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Operator technique for calculating superconfiguration-averaged quantities of atoms in plasmas
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An operator technique for performing superconfiguration averages is presented. This technique is applicable
in the calculation of local thermodynamic equilibriuiiT E) spectral moments as well as average rates for the
various atomic processes in non-LTE collisional radiative models. It is shown that for any moment or rate the
configuration average polynomials, in the shell occupation numbers, can be regarded as derivative operators
that average over superconfigurations when acting on their corresponding partition functions. The
superconfiguration-averaged quantities are obtained as generalized partition functions for which a set of recur-
sion formulas is presented allowing a short calculation path. Using this technique, analytic expressions for
thermodynamical quantities, such as internal energy and specific heat, are obtained, taking into account orbital
relaxation and first-order energies in the Boltzmann factors. This allows for the supertransition array code to
yield accurate and consistent data for the equation of state used in hydrodynamic simulations, in addition to
radiative propertied.S1063-651X97)00305-X]

PACS numbds): 52.25~hb, 52.25.Nr, 31.15.Bs

I. INTRODUCTION detail in previous work§1-7] but the rigorous theory and
the specific formulas and relations used in these models were

In recent years we have developed the supertransition anot presented so far. In this work we present an operator
ray (STA) model for the interpretation of bound-boufid-5] technique for deriving analytic expressions for averages over
and bound—fre¢6] spectra of local thermodynamic equilib- @ SC for anyn-body scalar interaction. All the mentioned
rium (LTE) plasmas. The model divides the entire spectrummbove quantities are special cases. We show that the configu-
into STA’s, between pairs of superconfigurations where eachation averages, which are polynomials in the shell occupa-
superconfiguratioSC) is a specific collection of near lying tion numbers, can be regarded as derivative operators that
configurations. The spectrum of each STA is represented bgive the SC average when acting on the corresponding par-
a Gaussian constructed from the array moments, i.e., the tottition function. These operations are formulated as a “parti-
intensity, the average energy, and variance. The details of tHéon function algebra.” The analytic expressions are obtained
total spectrum, obtained by superposition of all the STA's,in terms of generalized partition function&SPF’s, for
are revealed gradually by splitting each SC to smaller SC’gvhich a variety of recursion formulas are derived. These
until convergence is reached. formulas allow a most efficient calculation path of the many

In addition, in order to interpret non-LTE plasma regimesrequired GPF’s using other GPF’s that had already been cal-
we have recently developed the non-LTE model SCROLLculated in previous steps. The technique can be also applied
(superconfiguration radiative collisiondl7]. This model is to obtain analytic expressions for thermodynamical quanti-
aimed at including a high number of excited states in a collies taking into account orbital relaxation and first-order en-
lisional radiative model where detailed level or configurationergies. As an example we obtain the analytic expressions for
accounting becomes impractical. Our approach is based dhe internal energy, specific heat, and electronic pressure.
representing SC’s as effective levels and solving rate equaFhe specific heat and electronic pressure involve derivatives
tions for their populations. Again the details are revealed byof partition functions which, as will be shown, are expressed
splitting SC’s until convergence is reached. The rates for thén terms of GPF’s as well.
various atomic processes populating and depopulating the In Sec. Il we introduce the required background and no-
effective levels are calculated by averaging over the corretations. In Sec. Ill we present the algebra for deriving SC
sponding SC’s assuming Boltzmann populatigithin SC’'s  averages as GPF’s, and in Sec. IV we derive various useful
only. This assumption is relaxed by the convergence procerelations between GPF's of different kinds that serve as
dure. The SC average rates are calculated for all the atomihortcuts in their calculation. Finally, in Sec. V we apply this
processes: collisional and radiative excitations and ionizatechnique to obtain analytic expressions for the plasma opti-
tions and their inverse recombination and deexcitation promized internal energy, specific heat, and pressure.
cesses, autoionization and spontaneous emission.

Much of the strength of the two models lies in the exact
analytical expressions for the STA moments and for the [l. DEFINITIONS AND NOTATIONS
SCROLL average rates. This point was discussed in some , .

