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Nonlinear drift-wave structures and their influence on particle transport

V. Naulin and K. H. Spatschek
Institut für Theoretische Physik, Heinrich-Heine-Universita¨t Düsseldorf, D-40225 Du¨sseldorf, Federal Republic of Germany

~Received 3 May 1996; revised manuscript received 4 September 1996!

The nonlinear dynamics of drift-wave turbulence and the resulting transport properties are considered in
two-dimensional situations. Here drift waves are driven unstable via either the universal instability or the drift
dissipative instability. Numerical simulations demonstrate that drift-wave turbulence contains monopolar, spa-
tially coherent structures. The latter are identified by some standard methods. It is shown that coherent
structures can account for convective particle transport in addition to the fluctuation-induced transport. An
approximate linear scaling between fluctuation-induced transport and driving strength is found. Estimates for
the convective particle transport are presented.@S1063-651X~97!02105-3#

PACS number~s!: 52.35.Kt, 52.35.Mw, 52.65.1z
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I. INTRODUCTION

The nonlinear, turbulent dynamics of drift waves is
considerable interest in low-temperature plasma physic
well as in nuclear fusion research. It is widely believed th
at the plasma edge of a toroidal confinement system, d
wave turbulence is responsible for the observed anoma
transport. Important for the basic theoretical understand
of nonlinear driftwaves is the Hasegawa-Mima equation@1#

] t~12¹2!w1kn]yw5$w,¹2w%. ~1!

It is the simplest nonlinear one-field model for the evoluti
of electrostatic potential fluctuationsw ~or density fluctua-
tionsn, when a Boltzmann relationn;w is assumed! in the
presence of a background density gradientkn[Ln

215
2(d/dx)lnn0. The nonlinearity appears through the Poiss
bracket$ , %. The Hasegawa-Mima equation exhibits ma
interesting phenomena and serves as a paradigm of nonl
plasma physics. Solitary dipoles are solutions of Eq.~1!.

The Hasegawa-Mima equation contains no mechanism
instability and thus describes stable~undriven! nonlinear
drift waves. Therefore, it is not suitable for anomalous tra
port studies. However, many processes can drive drift wa
unstable. Here we will restrict ourselves to the so-cal
drift-dissipative instability@2# and the universal instability
@3#. Either wave-particle interactions or electron-ion col
sions keep the electrons from adjusting exactly to a Bo
mann distribution in high-temperature plasmas.~In low-
temperature plasmas, electron and ion collisions with neu
atoms become important.! Unstable drift waves are mad
responsible for anomalous particle transport.

In the past, many researchers@4–7# have contributed to
the understanding of driftwave instabilities with subsequ
driftwave turbulence. Interesting questions are se
organization, the appearance of coherent structu
fluctuation-induced transport, broad wave-number and
quency spectra, etc.

In recent years it has been found out how the model~1!
has to be extended in order to understand in more details
above-mentioned problems. Especially for transport stud
the phase shift between density (dn) and potential (dw)
fluctuations (d indicates fluctuating quantities! has to be in-
551063-651X/97/55~5!/5883~11!/$10.00
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corporated self-consistently. Within the electrostatic appro
mation the anomalous particle current densityGW ~of a certain
species! is defined as

GW 5
c

B
^dn zW3¹W dw& . ~2!

It vanishes if only the adiabatic density response is taken
account. In Eq.~2!, it is assumed that the magnetic fieldBW
points into thez direction and the averaginĝ& is performed
within a turbulent ensemble.

The huge amount of literature on anomalous parti
transport caused by drift-wave fluctuations can at least
divided into two directions. In the first one, a microscop
picture is favored. Starting from an appropriate kinetic eq
tion, e.g., the Vlasov equation, the kinetic particle distrib
tion function f is split into an averaged part^ f & and a fluc-
tuating partd f , i.e.,

f5^ f &1d f . ~3!

