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Operator technique for calculating superconfiguration-averaged quantities of atoms in plasmas

J. Oreg,* A. Bar-Shalom,* and M. Klapisch†

ARTEP Inc., Columbia, Maryland 21045
~Received 4 December 1996!

An operator technique for performing superconfiguration averages is presented. This technique is applicable
in the calculation of local thermodynamic equilibrium~LTE! spectral moments as well as average rates for the
various atomic processes in non-LTE collisional radiative models. It is shown that for any moment or rate the
configuration average polynomials, in the shell occupation numbers, can be regarded as derivative operators
that average over superconfigurations when acting on their corresponding partition functions. The
superconfiguration-averaged quantities are obtained as generalized partition functions for which a set of recur-
sion formulas is presented allowing a short calculation path. Using this technique, analytic expressions for
thermodynamical quantities, such as internal energy and specific heat, are obtained, taking into account orbital
relaxation and first-order energies in the Boltzmann factors. This allows for the supertransition array code to
yield accurate and consistent data for the equation of state used in hydrodynamic simulations, in addition to
radiative properties.@S1063-651X~97!00305-X#

PACS number~s!: 52.25.2b, 52.25.Nr, 31.15.Bs
a

-
um
ac

to
f t
’s
C

es
L

o
on

u
b
th
t
rr

c
m
iza
ro

c
th
m

ere
tor
ver
d
figu-
pa-
that
par-
rti-
ed

se
ny
cal-
lied
nti-
n-
for
ure.
ives
ed

o-
C
eful
as
is
pti-

r-

m-
ae
I. INTRODUCTION

In recent years we have developed the supertransition
ray ~STA! model for the interpretation of bound-bound@1–5#
and bound–free@6# spectra of local thermodynamic equilib
rium ~LTE! plasmas. The model divides the entire spectr
into STA’s, between pairs of superconfigurations where e
superconfiguration~SC! is a specific collection of near lying
configurations. The spectrum of each STA is represented
a Gaussian constructed from the array moments, i.e., the
intensity, the average energy, and variance. The details o
total spectrum, obtained by superposition of all the STA
are revealed gradually by splitting each SC to smaller S
until convergence is reached.

In addition, in order to interpret non-LTE plasma regim
we have recently developed the non-LTE model SCRO
~superconfiguration radiative collisional! @7#. This model is
aimed at including a high number of excited states in a c
lisional radiative model where detailed level or configurati
accounting becomes impractical. Our approach is based
representing SC’s as effective levels and solving rate eq
tions for their populations. Again the details are revealed
splitting SC’s until convergence is reached. The rates for
various atomic processes populating and depopulating
effective levels are calculated by averaging over the co
sponding SC’s assuming Boltzmann populationwithin SC’s
only. This assumption is relaxed by the convergence pro
dure. The SC average rates are calculated for all the ato
processes: collisional and radiative excitations and ion
tions and their inverse recombination and deexcitation p
cesses, autoionization and spontaneous emission.

Much of the strength of the two models lies in the exa
analytical expressions for the STA moments and for
SCROLL average rates. This point was discussed in so

*Permanent address: NRCN, P.O. Box 9001, Beer-Sheva Isr
†Mailing address: NRL code 6730, Washington, D.C. 20375.
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detail in previous works@1–7# but the rigorous theory and
the specific formulas and relations used in these models w
not presented so far. In this work we present an opera
technique for deriving analytic expressions for averages o
a SC for anyn-body scalar interaction. All the mentione
above quantities are special cases. We show that the con
ration averages, which are polynomials in the shell occu
tion numbers, can be regarded as derivative operators
give the SC average when acting on the corresponding
tition function. These operations are formulated as a ‘‘pa
tion function algebra.’’ The analytic expressions are obtain
in terms of generalized partition functions~GPF’s!, for
which a variety of recursion formulas are derived. The
formulas allow a most efficient calculation path of the ma
required GPF’s using other GPF’s that had already been
culated in previous steps. The technique can be also app
to obtain analytic expressions for thermodynamical qua
ties taking into account orbital relaxation and first-order e
ergies. As an example we obtain the analytic expressions
the internal energy, specific heat, and electronic press
The specific heat and electronic pressure involve derivat
of partition functions which, as will be shown, are express
in terms of GPF’s as well.