A. Supershell and superconfiguration

A supershello, is the union of energetically adjacent or-
*Permanent address: NRCN, P.O. Box 9001, Beer-Sheva Israeldinary atomic subshellse o, s=j;=n.js. A SC,E of a
"Mailing address: NRL code 6730, Washington, D.C. 20375.  Q electron ion, is defined by its supershell occupation num-
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bersQ,
symbolically by the product over supershells,

==I] o,

o

; Q,=Q. (1)

In Eq. (1), the SC is constructed by distributing tQe, elec-

trons occupying supershel among the subshells in all pos-

sible ways subject t¢=._ ,0s=Q,}:
2 i )
2o

Clearly, each partition of in Egs.(1) and(2) is an ordinary
configurationC,

O-Q(TE

C= H k=TI II i%. &)

o Seo

B. SC partition function

The partition function(PP of the SC,=, occupied byQ
electrons is definefll] as a summation over all levelf all
configurationsC e E:

Us= >, > gie &~ Q*”’”—E Uc, (4)

CeE ieC

whereg; andE; are the statistical weight and energy, respec-

tively, of leveli, and u is the chemical potential.

Using the zero-order energies and an average first-order

energy correctiof2]:

E(O)_ 2 Osé€s, 5

E};:z gses+ AEL, (6)

common to alli e 5. The expression foAElg will be given
later[see Eq.(86)]. With these expressions we can write

_AEL (O
Uc=e 4E=/kTg e (B —QuIKT, @

where the configuration statistical weight is given by the

product of binomials

gc=> gi= 1]

ieC seC

¥ ®

andg,=2j.+1, are the statistical weightslegeneracigf
shellss. Equation(4) reduces then to

Uz=U=(g)=e EEKTUL)(g), (©)

where

uQ@=11 U9,

gEZ

(10

. Itis a collection of ordinary configurations written

5875
Uy g)=Uq (= 2> I ( )xqs (1D)
ds= Q(r] Seo
and
X=e (s w/kT, (12)

The notation ¢) stands for the set of statistical weights
{gs} of the various shells. This set must be explicit, since as
we will see later, the GPF’s are defined formally as identical
to Eqgs.(9) and(10) but with a more general set of integers
(g'), which are not necessarily the shells’ statistical weights.

C. SC-SC arrays and active orbitals

An array connecting two SC's§ andE’, can be identi-
fied solely by specifying the initiaE and the orbital jumps
that lead to='. EachC’ € ' is thus obtained from a spe-
cific C e E through these electron jumps.

Ill. SUPERCONFIGURATION AVERAGES
AS GENERALIZED PARTITIONS FUNCTIONS

A. Configuration averages

It was shown[8] that the configuration average of any
scalam-body operatoA is a polynomial of degrer in shell
occupation numbersg of the initial configurationC. The
polynomials of the configuration-averaged spectral moments
[8-10] and of the configuration-averaged atomic processes
rates[7] are all special case examples. The most general
form of such polynomials is given in terms electrons and

loles occupation numbergs and hs=(gs—0q.), respec-
tively, as

(Acer= E €(m, n}H g, "hee, (13

where the curly brackets ifm,n}={n},{m} denote two sets

of exponents for all the various shells, wifm},=m, for

g, and{n}s=n, for hy=(gs—qs). The coefficiente, ,, are
independent of the’'s and are specific for each particular
process, moment, and the specific active orbitals. In all prac-
tical cases, as in Ref§1-10], only a few terms have non-
zero coefficients. For the SC-rate averages, each initial con-
figurationC is weighted by its partial Boltzmann population

— Uc(9)
14
¢ Uz(9) 14
so that the SC average #fis
(Azz=15- g) 2 (AccrUc(9). (15
- C’EE