Introducing the drift approximation,̂f & is, to leading order,
determined by the drift-kinetic equation plus the so-cal
quasilinear term. On the other hand, within the drift-wa
scaling ~see below!, d f follows from the gyrokinetic equa-
tion. The latter is a nonlinear, inhomogeneous, stocha
equation. In order to solve it, one has to investigate the
erarchy of moments. The problem becomes very interes
and, as usual in turbulence theory, extremely difficu
Within the quasilinear transport theory, the calculations
simple ~since the gyrokinetic equation is solved in its line
form!, but they are not very predictive. The inherently no
linear theory, e.g., within the direct interaction approxim
tion, is a more serious attempt, but for any explicit compa
son with experiments it is too complicated. The latter reas
stimulated the other direction followed in nonlinear drif
wave theory: the macroscopic approach. Here one starts f
a truncated system of momentum equations and splits
plasmadynamical as well as the electrodynamical variab
into averaged and fluctuating parts. Within the drift-wa
scaling ~see below! a closed nonlinear system of stochas
equations is derived that can be solved~at least! numerically.
5883 © 1997 The American Physical Society
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5884 55V. NAULIN AND K. H. SPATSCHEK
Usually, also analytically some conclusions can be drawn
the basis of scaling arguments. In this paper we follow t
second, macroscopic approach in order to get some ins
into the anomalous transport caused by nonlinear driftwa

The paper is organized as follows. Sec. II we presen
short discussion of a macroscopic two-field model for driv
drift waves. A focus will be on the reduction to a one-fie
model, which can describe either dissipative or universal
stabilities. In Sec. III we present numerical results based
the two-dimensional nonlinear driftwave models and disc
the impacts of the different nonlinear terms on the dynam
The main part of the section is devoted to the transport pr
erties predicted by the model. There we show that the tra
port caused by driftwave turbulence consists at least of
parts. One is the fluctuation-induced transport, which is
pendent on a phase shift between the potential and den
The other component is due to the movement of cohe
structures parallel to the density gradient. For typical to
mak parameters some estimates of the particle transpor
presented in the Appendix. The paper is concluded by a s
summary in Sec. IV.

II. MODEL

A. Dissipative instability

If collisions between electrons and ions drive a drift wa
unstable, a two-fluid approach can be used. We assume
netized ions and use a shearless slab geometry with a w
background density gradient in thex direction. For that situ-
ation, the basic model has been presented already at se
places@8–11#, so that for the following it is only necessar
to summarize the main assumptions.

The momentum balance of the ions is (for] t!V i) ap-
proximately solved by the drift velocities. The gyrofreque
cies areVa5qaB/mac for a5e,i and qe52e. At this
stage the drift orderingw;] t;kn :52]xlnn0;O(e) should
be mentioned, which is inherently used during all deriv
tions. It means that the amplitudes of the fluctuations,
time variations, and the macroscopic density inhomogen
(kn[Ln

21) are small and of the same order. The perpendi
lar space variations~on the scale of the ion gyroradiusrs at
electron temperature! of the fluctuations are not scaled. In
serting the ion drift velocity@where an ion viscosity (m i)
term has been added to take into account the dissipative
fects# into the ion continuity equation, we obtain, up to se
ond order within the driftwave scaling, an equation that d
termines the time variation of the ion density fluctuati
dni . In the following, n00 ~a constant density! is used for
normalization, while the background densityn0 is inhomo-
geneous. Inserting the relevant drift velocities into the el
tron continuity equation, we obtain a similar equation for t
density fluctuationdne5ne2n0. TheEW 3BW velocity is kept,
but the nonlinear electron polarization drift is neglected sin
uVeu@V i holds. The parallel~to the magnetic field! electric
current densityj i is within a so-called 2

1
2-dimensional model

(v i i'0) assumed to be dominated by the electrons. T
assumption excludes the sound branch in which we are
interested.

Subtracting the electron continuity equation from the i
continuity equation, using quasineutrality forvpi

2 @V i
2 ,
n
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wherevpi is the ion plasma frequency, we obtain an equ
tion for the electrostatic potentialw, which still contains the
parallel electric current densityj i . The latter is determined
by Ohm’s law, which closes the system. Here the resistiv
h'4pnei /vpe

2 appears and, of course, through the elect

pressure the electron density remains as a variable.
Significant for the driftwave models is the normalizatio

ew

Te

Ln
rs
→w,

dne
n00

Ln
rs
→n,

tcs
Ln
→t,

~4!

rs ¹'→¹' ,
m iLn
rs
2cs
→m,

wherers5cs /V i as the ion gyroradius at electron temper
ture andcs5(Te /mi)

1/2. The parallel derivatives are norma
ized by

L i5S Ln Te
me cs nei

D 1/2, L i¹ i→¹ i . ~5!