In Sec. II we introduce the required background and n
tations. In Sec. III we present the algebra for deriving S
averages as GPF’s, and in Sec. IV we derive various us
relations between GPF’s of different kinds that serve
shortcuts in their calculation. Finally, in Sec. V we apply th
technique to obtain analytic expressions for the plasma o
mized internal energy, specific heat, and pressure.

II. DEFINITIONS AND NOTATIONS

A. Supershell and superconfiguration

A supershells, is the union of energetically adjacent o
dinary atomic subshellssPs, s[ j s[nsl sj s . A SC,J of a
Q electron ion, is defined by its supershell occupation nu
l.
5874 © 1997 The American Physical Society
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55 5875OPERATOR TECHNIQUE FOR CALCULATING . . .
bersQs . It is a collection of ordinary configurations writte
symbolically by the product over supershells,

J[)
s

sQs, (
s

Qs5Q. ~1!

In Eq. ~1!, the SC is constructed by distributing theQs elec-
trons occupying supershells among the subshells in all pos
sible ways subject to$(sPsqs5Qs%:

sQs[ (
H(sPs

qs5QsJ
)
s
j s
qs. ~2!

Clearly, each partition ofQ in Eqs.~1! and~2! is an ordinary
configurationC,

C[)
s
j s
qs5)

s
)
sPs

j s
qs. ~3!

B. SC partition function

The partition function~PF! of the SC,J, occupied byQ
electrons is defined@1# as a summation over all levelsi of all
configurationsCPJ:

UJ[ (
CPJ

(
iPC

gie
2~Ei2Qm!/kT[ (

CPJ
UC , ~4!

wheregi andEi are the statistical weight and energy, resp
tively, of level i , andm is the chemical potential.

Using the zero-order energies and an average first-o
energy correction@2#:

EC
~0!5Ei

~0!5(
s
qses , ~5!

EC
15(

s
qses1DEJ

1 , ~6!

common to alliPJ. The expression forDEJ
1 will be given

later @see Eq.~86!#. With these expressions we can write

UC[e2DEJ
1 /kTgCe

2~Ec
~0!

2Qm!/kT, ~7!

where the configuration statistical weight is given by t
product of binomials

gC[ (
iPC

gi5 )
sPC

S gsqsD ~8!

andgs52 j s11, are the statistical weights~degeneracies! of
shellss. Equation~4! reduces then to

UJ[UJ~g!5e2DEJ
1 /kTUJ

~0!~g!, ~9!

where

UJ
~0!~g![ )

sPJ
Us~g!, ~10!
-

er

Us~g![UQs
~g![ (

H(sPs
qs5QsJ

)
sPs

S gsqsDXs
qs, ~11!

and

Xs[e2~es2m!/kT. ~12!

The notation (g) stands for the set of statistical weigh
$gs% of the various shells. This set must be explicit, since
we will see later, the GPF’s are defined formally as identi
to Eqs.~9! and ~10! but with a more general set of intege
(g8), which are not necessarily the shells’ statistical weigh

C. SC-SC arrays and active orbitals

An array connecting two SC’s,J andJ8, can be identi-
fied solely by specifying the initialJ and the orbital jumps
that lead toJ8. EachC8PJ8 is thus obtained from a spe
cific CPJ through these electron jumps.

III. SUPERCONFIGURATION AVERAGES
AS GENERALIZED PARTITIONS FUNCTIONS

A. Configuration averages

It was shown@8# that the configuration average of an
scalarn-body operatorA is a polynomial of degreen in shell
occupation numbersqs of the initial configurationC. The
polynomials of the configuration-averaged spectral mome
@8–10# and of the configuration-averaged atomic proces
rates @7# are all special case examples. The most gen
form of such polynomials is given in terms electrons a
holes occupation numbersqs and hs[(gs2qs), respec-
tively, as

^A&CC85 (
$m,n%

e$m,n%)
r ,s

qr
mrhs

ns, ~13!

where the curly brackets in$m,n%[$n%,$m% denote two sets
of exponents for all the various shells, with$m%r5mr for
qr and$n%s5ns for hs5(gs2qs). The coefficientse$m,n% are
independent of theq’s and are specific for each particula
process, moment, and the specific active orbitals. In all pr
tical cases, as in Refs.@1–10#, only a few terms have non
zero coefficients. For the SC-rate averages, each initial c
figurationC is weighted by its partial Boltzmann populatio

N̄C5
UC~g!