In the STA moment$1] the weights are the initial configu-
ration populations and the radiative transition probabilities.
For ana— b orbital jump, this contributes the additional fac-
tor g;(gp—gp) to the polynomiakA)cc/, and the normal-
ization factor is changed accordingly.
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B' She” averaging OperatOrS ar<QS>:as<Qr>:<QrQS>_<Qr><QS>! (23)
The SC averages of the shell occupation numbers are de-
fined by qsn+1<qslqsz' ’ 'qsn> :<QS1qsz' ’ 'QSnH) _<an+l>
1 X(0s, s, " s,
(a9==7_ 2 9Uc. 2
B (16)  wheres, with differentk may belong to the same or different

1 shells. The appearance of Eq48) and (22) as eigenvalue

(QQs "y z=— E_ (0,9 *)Uc. equations is therefore misleading. We will return to this
E ce=

point later.
o o o As shown below, the operations defined above result in
A similar definition holds for holes by the substitutions GPF’'s with modified statistical weights and/or number of

q—h. _ . electrons. The rules for making these modifications are
We define shelk electron and hole averaging operatorssimple and can be applied without any calculation. The final
gs andhg by GPF's are then calculated using the recursion formulas of the

various kinds.
Jd ﬁ _ X J
S axs1 S_gS S axs

qs=X (17)

C. Averages as generalized partition functionGPF’s)

. . ] From the binomial relations
From Egs.(11) and(12), it is easily recognized that

; q g)=g(g_l and(g—q)<g)=g g_l) (24
dsU=(9) =(ds)=U=(9), 19 q q-1 q a )
hU=(9)=(hg=U=(q). it is seen that the operatiog andhy yield a common mul-

tiplicative factor for all the terms in the SC partition function

As shown later, these relations between derivatives and agum- This factor can therefore be taken out of the sum yield-
erages play a role in the analytic derivation of thermody-'"N9Y

namical quantities. From E@10) we obtain .
dsU=(9) =9gsXsU=s(9°),

5.U. (q) (25)
qS Tg g ~
<qS>E=<qS>USEWy hsUz(9)=gsU=(9°),
19 \whereu =s(9%), Uz(g®) are GPF's defined formally as iden-
ﬁsU (9) tical to Egs.(9), (10), and (11) with modified statistical
(heyz=(hg), = L, weights and number of electrons: the sgt)&{g3,93,..}
° Uas(g) has the weight of sheB reduced by one. In general we use
the notation for multiple reduction
whereoy is the supershell containing the shsll
The SC averagedl5) can now be obtained by sequential 05 '=0— 8t~ Sg— (26)
operations of the shell operatagg andhg on Uz(g) in any
order since, from Eq(17), and 2" is the SC defined by the supershell occupation
A o numbersQ!® ",
[Eh aas]:[é\lr hs]=[h; ,hs]=0. (20 ro.t
Q(r EQU'_ 6(rr¢r_ 5050_ T (27)
Thus the polynomial13) can be regarded as an operator by
the replacementg,— Qs andhg— hq: where 0o equals 1 ifse o and zero otherwise. Note that
Qs shifts bothQ,_andgs, while ﬁs shifts only the statistical
A= > €m n}l‘[ qmrﬁns (21) weightsg,. Using Eq.(10) we obtain
{m,n} Wy s

ngsU ES(gS) gsst QU; l(gs)

Uz(@)  Ug (@ ‘%
: (28)

which averages the corresponding quantity over SC by oper-  (gg)==
ating on its PF:

AU=(9)=(A)z=/U=(9). (22) 9sUq_ (9°)
(he)z=(hs)s = U—()
Note that when sequential operations are performed on Egs. Qs 9
(17), the averageéqs)=, {(hs)= are not pure numbers since R
they are functions of th&y's. Because the result dfs and hg operations(25) is formally
In particular, it is easily seen frorfl6) and(17) that the same as an ordinary PF it can be subjected to a subse-
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guent operation of the same type. Thus the averaging polyFhe elementary operations leading to E¢32) and (35
nomial operator$13) can be applied by a succession of suchcould be performed in any order since they commute. How-
elementary operations. ever, following the sequential ordé29) makes the deriva-

It was showr[1-10| that the configuration average poly- tion straightforward. Exceptional cases will be discussed

nomials(13) appearing in both STA moments and SCROLL later.