After all these steps we are left with two coupled equatio
an equation forw ~which has been mentioned already duri
the above discussion! and an equation forn ~which is the
electron continuity equation withj i being determined by
Ohm’s law!. It is appropriate to introducev:5¹2w and the
Poisson bracket$w,c%[zW3¹W w•¹W c.

For Ti /Te!1 we then can write the basic equations as

] tv1$w,v%2m¹2v5¹ i
2~n2w!, ~6!

] tn1$w,n%1]yw5¹ i
2~n2w!. ~7!

This is the quite-well-accepted two-field model for col
sional drift waves. The model equations essentially reduc
the set of equations for the electric potentialw and the den-
sity n introduced by Hasegawa and Wakatani@7,8#. The
model equations~6! and ~7! should be further reduced fo
two reasons.~i! They are formulated in three-dimension
space and computer simulations with sufficient resolution
still hard to obtain in three dimensions.~ii ! We have two
coupled equations; then any reasonable simplification t
sufficiently accurate one-field model will allow one to g
further insight into the analytical properties and will redu
the required computer time.

The first point~i! is most serious since there might be
significant nonlinear energy transfer inkz[ki . Because of
limitations in coupling time and memory, we do not elab
rate on such processes when replacing¹ i

2→2ki
2[2d21,

i.e. using an effective~nondimensional! parallel wave num-
ber. The second point~ii ! is not so serious since from th
physical point of view, in the near-adiabatic limit, an iter
tion is somehow stringent. Near adiabaticity means~now ex-
plicitly written in dimensional quantities!

d5
1

ki
2L i

2 5
~nei /v teki!

kiLn~v te /cs!
!1. ~8!

This is satisfied in the weakly resistive case.
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55 5885NONLINEAR DRIFT-WAVE STRUCTURES AND THEIR . . .
To proceed further, we first build the difference of Eq
~6! and~7! and, in addition, solve Eq.~6! for n. Inserting that
expansion forn into the first relation, one obtains an equ
tion that is suitable to an iteration process based on cond
~8!. The ~up to first order! iterated version reads

] t~12¹2!w1]yw1m¹2¹2w1$¹2w,w%

5d] t~] t1]y!w1d$w,~] t1]y!w%. ~9!

Within the same accuracy the densityn can be computed
from the electrostatic fieldw through

n5w2d~] t1]y!w. ~10!

B. Universal instability

When the temperature of the plasma is high enough,
nary collisions become infrequent and kinetic effects
more important. The wave-particle interactions~i.e., Landau
damping! then are responsible for the so-called universal
stability. As the ions are assumed to be cold, we only hav
use a kinetic description for the electrons. For the latter,
cause ofuVeu@V i , a linearization of the electron gyroki
netic equation@12# is sufficient to calculate the phase sh
~besides the adiabatic response!. Using the drift velocity

vWD , we have

] td f e1v i]zd f e1vWD•¹W ' f e01vWD•¹W 'd f e2
e

me
Ei]v i

f e0'0.

~11!

Note that this form originates from the usual kinetic descr
tion after introducing the variablesrW,m ~magnetic moment!,
w ~kinetic energy!, andf ~gyroangle!. We have also used
the drift ordering ~i.e., the electron distributionf e is ex-
panded in terms of the smallness parametere), assuming a
quasi-Maxwellian f e0 in lowest order. Introducing
ve*52ky(knv te

2 /Ve), the linear density response is in Fo

rier space@k is here an abbreviation for (kW ,v)#

nek5n0@11 i d̃~v2ve* !#
ewk

Te
, ~12!

with ~dimensional! d̃5Ap/2(1/ukiuv te). This is similar to Eq.
~10!. The other kinetic electron contributions are~in the
drift-wave scaling! one order of magnitude smaller and th
they will be neglected. The ions are described in the sa
way as in the previous case of the dissipative instability.