UJ~g!
~14!

so that the SC average ofA is

^A&JJ85
1

UJ~g! (
CPJ
C8PJ

^A&CC8UC~g!. ~15!

In the STA moments@1# the weights are the initial configu
ration populations and the radiative transition probabiliti
For ana→b orbital jump, this contributes the additional fac
tor qa(gb2qb) to the polynomial̂ A&CC8 , and the normal-
ization factor is changed accordingly.
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B. Shell averaging operators

The SC averages of the shell occupation numbers are
fined by

^qs&J[
1

UJ
(
cPJ

qsUC ,

~16!

^qrqs•••&J[
1

UJ
(
cPJ

~qrqs••• !UC .

A similar definition holds for holes by the substitution
q→h.

We define shells electron and hole averaging operato
q̂s and ĥs by

q̂s[Xs

]

]Xs
, ĥs[gs2Xs

]

]Xs
. ~17!

From Eqs.~11! and ~12!, it is easily recognized that

q̂sUJ~g!5^qs&JUJ~g!,
~18!

ĥsUJ~g!5^hs&JUJ~g!.

As shown later, these relations between derivatives and
erages play a role in the analytic derivation of thermod
namical quantities. From Eq.~10! we obtain

^qs&J5^qs&ss
[
q̂sUss

~g!

Uss
~g!

,

~19!

^hs&J5^hs&ss
[
ĥsUss

~g!

Uss
~g!

,

wheress is the supershell containing the shells.
The SC averages~15! can now be obtained by sequenti

operations of the shell operatorsq̂s and ĥs onUJ(g) in any
order since, from Eq.~17!,

@ q̂r ,q̂s#5@ q̂r ,ĥs#5@ ĥr ,ĥs#50. ~20!

Thus the polynomial~13! can be regarded as an operator
the replacementsqs→q̂s andhs→ĥs :

Â5 (
$m,n%

e$m,n%)
r ,s

q̂r
mrĥs

ns, ~21!

which averages the corresponding quantity over SC by o
ating on its PF:

ÂUJ~g!5^A&JJ8UJ~g!. ~22!

Note that when sequential operations are performed on
~17!, the averageŝqs&J , ^hs&J are not pure numbers sinc
they are functions of theXs’s.

In particular, it is easily seen from~16! and ~17! that
e-

v-
-

r-

s.

q̂r^qs&5q̂s^qr&5^qrqs&2^qr&^qs&,
~23!

q̂sn11
^qs1qs2•••qsn&5^qs1qs2•••qsn11

&2^qsn11
&

3^qs1qs2•••qsn&,

wheresk with differentk may belong to the same or differen
shells. The appearance of Eqs.~18! and ~22! as eigenvalue
equations is therefore misleading. We will return to th
point later.

As shown below, the operations defined above resul
GPF’s with modified statistical weights and/or number
electrons. The rules for making these modifications
simple and can be applied without any calculation. The fi
GPF’s are then calculated using the recursion formulas of
various kinds.

C. Averages as generalized partition functions„GPF’s…

From the binomial relations

qS gqD5gS g21
q21D and ~g2q!S gqD5gS g21

q D , ~24!

it is seen that the operationsq̂s andĥs yield a common mul-
tiplicative factor for all the terms in the SC partition functio
sum. This factor can therefore be taken out of the sum yie
ing

q̂sUJ~g!5gsXsUJs~gs!,
~25!