rates can, in most cases, be rearranged in the form The SC averagefl5), of any spectral moment or transi-

--(9,—1)q, and---(hg—1)hs. This is an “ordered form” tion rate, can thus be expressed by means of &, (32),
where each step prepares exactly the required matching fend(35) in terms of the GPF's,
the next one

g g—1 I1 P (8P (N U=(9) =By Uzm(g™™), (36)
‘-(q—2)(q—1)q(q)=~~(q—2)(q—1)g(q_1 ®
where

- t0-bo-2( 2
=---(g—1)g(q )q_2 grIX™ 0.

rs (gr_mr)! (gs_ns)!

B{m,n}: (37)

g-3
=(9-2)(g-Dg(4_3]-
The curly brackets in E(36) denote the set of polynomial

(29) degrees appearing on the left-hand silths) product of the

In this ordered form the SC averaging operators can be ex various shells, and the modified statistical weights here are

pressed as
gim,n}Egt_Z mré\rt_zS NsSst (39)
A= 2 € mnll Pm(@)Py(hy), (30) , ,
{m.n} r.s and the supershell occupation numberdigim are
where
erm}Ech_ E m, 50’ o" (39)
n—-1 (7“ T r
P(0s)= K)=X2 —=,
n(G9)= H (Gs=k) =X aXg In Sec. IV we present a set of recursion relations connecting
GPF's of different kinddifferent number of electrons, holes,
R n-1 and/or statistical weightsThese relations enable us to cal-
Potho=I1 (hs—1), (31)  culate in turn each required GPF using previously calculated
1=0 GPF’s, thus reducing significantly the required computer

. A time.
PO(qs) = Po(hs) =1

By sequential operations of E5) we obtain IV. EFFICIENT PATHS FOR CALCULATING

GENERALIZED PARTITION FUNCTIONS
Pns(ds)Ua(g)= EH [(Ge—Ng+1)-(ge—1)q]Uc(q) A. Recursion over electrons and holes
Cem When a supershell is specified we omit the indexi Eq.
_ SNt 1) (=100 = U= (11) and write the supershell partition function &k,(g)
{(@s=ns+1) (05~ 1)ag)=U=(9) =Uq,(9). It can be easily verified from Eq11) that for any

_ 9 n (n9 shellae o we have
- (gs_ ns)! Xs UE(ns)[g 1y (32
—n_ s s
where the GPF'dJzny[g("9] have the modified statistical nZO Un(@)[—Xa]™" 311 = ( )[ Xs/Xa]"
weights :
=11 |1 Xs —o 40
0\""'=0—Nsdis (33 %] =° 49
and =M is defined by the supershell occupation humbers where
QErnS)EQ(r_n 50’ o (34)
s¥oy ng Os- (41)
i.e., the occupation number of the supershell that incldes
is reduced byng. Similarly for holes we have Note that for a specific supershetlthe sum in Eq(41) is
restricted tose o
- 9s! Multiplying Eq. (40) by g, X2 with any Q, and summin
Po(hU=(g) = —=— U[g"]. (35) plying Eq. (40) by gaX3 yQ 9

overa leads to

(gs—Ny)!
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G for any orbitala e o leads by substitution in Eq11) to
2 U 9xe-=0 2 Uol9)=Uq(8%)+XaUqg-1(6%, (50)
with where PF'’s of the setg) are obtained from those ofyf).
The reverse relation is obtained by iterations on
0= 2 [0~ %9)". 43 Uglg")=XaUqg-1(6%) ~Ug(9) (50

The sum in Eq(42) can now be separated into three partsY'€/ding Ug(g®) in terms ofU,(g) n=Q:
Ag, Bg, andCq for n<Q, n=Q, andn>Q, respectively.