Combining the ion dynamics with the electron respon
in a quasineutral situation, we obtain with the normalizat
~4! again Eq. ~9!. Note, however, that in this non
dimensional description the dimensionless quan
d:5Ap/2Ame /mi(1/Lnukiu) has to be used. Comparing wit
Eqs.~5! and~8! we recognize that one has the parallel leng
scale

L i5Ami

me
Ln ~13!

instead of Eq.~5!. It should be emphasized that the diffe
ence to the dissipative drift instability lies within the defin
.
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tion of the parameterd. In the dissipative case,d is defined
as d[dcoll5(mecsnei /LnTe)ki

22 , whereas in the kinetic
case we used[dLandau5Ap/2Ame /mi(1/Lnukiu). Which ex-
pression is important depends on the ratio

dcoll
dLandau

5A2

p

nei
v teki

~14!

~in non-normalized units!. Note that an effective collision
frequency induced by wave-particle interactions can be
fined by

neff :5Ap

2
v teki . ~15!

C. Dynamical model being of first order in time

Because of the second order in time, Eq.~9! still contains
a fake mode. The latter corresponds to the density-relaxa
process@described, e.g., in the Landau case, by Eq.~12!#,
which takes place on a small time scale.

But within the near-adiabatic approximation it is cons
tent to iterate further, i.e., to replace all time derivatives
the right-hand side~rhs! of Eq. ~9! by

] tw→2~12¹2!21@]yw1m¹2¹2w1$¹2w,w%#

[T~w![2P21@Lw1$¹2w,w%#, ~16!

whereP[12¹2 andL[]y1d]y¹
21m¹2¹2. Then a one-

field model is obtained in the form

] t~12¹2!w1]yw1m¹2¹2w1$¹2w,w%

52d@P21~]y2P21L!Lw1P21~]y2P21L!

3$¹2w,w%1P21$¹2w,T~w!%1P21$¹2T~w!,w%

2$w,]yw1T~w!%#. ~17!

Equation~17! is the basic analytical model of this paper. Th
idea to use such a model was suggested by Crotinger
Dupree@9#. Note that the terms on the rhs, although sugge
ing some complications, are straightforward to incorpor
into a standard numerical code for solving an equation of
Hasegawa-Mima type. Here it is important to note the diff
ence between Eq.~17! and the widely usedid models. In the
latter, the partial time derivatives on the rhs of Eq.~9! are
simplified by making use of the linear dispersion relation
drift waves. That corresponds to a weak-turbulence appro
where the modes still obey a fixed relation between wa
vectors and frequencies@13#. When comparing, e.g., to th
result of Kono and Miyashita@14#, we formally obtain the
latter model by neglecting in Eq.~9! theEW 3BW nonlinearity
~the last term on the rhs! and partially replacing in the phase
shift term ] t→2]y . For comparison we write the Kono
Miyashita result@Eq. ~18! of their paper@14## in our notation
as

] t~12¹2!w1]yw1m¹2¹2w1$¹2w,w%

52d]y~] t1]y!w. ~18!
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5886 55V. NAULIN AND K. H. SPATSCHEK
This and otherid models prove useful when the gener
aspects of nonlinear processes in the presence of a so-c
vector nonlinearity are studied. However, when drift-wa
applications are considered, theses models are only of
ited use. For example, as we shall show in the next sect
the dipole vortex self-organization being a generic feature
Eq. ~18! does not occur in the more general models. This
important consequences for the transport, as will be
cussed now.

III. DYNAMICS AND TRANSPORT

A. General aspects

Equation ~17! was solved numerically using a standa
pseudospectral code with a combined Crank-Nicholson
leapfrog time stepping. The grid size was chosen to be
tween 5p and 20p, with a spatial resolution betwee
1283128 and 5123512 grid points~at maximum!. All cal-
culations were carried out on an IBM RS6000 workstatio
As initial conditions we used ink-space Gaussian distribute
noise. Periodic boundary conditions were imposed in b
directions. Before reporting the different feature of conve
tive transport by monopolar structures, we present the ove
picture as it is also known from other simulations. This is
show that our simulations agree in all known aspects w
previous ones, and this gives confidence in the present fi
ings.

After a linear growth of the unstable modes~typical
growth rates are depicted in Fig. 1! nonlinearities begin to
dominate the dynamics when a certain threshold in the
plitude w is reached. The linear waves then break up i
structures of limited lifetimes (t life'80) and sizes of severa
rs . The structures move somewhat irregularly through
plasma, but on the average they travel with the diamagn
drift in the y direction. Their motion will be discussed i
more detail below. Typical contour plots of the potential a
shown in Fig. 2. The turbulence saturates in a dynam
equilibrium being determined by the balance between d
ing and damping. The saturation amplitudes of the norm
ized potentialw are of the order one, i.e., within the allowe
scaling.