ĥsUJ~g!5gsUJ~gs!,

whereUJs(gs), UJ(g
s) are GPF’s defined formally as iden

tical to Eqs. ~9!, ~10!, and ~11! with modified statistical
weights and number of electrons: the set (gs)[$g1

s ,g2
s ,..%

has the weight of shells reduced by one. In general we us
the notation for multiple reduction

gt
rs•••[gt2d rt2dst2••• ~26!

and J rs••• is the SC defined by the supershell occupat
numbersQs

rs••• ,

Qs
rs•••[Qs2dsrs

2dsss
2•••, ~27!

wheredsss
equals 1 ifsPs and zero otherwise. Note tha

q̂s shifts bothQss
andgs , while ĥs shifts only the statistical

weightsgs . Using Eq.~10! we obtain

^qs&J5
gsXsUJs~gs!

UJ~g!
5

gsXsUQss
21~g

s!

UQss
~g!

5^qs&ss
,

~28!

^hs&J5^hs&ss
5

gsUQss
~gs!

UQss
~g!

.

Because the result ofq̂s and ĥs operations~25! is formally
the same as an ordinary PF it can be subjected to a su
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55 5877OPERATOR TECHNIQUE FOR CALCULATING . . .
quent operation of the same type. Thus the averaging p
nomial operators~13! can be applied by a succession of su
elementary operations.

It was shown@1–10# that the configuration average poly
nomials~13! appearing in both STA moments and SCROL
rates can, in most cases, be rearranged in the f
•••(qr21)qr and•••(hs21)hs . This is an ‘‘ordered form’’
where each step prepares exactly the required matching
the next one

•••~q22!~q21!qS gqD5•••~q22!~q21!gS g21
q21D

5•••~g21!g~q22!S g22
q22D

5•••~g22!~g21!gS g23
q23D .

~29!

In this ordered form the SC averaging operators can be
pressed as

Â[ (
$m,n%

e8$m,n%)
r ,s

Pmr
~ q̂r !Pns

~ ĥs!, ~30!

where

Pn~ q̂s![ )
k50

n21

~ q̂s2k!5Xs
n ]n

]Xs
n ,

Pn~ ĥs![ )
l50

n21

~ ĥs2 l !, ~31!

P0~ q̂s![P0~ ĥs!51.

By sequential operations of Eq.~25! we obtain

Pns
~ q̂s!UJ~g!5 (

CPJ
@~qs2ns11!•••~qs21!qs#UC~g!

5^~qs2ns11!•••~qs21!qs&JUJ~g!

5
gs!

~gs2ns!!
Xs
nsUJ~ns!@g

~ns!#, ~32!

where the GPF’sUJ(ns)@g
(ns)# have the modified statistica

weights

gt
~ns![gt2nsd ts ~33!

andJ (ns) is defined by the supershell occupation numbe

Qs
~ns![Qs2nsdsss

, ~34!

i.e., the occupation number of the supershell that includes
is reduced byns . Similarly for holes we have

Pns
~ ĥs!UJ~g!5

gs!

~gs2ns!!
UJ@g~ns!#. ~35!
y-

m

for

x-

The elementary operations leading to Eqs.~32! and ~35!
could be performed in any order since they commute. Ho
ever, following the sequential order~29! makes the deriva-
tion straightforward. Exceptional cases will be discuss
later.

The SC averages~15!, of any spectral moment or trans
tion rate, can thus be expressed by means of Eqs.~30!, ~32!,
and ~35! in terms of the GPF’s,

)
rs

Pmr
~ q̂r !Pns

~ ĥs!UJ~g!5B$m,n%UJ$m%~g$m,n%!, ~36!

where

B$m,n%5)
rs

gr !Xr
mr

~gr2mr !!

gs!

~gs2ns!!
~37!

The curly brackets in Eq.~36! denote the set of polynomia
degrees appearing on the left-hand side~lhs! product of the
various shells, and the modified statistical weights here a

gt
$m,n%[gt2(

r
mrd rt2(

s
nsdst ~38!

and the supershell occupation numbers inUJ$m% are

Qs
$m%[Qs2(

r
mrdsrs

. ~39!

In Sec. IV we present a set of recursion relations connec
GPF’s of different kind~different number of electrons, holes
and/or statistical weights!. These relations enable us to ca
culate in turn each required GPF using previously calcula
GPF’s, thus reducing significantly the required compu
time.