Q Q
An interesting and most useful fact is that for aQyall Uo(g%) =2 Un(9)(—X2)2 "= Ug n(9)(—X )"
these three parts are proportional toddg), specifically: n=0 n=0

(52
Ao=QU , Bp=—-GU , Co=(G—-Q)U .
0= QU(0) Q ol9) e=(67Q) Q(?Af)gf) For holes we iterate starting from
The first part 6< 1
 first part 0=<Q) Ug(@9)= 5 [Ugi1(@)~Uqer(@®] (59
X
Q-1 a
QUo(9)= 2 Un(9)xgn (45 yielding
G
is_the r_ecursion fqrmula _for ?ncreasir(g, with U(_):l, ob-_ Uo(g®)=— 2 Un(g)(—X )"
tained in[1] by taking derivatives of the generating function n=Q+1
g &
F@=I1 [1+2X]%= X I |°](zX)% == 2 Unig(9)(—Xa) ™" (54)
s all gg s Qs n=1

_ 0 consistent with Eq(42).
—% Uo(9)Z". (46) The shift in statistical weight€52) and (54) can be gen-
eralized by successive operations to multiple shifts:
The third part 6>Q) is similarly

Q
G Uglgh® @)= 2, (~Xa)o™™
n,=
(G-QUq(9)= 2 Un(@)xq-n 47 '
n=Q+1 ny
) ) g ) X Z (—Xg )2
a recursion from full shells withJ 5(g) = I1sX:®. This recur- n,=0 2
sion can be obtained independently from the generating 1
function XnZO (—Xap)np’l_npUnp(g)a (55)
=
_ — G- .
G(z)=l_5[ [z+X,]° zn: Un(@)Z>". (48)  \wherea, may belong to the same or different shells.
Similarly for holes we get from Eq54)
Recursions from complete shells are used in both the STA G
and SCROLL codes to speed the calculations for cases where ajay-any — Q-n
U 182" "8p) = —X 1
Q is closer toG than to O. o9 ) n1:EQ:1 (=%a)
G
B. Shortcuts in the calculation of GPF's % 2 (=X, )M Na...
with shifted statistical weights ny=n;+1 &
The recursions(45) and (47) give Ug(g) in terms of G
smaller or higherQ partition functions, but the statistical X > (—Xa )"P17"Uq_7(9)
weights @) remain untouched. The averag€s), on the Np=Np-1+1 : P
other hand, result in GPF’s of the ty$86), where @) is (56)

changed as well. Of course the recursiofs and(47) work _
for any set '), but instead of starting again fro@=0 or  With
Q=G we make use of the already calculated partition func- p—1
tions for (g) as shown below. —_ _
Using the binomial identity M .21 i 67

g
q

_(9~ 1) g-1 (49 These multiple shifts are used to eliminate shells completely
1 q g-1 ) when required as shown in the example of Sec. IV D.



C. Eigenvectors as a source for additional
useful GPF relations

From the definition of the averag€ks) and(18) it is seen

immediately that for any supershell or SC or entire ion,

where the total number of electro@s is constant, the PF's
are eigenvectors of the corresponding operators

H,=2 hs,

Seo

QO’E 2 aS!

Seo

(58)
Q=2 Q,, H=XH,
with the respective eigenvalus and G—Q),
QUqo(9)=QUq(g), HU4(9)=(G-Q)Ug(g), (59

which holds for each supershell separately. The physical

meaning of Eq(59) is the obvious conservation laws

2 (49,=Qr 2 (2)==Q (60)
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An example of Eq(66) is the casek=1, with s;=s (QF
=(QsandQ; ==,.40,) connecting the variance of, (of any
shell s) to the two shell correlation with other shells:

<q§>_<qs>2:_;s <qrqs>+<qr><qs>- (67)

All the above operations are a rich source for a variety of
additional relations between GPF'’s of different types. For
example, from Eq(60) we obtain by means of E¢28) the
useful relations

1
Uo(9)=g—g 2 9:Uo(g"), (68)

1
Uo@)=3 g 9sXsUo-1(g°). (69)

An example of highen relations obtained from Ed63) is
then=2 case,

implying that by changing the binding energies and chemical

potentials(changing theX,'s) the average occupation num-

bers flow from one shell to the other with no loss.
By sequential operations we also obtain