Next, it is interesting to look at the time evolutions
energy and enstrophy. The latter are defined by

E5E d2r @w21~¹w!2#,

W5E d2r @~¹w!21~¹2w!2#, ~19!

respectively. They are conserved in the adiabatic li
(d50). In the latter case~i.e., for the Hasegawa-Mima equa
tion!, an inverse cascade of energy towards the lowest w
numbers and a direct cascade of enstrophy towards the
est wave numbers is known@1,13#. We have similar cascade
here. In this context we define an effective wave numbe

kav:5AW

E
; ~20!
l
lled

-
n,
f
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e-
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its temporal evolution is of interest. Figures 3~a! and 3~b!
show the time variations of energy andkav, respectively. An
oscillatory behavior in both quantities can be noted. A ty
cal oscillation is marked in Fig. 3~a! and shown enlarged in
Fig. 3~b!. The oscillation can be interpreted as follows.
the beginning of each cycle the energy is low and the eff
tive wave number is large~all quantities compared to thei
respective mean values!. Then, an inverse cascade begi
during which kav decreases and the energy increases~for
small damping!. At some point this process is stopped a
the energy is rapidly transported into higher wave numbe
where it is dissipated. Thuskav increases and energy de
creases and the cycle is ready to start again. This oscilla
mechanism is closely related to the saturation mechanism
Eq. ~17!. The oscillations follow from a two-shell mode
@15,16#. Here we will not comment further on this behavio
But it is important to note that the additional~to the ion
polarization-drift nonlinearity of the Hasegawa-Mima equ
tion! nonlinearities on the rhs of Eq.~17! are providing the
saturation of the system and stop the inverse cascade o
energy. This leads to the~at first glance quite unexpected!
feature that the saturation amplitude of the potential fluct
tions decreases with increasing nonadiabaticity param
d. That behavior is demonstrated in Fig. 4, where the aver
amplitude of the potential̂uwu& is depicted as a function o
d. The shown decrease of the average potential amplit
reflects the fact that nonlinear phase shifts influence dire
the driving term. Note that the density-potential relation~10!

FIG. 1. Imaginary partg of the linear frequencyv versusky for
kx 5 0 ~solid line!, 1 ~dotted line!, and 2~broken line!. The other
parameters ared50.5 andm50.03.



s

55 5887NONLINEAR DRIFT-WAVE STRUCTURES AND THEIR . . .
FIG. 2. Contour plots in
(x,y) space (L510p) of the time
development of the potentialw as
given by Eq.~37!. Shown are con-
tour lines with a spacing ofdz.
The parameters are~a! t5100,
dz50.45, ~b! t5400, dz50.48,
~c! t5500,dz50.48, ~d! t51000,
dz50.48. The other parameter
ared50.5 andm50.03.
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is not fixed in time, but depends on] tw. The reason is the
presence of nonlinear terms of higher than quadratic orde
consequence of this is the so-called damping of structures
effect missed by otherid models and weak turbulence d
scriptions.

This saturation scenario is consistent with the obser
d dependence ofkav; see Fig. 5. With increasingd, the in-
verse cascade is stopped at an earlier stage, thus provid
saturated turbulence with a higherkav and a lower saturation
amplitude. It is worthwhile to note that for higherkav the
system is pushed into a state where the nonlinearities bec
more important compared to the linear terms. That is
only because of the amplitudes ofw, but also due to the
higherk values involved.