IV. EFFICIENT PATHS FOR CALCULATING
GENERALIZED PARTITION FUNCTIONS

A. Recursion over electrons and holes

When a supershell is specified we omit the indexs in Eq.
~11! and write the supershell partition function asUQ(g)
[UQs

(g). It can be easily verified from Eq.~11! that for any

shell aPs we have

(
n50

G

Un~g!@2Xa#
2n5 )

sPs
(
qs50

gs S gsqsD @2Xs /Xa#
qs

5)
s

F12
Xs

Xa
Ggs50, ~40!

where

G5(
s
gs . ~41!

Note that for a specific supershells the sum in Eq.~41! is
restricted tosPs.

Multiplying Eq. ~40! by gaXa
Q with anyQ, and summing

overa leads to
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(
n50

G

Un~g!xQ2n50, ~42!

with

xk[(
s

@2gs~2Xs!
k#. ~43!

The sum in Eq.~42! can now be separated into three pa
AQ , BQ , andCQ for n,Q, n5Q, andn.Q, respectively.

An interesting and most useful fact is that for anyQ all
these three parts are proportional to UQ(g), specifically:

AQ5QUQ~g!, BQ52GUQ~g!, CQ5~G2Q!UQ~g!.
~44!

The first part (n,Q)

QUQ~g!5 (
n50

Q21

Un~g!xQ2n ~45!

is the recursion formula for increasingQ, with U051, ob-
tained in@1# by taking derivatives of the generating functio

F~z![)
s

@11zXs#
gs5 (

all qs
)
s

S gsqsD ~zXs!
qs

5(
Q

UQ~g!zQ. ~46!

The third part (n.Q) is similarly

~G2Q!UQ~g!5 (
n5Q11

G

Un~g!xQ2n ~47!

a recursion from full shells withUG(g)5PsXs
gs. This recur-

sion can be obtained independently from the genera
function

G~z![)
s

@z1Xs#
gs5(

n
Un~g!zG2n. ~48!

Recursions from complete shells are used in both the S
and SCROLL codes to speed the calculations for cases w
Q is closer toG than to 0.

B. Shortcuts in the calculation of GPF’s
with shifted statistical weights

The recursions~45! and ~47! give UQ(g) in terms of
smaller or higherQ partition functions, but the statistica
weights (g) remain untouched. The averages~15!, on the
other hand, result in GPF’s of the type~36!, where (g) is
changed as well. Of course the recursions~45! and~47! work
for any set (g8), but instead of starting again fromQ50 or
Q5G we make use of the already calculated partition fu
tions for (g) as shown below.

Using the binomial identity

S gqD5S g21
q D1S g21

q21D ~49!
g

A
re

-

for any orbitalaPs leads by substitution in Eq.~11! to

UQ~g!5UQ~ga!1XaUQ21~g
a!, ~50!

where PF’s of the set (g) are obtained from those of (ga).
The reverse relation is obtained by iterations on

UQ~ga!5XaUQ21~g
a!2UQ~g! ~51!

yielding UQ(g
a) in terms ofUn(g) n<Q:

UQ~ga!5 (
n50

Q

Un~g!~2Xa!
Q2n5 (

n50

Q

UQ2n~g!~2Xa!
n.

~52!

For holes we iterate starting from

UQ~ga!5
1

Xa
@UQ11~g!2UQ11~g

a!# ~53!

yielding

UQ~ga!52 (
n5Q11

G

Un~g!~2Xa!
Q2n

52 (
n51

G2Q

Un1Q~g!~2Xa!
2n ~54!

consistent with Eq.~42!.
The shift in statistical weights~52! and ~54! can be gen-

eralized by successive operations to multiple shifts:

UQ~ga1a2•••ap!5 (
n150

Q

~2Xa1
!Q2n1

3 (
n250

n1

~2Xa2
!n12n2•••

3 (
np50

np21

~2Xap
!np212npUnp

~g!, ~55!

whereai may belong to the same or different shells.
Similarly for holes we get from Eq.~54!