Q"U,(9)=Q",(g),

(61)
Q"U=(9)=Q"U=(9),
leading to an additional set of conservation laws:
QU=(9)= X Gs,fs, 85 Uz(9)
s s,
=Uz=(9) 2 <qslqsz"'qsn>E (62
S1S° Sy

so that

2 <qslqsz"'qsn>: E <QS1><qSZ>"'<qsn>:Qn-

S152°*"Sp S182°*"Sp ( )
63

In addition, from Eq(23) we obtain that for ang, (ds) is
an eigenvector of botl) andH with the eigenvalues zero
andG, respectively,

Q"(de)=Q(qe) =0,

(64)
H%qs)=G"(qs)-
Thus for any shelk, the complementary operators
k G
Q=2 G, Q=2 G (65)
=1 i=k+1
yield for any shells
é:<q5>: —QE<QS>- (66)

2 {ars) = 2 {ar)(ds) = Q2 (70
leading to
1
UQ”(g): ? 2 9r(9s— 5rs)XrXsUQ(;2(grS)1
o TS (71)

1 rs
U=(9)= &2 ,Es 9r(gs— 815) X XU =rs(9").

Finally it is clear that when operating do(g)—the PF of
the whole atomic system in the plasma—including several
charge state ions we have

QU<g>=§ Q.U,(9)=(Q)U(g), (72)

whereQ, andU,(g) are the average number of electron and
partition function of ionz andU(g)=%,U,(g) and(Q) are

the total partition function and the average number of bound
electrons in the plasma.

The various relations presented in the preceding sections
are used in both the STA and SCROLL models to optimize
the calculation of the many GPF’s involved, thus reducing
the computation time significantly.

D. Averaging nonordered polynomials

Averaging a polynomial ig,, which cannot be brought
to an ordered form, requires a special attention. As an ex-
ample, let us look at the SC average transition energy. In the
SCROLL non-LTE model, the SC-average transition energy
weighs transitions only by their initial population, similarly
to the weights used for averaging the rates. For two &'s
and E’ connected by the orbital jumpa—b the
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configuration-average polynomigh)cc» of Eq. (13) for the
average transition energy [i9,1]

<A>CC”:DO+ES (ds— 8sa)Ds, (73

where the coefficient®¢ are combinations of radial inte-
grals. Clearly in the SC averagé5), only configurations
with q,# 0 contribute in this case.

The polynomial inq, is not ordered since the=a term
cannot be ordered to start with, as a multiplicative factor.
In the average of this term, configurations Z with g,
=0 must be excluded:

<qa_ l>E E(g) (0,50 ez (qa_l)uc(g)
:U (g) Z qa g)_ (qa%)eE UC(g) 1
(74
where
_Uc(@)=Uz=(9) - Uz(9). (79
C(ga#0)eE

The second term in Eq75) is the PF of= obtained from
E by omitting the shella. It would have been possible to
calculate it by the recursion o starting from scratch.

already calculated PF's eliminating the steethrough use of
Eq. (55), restricted to shela, my=g, times, i.e.,

(76)

=
=

1
2 Uc(9)=5— U, (™),

—_
=
=

with mg=g,.
The result for a generah,=m is

Q,’ n Nm—

2(_
n,=0

Xa)% U, (g)

NIT(—X) % HUy(@) 7

where in @) the shella is excluded andN{™ is the number
of timesU,(g) appears in the sum over all the indices
Clearly the specific valua,,=k appears exactly once for

each sen;=n,=nz=---=n,,,_;=k. Thus
Qy M Mm-2
m) _
NW=2 X o Xl
ni=k ny=k Nm—1=k
Qo" k Mm-1