B. Identification of monopolar structures

Now we report on the transport properties being obser
in the model~17!. The numerical results suggest that t
particle transport consists of two distinct contributions, o
being caused by the motion of coherent structuresin toto. It
is important to confirm this conjecture~usually resulting
A
an

d

g a

me
t

d

e

from observations of the simulation pictures with the nak
eye! by some quantitative criterion. There exist several de
nitions of coherent structures in literature. Here we use
identification going back to Weiss@17#. Let us introduce the
negative Gaussian curvature of the stream function

W:5
1

4
~s22v2!, ~21!

wheres25(]xu2]yv)
21(]yu1]xv)

2 is the rate of defor-
mation,v5¹2w is the vorticity, andu,v are theEW 3BW ve-
locity components in thex andy directions, respectively. As
has been proved by Weiss,W measures whether two pa
ticles will separate (W.0) or not (W,0) when following
the frozen streamlines. In this way, a flow can be separa
into structures and fluctuation, and we identify nonsepara
trajectories (W,0) as belonging to stuctures. Figure
shows the decomposition of a typical field distribution in
structures and fluctuations as obtained by this method. It
be seen that all structures contain a local extremum~maxi-
mum or minimum! of the potential. Following the motion o



n

a
,
tu
e

a

or

tin

itio

are
th

5888 55V. NAULIN AND K. H. SPATSCHEK
these extrema, it has turned out that one can implement
merically a simple algorithm for statistical evaluations:~i!
Search for all local extrema in a timet0 and register their
positions. ~ii ! At time t1, the nearest extremum within
neighborhoodv(t12t0),v being the velocity of the structure
can be identified as the successor of the previous struc
~iii ! If no successor is found, the structure has vanish
Structures with no precessor are added to the list.~iv! When
monitoring displacements of the structures only events
counted that last longer than an eddy turnover timetnl . Fig 7
shows the time development of they and x positions of a
single specific structure. Next, we define positions vect
DW M pointing to the midpoints of the structuresM . We con-
sider density humps and density dips separately. Weigh
the contribution of each hump~or dip, respectively! by the
corresponding trapped density, we define a mean pos
vectorRW for maxima~or minima, respectively! through

RW ~ t !5(
M

DW MuwMu, ~22!

FIG. 3. EnergyE ~dotted line! and effective wave numberkav
~full line! versus timet. The oscillation period marked in~a! is
shown in more detail in~b!.
u-

re.
d.

re

s

g

n

whereM signifies maxima or minima, andwM is the corre-
sponding extremum value of the potential. They andx co-
ordinates of structures statistically averaged in this way
reported in Fig. 8. This figure clearly shows that bo
maxima and minima move in they direction with the same
~diamagnetic! velocity, whereas when the motion in thex

FIG. 4. Averaged saturation amplitude^uwu& versus the nonadia-
baticity parameterd.

FIG. 5. Effective wave numberkav versus the nonadiabaticity
parameterd.
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direction is considered they move oppositely each ot
~maxima down the density gradient and minima up the d
sity gradient!. Thus, obviously, the structures are not dipo
like. Instead of the modon solutions of the Hasegawa-Mi
equation, monopolar structures play the dominat role@18#.

We are thus led to the following scenario. One contrib

FIG. 6. Decomposition of~a! a field into ~b! structures and~c!
fluctuations. In~a!, a contour plot of the potentialw at t5320 for
d50.5 andm50.05 is shown. This field is decomposed into~b!
structures and~c! fluctuations.
r
-
-
a

-

tion to the tranport is the so-called fluctuation-induced tra
port, which is due to a~slight! phase shift between densit
and potential fluctuations. The second component of
transport is due to the movement of coherent structures in
x direction. A monopolar structure contains a certain amo
of density. If the structure itself moves parallel to the dens
gradient it produces a particle flux since it takestrapped
density along the gradient. The density content of a struc
can be estimated. Although the velocity of the structures c
not be determined from first principles, estimates will
given below. We will now work out the above-mentione
phenomena in more detail.

C. Fluctuation-induced transport

The x component of the particle flow along the bac
ground density gradient due to fluctuationsdn and dvW is
defined as

Gx5^dndvx&. ~23!

FIG. 7. Exact positions~a! y and ~b! x of maxima~heavy line!
and minima~thin line!, respectively, of a specific structure vers
time t.
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The averaging process can be performed via

^ f ~xW ,t !&5 lim
T→`

1

TE0
T

dt
1

Ly
E
0

Ly
dy

1

Lz
E
0

Lz
dz f~xW ,t !. ~24!

In the electrostatic limit, the velocity is theEW 3BW drift; its
x component isdvx52(c/B0)]yw.

To examine the variation of the particle flow with th
external magnetic field or the instability drive, we introdu
dimensionless quantities@using the relations~4!# and arrive
at

Gx52rs
2cs

n00
Ln
2 ^n]yw&. ~25!