UQ~ga1a2•••ap!5 (
n15Q51

G

~2Xa1
!Q2n1

3 (
n25n111

G

~2Xa2
!n12n2•••

3 (
np5np2111

G

~2Xap
!np212npUQ2 n̄ p

~g!

~56!

with

n̄p5 (
i51

p21

ni . ~57!

These multiple shifts are used to eliminate shells comple
when required as shown in the example of Sec. IV D.
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C. Eigenvectors as a source for additional
useful GPF relations

From the definition of the averages~16! and~18! it is seen
immediately that for any supershell or SC or entire io
where the total number of electronsQ is constant, the PF’s
are eigenvectors of the corresponding operators

Q̂s[ (
sPs

q̂s , Ĥs[ (
sPs

ĥs ,

~58!

Q̂[(
s

Q̂s , Ĥ[(
s

Ĥs

with the respective eigenvaluesQ and (G2Q),

Q̂UQ~g!5QUQ~g!, ĤUQ~g!5~G2Q!UQ~g!, ~59!

which holds for each supershell separately. The phys
meaning of Eq.~59! is the obvious conservation laws

(
s

^qs&s5Qs , (
s

^qs&J5Q ~60!

implying that by changing the binding energies and chem
potentials~changing theXa’s! the average occupation num
bers flow from one shell to the other with no loss.

By sequential operations we also obtain

Q̂nUs~g!5Qs
nUs~g!,

~61!

Q̂nUJ~g!5QnUJ~g!,

leading to an additional set of conservation laws:

Q̂nUJ~g!5 (
s1s2•••sn

q̂s1q̂s2•••q̂snUJ~g!

5UJ~g! (
s1s2•••sn

^qs1qs2•••qsn&J ~62!

so that

(
s1s2•••sn

^qs1qs2•••qsn&5 (
s1s2•••sn

^qs1&^qs2&•••^qsn&5Qn.

~63!

In addition, from Eq.~23! we obtain that for anys, ^qs& is
an eigenvector of bothQ̂ and Ĥ with the eigenvalues zero
andG, respectively,

Q̂n^qs&5Q̂^qs&50,
~64!

Ĥn^qs&5Gn^qs&.

Thus for any shellsk the complementary operators

Q̂k
15(

i51

k

q̂i , Q̂k
25 (

i5k11

G

q̂i ~65!

yield for any shells

Q̂k
1^qs&52Q̂k

2^qs&. ~66!
,

al

l

An example of Eq.~66! is the casek51, with s15s (Q̂1
1

5q̂s andQ̂1
25( rÞsq̂r) connecting the variance ofqs ~of any

shell s! to the two shell correlation with other shells:

^qs
2&2^qs&

252(
rÞs

^qrqs&1^qr&^qs&. ~67!

All the above operations are a rich source for a variety
additional relations between GPF’s of different types. F
example, from Eq.~60! we obtain by means of Eq.~28! the
useful relations

UQ~g!5
1

G2Q (
s
gsUQ~gs!, ~68!

UQ~g!5
1

Q (
s
gsXsUQ21~g

s!. ~69!

An example of highern relations obtained from Eq.~63! is
the n52 case,

(
rs

^qrqs&5(
rs

^qr&^qs&5Q2 ~70!

leading to

UQs
~g!5

1

Qs
2 (

rs
gr~gs2d rs!XrXsUQs22~g

rs!,

~71!

UJ~g!5
1

Q2 (
rs

gr~gs2d rs!XrXsUJrs~grs!.

Finally it is clear that when operating onU(g)—the PF of
the whole atomic system in the plasma—including seve
charge state ions we have

Q̂U~g!5(
Qz

QzUz~g![^Q&U~g!, ~72!

whereQz andUz(g) are the average number of electron a
partition function of ionz andU(g)5(zUz(g) and^Q& are
the total partition function and the average number of bou
electrons in the plasma.

The various relations presented in the preceding sect
are used in both the STA and SCROLL models to optim
the calculation of the many GPF’s involved, thus reduci
the computation time significantly.