S ¥ .35

Nm—1=0 nyL_»=0 n,=0 n,=0

(78)
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V. ANALYTIC EXPRESSIONS
FOR THERMODYNAMICAL QUANTITIES

In the previous developments of the STA mod&k6],
the only concern was the calculation of radiative properties
of hot dense matter. Indeed, the output of the STA code
consists in tables of opacities that are read by the hydrody-
namic codes. However, hydrodynamic codes could greatly
benefit from a better atomic physics than what is commonly
used for some key quantities, such as internal energy, spe-
cific heat, and electronic pressure. In many modern hydrody-
namic codes, the evolution of the plasma is described in
conservative form, and the code relies on the equation of
state(EOS tables to extract the temperatures and the pres-
sure, which determine the plasma conditions at the next time
step. Internal energy plays an important role, since it is that
part of the total energy of the plasma cell that is not available
to heat. More often than not, what is computed in the codes
is only the so-called “ionization energy” that neglects the
contribution of the excited states, and it is not consistent with
the opacity tables. As a consequence its derivative, the spe-
cific heat, which is used to compute the temperature in the
EOS subroutines, tends to be jerky, and this causes spurious
oscillations and divergences.

In this section we apply the algebraic technique presented
above to obtain analytic expressions for internal energy and
derivatives of the SC partition functions with respect to tem-
perature. Similar derivation holds for derivatives with re-
spect to the density. Since the SC PF's include orbital relax-
ation (optimized potential for each SCand first-order
eenerg|es in the Boltzmann factors, we can construct an accu-
rate derivative of the total PF of the atomic system by com-
bining derivatives for each SC optimized separately. We plan
to use the following formulas in STA to output additional
tables that would be read in the hydrodynamic codes, thus
improving greatly the quality of EOS and adding stability
and consistency in the description of medium to higkle-
ment plasmas.

A. Internal energy

The total internal energy of an atomic plasma system is

N
Ewa= 2 NcEc=y— 2 2 U=(9)E=z, (79
c total Q E

=

where the summation ové€} in Eq. (79) denotes the various
charge states,

U=(9) (80)

U total— 2
Q

M

and

1
Uz(9) ¢

EEE Uc(9)Ec. (81)

III

The ordered polynomialA)ccr in Eq. (15) for the configu-
ration average energy [4]

These numbers were computed and tabulated using Bernoulli

functions (Ref. [11], p. 804. Thus the resulfEq. (77)] is
now substituted in Eq(74) to obtain the correct averaging.

<A>C:EC:25 qs<s>+%rzs qs(qr_5rs)<rvs>! (82
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where(r,s) and(s) are radial integrals defined explicitly in where the subscripE denotes that a specific potential is
Appendix B of [1]. This notation should not be confused used in the calculation dfr,s) and(s) for each SC:
with the average$q,) defined previously.

Using Eq.(16) the SC-average internal energy takes the

form C = 9Euwta_ Etotal WY o
! aT Utotal aT
== =+1 — = 4 4
B~ Taig) | & (=2 (roada, %)L}, LD [2 [[s]a {9+ (0) o= [l
(83) total Q = s
1 0
which we may calculate with optimized potentials for each + > rzs [[(r,s)]E T (9,0s) =

SC. The ordered polynomials in E@2) are special cases of
Eq. (30) with the coefficients

F
, . a9z 57 [(r.SHE”- (89
€(m,ny = O(n} {npOL(S) Sfmy fmys) + Z(TS) Oymy gmyrs) ],

From Eq.(9) we obtain
where the exponent setsm!(" {m}('S) are defined by

{m}{"=5, and{m}{"¥= 5, + &5 and{n}{*’=0 (no hole de- U iorm Usz(g) [AEL 9AEL

pendencgfor all shellst. In Eq. (84) the Sy (my+ are 1 for aT :; KT T a7

equal sets and zero otherwise.