An effective diffusion coefficientD will be determined from

Gx52D¹xn5Dknn00. ~26!

FIG. 8. Averaged positions~a! y and ~b! x of maxima ~heavy
line! and minima~thin line!, respectively, of structures versus tim
t.
Note that in anomalous transport theories no linear rela
between the fluxes and the thermodynamic forces ex
That means thatD can still depend onkn . A positive D
means that particles move down the density gradient.
fluctuation-induced part of the diffusion coefficient will b
written as

DT5
rs
2cs
Ln

~2^n ]yw&!. ~27!

The dimensionless flow

Gnum52^n ]yw& ~28!

still has to be determined from numerics. It incorporates
aspects of the turbulent dynamics on the fluctuation-indu
transport. Note thatGnum is positive wheneverGx is positive.

The scaling of the diffusion with the magnetic-fie
strength is of interest. In dimensionless quantities a varia
of the magnetic-field strength results in a change of
length of the integration domain. The reference magne
field B was chosen to correspond to a length ofL510p.
Then, for several values ofB the resulting fluctuation-
induced transport was determined numerically.

Figure 9 showsGnum versus magnetic-field strengthB. It
can be seen thatGnum is independent of the magnetic-fiel
strength. In other words, the boundaries have no or li
effect on the dimensionless flowGnum. This is sometimes

FIG. 9. Dimensionless particle flowGnum versus magnetic-field
strengthB for d50.4 in Eq.~37! ~solid line!. For comparsion, re-
sults for the two-field model~16! and~17! are given by the broken
line.
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called microturbulence when the dynamics is independen
the location of the boundaries. In accordance with mix
length arguments, the fluctuation-induced diffusion coe
cient depends on the magnetic-field strength via

DT;
1

V i
2;

1

B2 . ~29!

Next we varied the instability drive, that is,d. Figure 10
showsGnum over d. In the range 0.3,d,1 the dependence
can be approximated by

Gnum'
1

2
d. ~30!

It is important to note that the model~17! does not contain
any individual collisional process for a momentum trans
perpendicular to the magnetic field. Thus we have
collision-induced classical transport and the total transpo
due to anomalous effects. However, in the dissipative c
dcoll results from collisions that cause momentum trans
parallel to the magnetic field. We now compare the obtain
fluctuation-induced transport with the well-known perpe
dicular collisional ~classical! transport. The classica
diffusion-coefficient due to collisions is given by@19#

Dcoll5
n00Tec

2

B2 h. ~31!

Comparing with Eq.~26!, one arrives at

FIG. 10. Gnum versusd for Eq. ~37!.
of
g
-

r
o
is
e,
r
d
-

DT

Dcoll
5Ami

me

lmfp

Ln
Gnum. ~32!

Here lmfp5v t i /n i is the mean free path of the ions. Th
fluctuation-induced transport dominates in a weak collisio
regime where the mean free path is equal to or longer t
the characteristic length of the density gradient.

If we usedcoll in dimensional form

dcoll5
e2n00hcsL i

2

Lnv te
2me

, ~33!

relation ~30! allows us to rewrite Eq.~32! as

DT

Dcoll
'
1

2 S L i

Ln
D 2 . ~34!

Now, only the density gradient lengthLn and the parallel
correlation lengthL i have to be taken from experiments
determine this ratio. As the parallel length is usually mu
larger than the length scale of the density gradient,
fluctuation-induced transport will exceed the collisio
induced classical transport for typical tokamak paramet
At this stage we can justifya posteriori the neglect of colli-
sions perpendicular to the magnetic field. Next we shall
cus on the coherent transport. Further estimates are prese
in the Appendix.

D. Transport by the movement of a structure in toto

Here we take a closer look on the transport caused by
motion of regular structures. The flux is defined as

GW c5K (
c
ncVW cL , ~35!

where the subscriptc stands for the coherent structures. T
density enclosed within one structure is noted bync ; it can
be written as

nc5E
c
n~rW !d2r . ~36!

VW c denotes the average velocity of the structurec and the
averaging procedurê & is carried out over the domain o
integration.