D. Averaging nonordered polynomials

Averaging a polynomial inqa , which cannot be brough
to an ordered form, requires a special attention. As an
ample, let us look at the SC average transition energy. In
SCROLL non-LTE model, the SC-average transition ene
weighs transitions only by their initial population, similarl
to the weights used for averaging the rates. For two SC’sJ
and J8 connected by the orbital jumpa→b the
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configuration-average polynomial^A&CC9 of Eq. ~13! for the
average transition energy is@9,1#

^A&CC95D01(
s

~qs2dsa!Ds , ~73!

where the coefficientsDs are combinations of radial inte
grals. Clearly in the SC average~15!, only configurations
with qaÞ0 contribute in this case.

The polynomial inqa is not ordered since thes5a term
cannot be ordered to start withqa as a multiplicative factor.
In the average of this term, configurationscPJ with qa
50 must be excluded:

^qa21&J[
1

UJ~g! (
C~qaÞ0!PJ

~qa21!UC~g!

5
1

UJ~g! F (
CPJ

qaUC~g!2 (
C~qaÞ0!PJ

UC~g!G ,
~74!

where

(
C~qaÞ0!PJ

UC~g!5UJ~g!2UJ̄~g!. ~75!

The second term in Eq.~75! is the PF ofJ̄ obtained from
J by omitting the shella. It would have been possible t
calculate it by the recursion onQ starting from scratch.
However it is much more efficient and convenient to use
already calculated PF’s eliminating the shella through use of
Eq. ~55!, restricted to shella, ma5ga times, i.e.,

1

UJ
(
cPJ̄

UC~g!5
1

Usa

Usa
~gma!, ~76!

with ma5ga .
The result for a generalma[m is

UQs8
~ ḡ!5 (

n150

Qs8

(
n250

n1

••• (
nm50

nm21

~2Xa!
Qs82nmUnm

~g!

5 (
k50

Qs8

Nk
~m!~2Xa!

Qs82kUk~g!, ~77!

where in (ḡ) the shella is excluded andNk
(m) is the number

of timesUk(g) appears in the sum over all the indicesni .
Clearly the specific valuenm5k appears exactly once fo
each setn1>n2>n3>•••>nm21>k. Thus

Nk
~m!5 (

n15k

Qs8

(
n25k

n1

••• (
nm215k

nm22

1

5 (
nm2150

Qs82k

(
nm2250

nm21

••• (
n250

n3

(
n150

n2

1. ~78!

These numbers were computed and tabulated using Bern
functions ~Ref. @11#, p. 804!. Thus the result@Eq. ~77!# is
now substituted in Eq.~74! to obtain the correct averaging
e

lli

V. ANALYTIC EXPRESSIONS
FOR THERMODYNAMICAL QUANTITIES

In the previous developments of the STA model@1–6#,
the only concern was the calculation of radiative propert
of hot dense matter. Indeed, the output of the STA co
consists in tables of opacities that are read by the hydro
namic codes. However, hydrodynamic codes could gre
benefit from a better atomic physics than what is commo
used for some key quantities, such as internal energy,
cific heat, and electronic pressure. In many modern hydro
namic codes, the evolution of the plasma is described
conservative form, and the code relies on the equation
state~EOS! tables to extract the temperatures and the pr
sure, which determine the plasma conditions at the next t
step. Internal energy plays an important role, since it is t
part of the total energy of the plasma cell that is not availa
to heat. More often than not, what is computed in the co
is only the so-called ‘‘ionization energy’’ that neglects th
contribution of the excited states, and it is not consistent w
the opacity tables. As a consequence its derivative, the
cific heat, which is used to compute the temperature in
EOS subroutines, tends to be jerky, and this causes spu
oscillations and divergences.

In this section we apply the algebraic technique presen
above to obtain analytic expressions for internal energy
derivatives of the SC partition functions with respect to te
perature. Similar derivation holds for derivatives with r
spect to the density. Since the SC PF’s include orbital rel
ation ~optimized potential for each SC! and first-order
energies in the Boltzmann factors, we can construct an a
rate derivative of the total PF of the atomic system by co
bining derivatives for each SC optimized separately. We p
to use the following formulas in STA to output addition
tables that would be read in the hydrodynamic codes, t
improving greatly the quality of EOS and adding stabili
and consistency in the description of medium to highZ ele-
ment plasmas.