Equation (32) gives the expression for the SC-average et J

energy in terms of GPF’s: +Z e AT T uQ(g). (90

= 1 _(qS It is seen from Eqs(89), (90), and(86) that the specific heat
Ez 9sXs(s)U=s(9%)

= Uz(9) |5 = depends in addition to GPF’s on derivatives of the types

+%2 0r(9s— 5rs)xrxs<rvS>UE’5(grs) . (85) Jd J d 0)
rs &—T(r,s>, ﬁ—_l_(r>, andﬁ—TUE (9). (91

It should be pointed out that the second term on the rhs of

Eq. (85) is the two electron contribution tAEL of Eq.(9): ~ The first two quantities depend dnindirectly through the
a free electron potential, which in our model is common to all

1 the SC’s of all ions in the plasma. For direct application of
AE15=[<S>—65]+ ZUTK) 2 0,(0s— 6,5) X, Xg Eq. (89 these quantities_ can be calqulated numerically, or
= 9) rs modeled analytically. This, however, is beyond the scope of

(r,5UL(g™). (8 the present work. The analytic derivative/¢T)UL)(g),

= which contains the SC dependence, can, on the other hand,
be easily obtained, for any modified values @Qf and/or
B. Specific heat (9), sinceUY)(g) depends on the plasma temperature only

The specific heat is obtained by differentiatifig,, of ~ through the quantitieX; of Eq. (12). As shown above the
Egs.(83) and (85) with respect to the temperature. Numeri- derivatives with respec't to these variables are given in terms
cal differentiation may not be accurate enough because @' the average occupation number of the corresponding shell.
well-known local irregularities oE,y in the (o, T) plane, Specifically, from Eq(10) the derivative with respect ® is
due to the ionic shell structure. written as

For analytic differentiation we rearrange E®3) in the
form

1 d 1 d
— — U9 = —
00g a7 U2 @ 2 Ggrar V@ @2

N
Eoa= — 2 2 U=(Q.0)Ez
total Q = and from Egs(17) and(25) we have

N

S D DICRCIE : ;% a
ol Q@ E s T UA9= 2 5-Uu(9) 7= 2 7a(MUq,-1(0"),
+%r25 [<ras>]E<qsqr>E} (87 ©3

' where
with ( Vg
Oa [(€a— 1
[sl==[(8)~ 3(s.9)]=, (89 (T T
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Equation(51) expressed ,(g?) for any ae o in terms of the VI. SUMMARY
same,(g) and thus we obtain finally In this work we have presented the elementary algebra for
9 Q,—1 performing SC averages over any polynomial in the shell
n .
5T U,(g)= >, {o(MUg —n-1(9) (95)  occupation numbers. The LTE spectral moments as well as
J n=0 7 SC average rates in non-LTE models are special cases. The

analytic expressions for the averaged quantities are obtained
by a succession of elementary operations where each step
results in a GPF with reduced number of electrons and/or a
(M= 2 ama(T)(—=X)". (96) shell’s statistical weight by unity. The calculation of the ob-
asa tained GPF's becomes very efficient using a set of relations
that allow short calculation paths. Each GPF in turn is ob-
tained from GPF's of neighboring systerwith respect to
the number of electrons and statistical weiglkat are cal-
culated in previous steps. These paths thus reduce signifi-
cantly the required computer time. Using this technique we
have also obtained analytic expressions for derivatives of
GPF’s which are required to calculate accurately thermody-
namical quantities such as specific heat and electronic pres-
sure including orbital relaxation and first-order energies in
9 J 9 the Boltzmann factors. This allows the STA code to yield
o (r,s), ap (r), and o UQ(g). (97)  consistent data for the equation of state in addition to opaci-
ties.
Again the important SC dependence appears in
(91 ap)UL)(g), which is obtained in terms of GPF’s and has
the same form as Eq$92) and (95) with the replacements This research was performed while the authors resided at
T—p and where the Naval Research Laboratory in Washington, D.C. We
wish to thank Dr. S. Bodner for his encouragement, com-
(98) ments, and support. The research was funded by NRL, from
its contract with the Department of Energy.

with

The quantity ¢/dT) e, is included in ¢/dT){a) of Eq. (89
[1]. The chemical potentigl(p,T), on the other hand, be-
haves like[12] e #kT=a(p,T)T*%p, wherea(p,T) varies
smoothly; its derivatives can therefore be easily calculated.
For evaluating thepressurewe require the derivative
JE o/ dp that has the same form as E@9) with the re-
placementsI —p. In addition to GPF's, it depends likewise
on
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