32) as
} 2
Dy 1 ( L|) (34
0.2' 7 Deat 2\Ln/ °
Now, only the density gradient length, and the parallel
¢ correlation lengthL | have to be taken from experiments to
B . determine this ratio. As the parallel length is usually much
larger than the length scale of the density gradient, the
¢ fluctuation-induced transport will exceed the collision-
0 | I | i induced classical transport for typical tokamak parameters.

At this stage we can justifg posteriorithe neglect of colli-
0 0.2 0.4 0.6 0.8 1 sions perpendicular to the magnetic field. Next we shall fo-
cus on the coherent transport. Further estimates are presented
(5 in the Appendix.

FIG. 10. T, versus$ for Eq. (37). D. Transport by the movement of a structurein toto

. L Here we take a closer look on the transport caused by the
called microturbulence when the dynamics is independent of, jiion of regular structures. The flux is defined as
the location of the boundaries. In accordance with mixing

length arguments, the fluctuation-induced diffusion coeffi- . .
cient depends on the magnetic-field strength via Ie= EC: NeVe), (35
1 1

= (29) where the subscript stands for the coherent structures. The
QIZ B density enclosed within one structure is notedrly it can
be written as

Dr

Next we varied the instability drive, that i$. Figure 10
showsTI ,,m, Over 6. In the range 0.8 6<1 the dependence n.= j n(r)d2r (36)
can be approximated by e '

ro - } s (30) \7C denotes the average velocity of the structarand the
num-— o averaging proceduré ) is carried out over the domain of
integration.
It is important to note that the modél7) does not contain Itis very time consuming to determine exactly the amount

any individual collisional process for a momentum transfern. of density carried by each specific structure. In principle,
perpendicular to the magnetic field. Thus we have nowve can define an exact time-varying boundary of the latter
collision-induced classical transport and the total transport i®y the Weiss criterion. Then, is a function of time as the
due to anomalous effects. However, in the dissipative casétructure changes shape. Similar arguments hold for the ve-
dcon results from collisions that cause momentum transfelocity \70, which will not be uniform over a structure and
parallel to the magnetic field. We now compare the obtaine@ertainly changes in time. Thus the evaluation of &%) is
fluctuation-induced transport with the well-known perpen-extremly tedious and therefore it is preferred to find the order
dicular collisional (classical transport. The classical of magnitude by estimates.

diffusion-coefficient due to collisions is given §§9] We can estimate the density hurfgy density depression
) within a coherent structure by the extremum vayg of the
NooleC potential, so that
Deoi=—g7 — 7- (3
nJ=< dr. 3
Comparing with Eq(26), one arrives at Inel |¢M|fc 39
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T | T T T The latter are determined by nonlocal interactions caused by
the i § nonlinearity. The saturated system cannot be de-
scribed within a weak-turbulence theory since the linear dis-
persion relation is significantly broken. The transport con-
sists of two components. One is determined by the phase
02 7] shift between density and potential fluctuations and thus is
called fluctuation-induced transport. The other originates
from the regular motion of coherent structures; it is called
coherent transport. We estimated the latter transport compo-
COh _ i nent and showed that it could reach the same order of mag-
nitude as the fluctuation-induced transport, provided the de-
F viation from adiabaticity is large. However, the motion of

num coherent structures in a turbulent plasma needs to be exam-
ined in more detail. Work is carried on in this direction and
0.1F - results will be reported later.
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6 APPENDIX: ESTIMATES

In this section we present typical values of the
FIG. 11. Same as in Fig. 10, but for the numerical fadtffy,  fluctuation-induced transpofas deduced from the model
caused by the motion of the coherent structureto. (17)]. We choose characteristic tokamak paramefi2@ A
parallel correlation length .,,~10 m corresponds to a par-
Furthermore, we replace the veloci¥j, by the averaged allel wavelength\ =2x/k,=2=L. It is assumed that only

velocity dR/dt of the coherent structures. The position vec-One parallel mode number is dominant. The parallel length is
tor R is defined in Eq.(22) and its time development is }_hTZerlSO cm. For the density gradient length we take
depicted in Fig. 8. nW'th th‘ Spit istivit h

Comparing the slopes of the averagedndx positions, ! € Spiizer resistivityy we have
we can estimate the average velocity parallel to the density s 5 Le?
gradient. It turns out that the mean velocities in thdirec- el \ﬁm (A1)
tion are only a few percent of the velocity in tigedirection. OLandau T Mgl

The velocity in they direction can be estimated by the
diamagnetic drift velocity. Figure 11 shows an upper boundvhere[21]
of the dimensionless flou28) caused by the motion of the
coherent structureis toto. Our estimate shows that the co- 7=5.2<10"3INAT;** O cm (A2)
herent transport might become of the same order as the
fluctuation-induced component shown in Fig. 10. HoweverandT, is measured in eV. Measuring lengths in cm we find
we should have in mind that here we present only a rough

estimate of the upper bound of the coherent transport. A Scoll _2><lo,14|-||rlInA (A3)
detailed description of the nonlinear dynamics of structures Slandau T2
in driven and damped turbulent situations is still missing.
Work on that aspect is in progress. For the parametef0]
~ 103 ~-3
V. SUMMARY Noo~102 cm 3, T,—10~20 eV, (A4)

We examined a one-field model of driftwave turbulenceand InA~13, we findS,, and 8, 4nqa,t0 be of the order one.
that describes drift waves being driven unstable via electronfherefore, we have to take into consideration both contribu-

wave interactiondLandau dampingor electron-ion colli- tions when estimating a diffusion coefficient
sions. The one-field model is valid in the regime of small
deviations from a Boltzmann distribution for the electrons. Seit= OLandauit Scoll - (A5)

We have solved the system numerically. It was shown that
saturation occurs with structures of certamonlineay sizes.  Using Eq.(30) we get
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1
Dy~ chs 2L (SLandadt Ocoll) - (AB)
n

Experimentally{ 20], the particle flow through thecrape-off
layer is
Fexp=2.4x10° cm 2571, (A7)
Using in Eq.(A6),
Scol~2,

OLandar™ 3, (A8)

5893
we find for a magnetic-field strength of 2 T
D;~0.4 nfs % (A9)
with a corresponding particle flow
,~25x10% cm2s 1. (A10)

This estimate shows that the nonlinear transport caused by
irregular fluctuations of the drift-wave type can be of the
same order of magnitude as the observed anomalous trans-
port in experiments.
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