It is very time consuming to determine exactly the amou
nc of density carried by each specific structure. In princip
we can define an exact time-varying boundary of the la
by the Weiss criterion. Thennc is a function of time as the
structure changes shape. Similar arguments hold for the
locity VW c , which will not be uniform over a structure an
certainly changes in time. Thus the evaluation of Eq.~35! is
extremly tedious and therefore it is preferred to find the or
of magnitude by estimates.

We can estimate the density hump~or density depression!
within a coherent structure by the extremum valuewM of the
potential, so that

uncu<uwMu E
c
d2r . ~37!
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Furthermore, we replace the velocityVW c by the averaged
velocity dRW /dt of the coherent structures. The position ve
tor RW is defined in Eq.~22! and its time development i
depicted in Fig. 8.

Comparing the slopes of the averagedy andx positions,
we can estimate the average velocity parallel to the den
gradient. It turns out that the mean velocities in thex direc-
tion are only a few percent of the velocity in they direction.

The velocity in they direction can be estimated by th
diamagnetic drift velocity. Figure 11 shows an upper bou
of the dimensionless flow~28! caused by the motion of th
coherent structuresin toto. Our estimate shows that the co
herent transport might become of the same order as
fluctuation-induced component shown in Fig. 10. Howev
we should have in mind that here we present only a ro
estimate of the upper bound of the coherent transport
detailed description of the nonlinear dynamics of structu
in driven and damped turbulent situations is still missin
Work on that aspect is in progress.

IV. SUMMARY

We examined a one-field model of driftwave turbulen
that describes drift waves being driven unstable via electr
wave interactions~Landau damping! or electron-ion colli-
sions. The one-field model is valid in the regime of sm
deviations from a Boltzmann distribution for the electron
We have solved the system numerically. It was shown t
saturation occurs with structures of certain~nonlinear! sizes.

FIG. 11. Same as in Fig. 10, but for the numerical factorGnum
coh

caused by the motion of the coherent structuresin toto.
-

ty

d

he
r,
h
A
s
.

n-

l
.
at

The latter are determined by nonlocal interactions caused
the id nonlinearity. The saturated system cannot be
scribed within a weak-turbulence theory since the linear d
persion relation is significantly broken. The transport co
sists of two components. One is determined by the ph
shift between density and potential fluctuations and thu
called fluctuation-induced transport. The other origina
from the regular motion of coherent structures; it is call
coherent transport. We estimated the latter transport com
nent and showed that it could reach the same order of m
nitude as the fluctuation-induced transport, provided the
viation from adiabaticity is large. However, the motion
coherent structures in a turbulent plasma needs to be ex
ined in more detail. Work is carried on in this direction an
results will be reported later.
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APPENDIX: ESTIMATES

In this section we present typical values of th
fluctuation-induced transport@as deduced from the mode
~17!#. We choose characteristic tokamak parameters@20#. A
parallel correlation lengthLcorr'10 m corresponds to a par
allel wavelengthl i52p/kz52pL i . It is assumed that only
one parallel mode number is dominant. The parallel lengt
then L i'150 cm. For the density gradient length we ta
Ln'2 cm.

With the Spitzer resistivityh we have

dcoll
dLandau

'A2

p

L ie
2n00h

mev te
, ~A1!

where@21#

h55.231023lnLTe
23/2 V cm ~A2!

andTe is measured in eV. Measuring lengths in cm we fi

dcoll
dLandau

52310214
L inlnL

T2
. ~A3!

For the parameters@20#

n00'1013 cm23, Te–10;20 eV, ~A4!

and lnL'13, we finddcoll anddLandauto be of the order one
Therefore, we have to take into consideration both contri
tions when estimating a diffusion coefficient

deff5dLandau1dcoll . ~A5!

Using Eq.~30! we get
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DT'rs
2cs

1

2Ln
~dLandau1dcoll!. ~A6!

Experimentally@20#, the particle flow through thescrape-off
layer is

Gexpt52.431016 cm22 s21 . ~A7!

Using in Eq.~A6!,

dcoll'2, dLandau'3, ~A8!
rg
we find for a magnetic-field strength of 2 T

DT'0.4 m2 s21, ~A9!

with a corresponding particle flow

Gx'2.531016 cm22 s21. ~A10!

This estimate shows that the nonlinear transport caused
irregular fluctuations of the drift-wave type can be of t
same order of magnitude as the observed anomalous tr
port in experiments.
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