A. Internal energy

The total internal energy of an atomic plasma system

Etotal5(
C

NCEC5
N

U total
(
Q

(
J

UJ~g!EJ , ~79!

where the summation overQ in Eq. ~79! denotes the various
charge states,

U total[(
Q

(
J

UJ~g! ~80!

and

EJ[
1

UJ~g! (
CPJ

UC~g!EC . ~81!

The ordered polynomial̂A&CC8 in Eq. ~15! for the configu-
ration average energy is@1#

^A&C5EC5(
s
qs^s&1 1

2(
rs

qs~qr2d rs!^r ,s&, ~82!



n
d

th

ch
f

ge

s

ri-
e

is

t

all
of
or
of

and,

nly

rms
hell.

55 5881OPERATOR TECHNIQUE FOR CALCULATING . . .
where^r ,s& and^s& are radial integrals defined explicitly i
Appendix B of @1#. This notation should not be confuse
with the averageŝqs& defined previously.

Using Eq.~16! the SC-average internal energy takes
form

EJ5
1

UJ~g! F(
s

^s&^qs&J1 1
2(
rs

^r ,s&^qs~qr2d rs!&JG ,
~83!

which we may calculate with optimized potentials for ea
SC. The ordered polynomials in Eq.~82! are special cases o
Eq. ~30! with the coefficients

e$m,n%8 5d$n%,$n%~0!@^s&d$m%,$m%~s!1 1
2 ^r ,s&d$m%,$m%~rs!#,

~84!

where the exponent sets$m%(r ),$m%(rs) are defined by
$m% t

(r )[d tr and$m% t
(rs)5d tr1d ts and$n% t

(0)50 ~no hole de-
pendence! for all shellst. In Eq. ~84! the d$m%,$m%8 are 1 for
equal sets and zero otherwise.

Equation ~32! gives the expression for the SC-avera
energy in terms of GPF’s:

EJ[
1

UJ~g! F(
s
gsXs^s&UJs~gs!

1 1
2(
rs

gr~gs2d rs!XrXs^r ,s&UJrs~grs!G . ~85!

It should be pointed out that the second term on the rh
Eq. ~85! is the two electron contribution toDEJ

1 of Eq. ~9!:

DEJ
1 5@^s&2es#1

1

2UJ
~0!~g!

(
rs

gr~gs2d rs!XrXs

3^r ,s&UJrs
~0!

~grs!. ~86!

B. Specific heat

The specific heat is obtained by differentiationEtotal of
Eqs.~83! and ~85! with respect to the temperature. Nume
cal differentiation may not be accurate enough becaus
well-known local irregularities ofEtotal in the (r,T) plane,
due to the ionic shell structure.

For analytic differentiation we rearrange Eq.~83! in the
form

Etotal5
N

U total
(
Q

(
J

UJ~Q,g!EJ

5
N

U total
(
Q

(
J

H(
s

@s#J^qs&J

1 1
2(
r ,s

@^r ,s&#J^qsqr&JJ ~87!

with

@s#J[@^s&2 1
2 ^s,s&#J , ~88!
e

of

of

where the subscriptJ denotes that a specific potential
used in the calculation of̂r ,s& and ^s& for each SC:

Cn5
]Etotal

]T
52

Etotal

U total

]U total

]T

1
N

U total
(
Q

(
J

F(
s

H @s#J

]

]T
^qs&1^qs&

]

]T
@s#JJ

1
1

2 (
r ,s

H @^r ,s&#J

]

]T
^qrqs&J

1^qrqs&J

]

]T
@^r ,s&#JJ G . ~89!

From Eq.~9! we obtain

]U total

]T
5(

J

UJ~g!

kT FDEJ
1

T
2

]DEJ
1

]T G
1(

J
e2DEJ

1 /kT
]

]T
UJ

~0!~g!. ~90!

It is seen from Eqs.~89!, ~90!, and~86! that the specific hea
depends in addition to GPF’s on derivatives of the types

]

]T
^r ,s&,

]

]T
^r &, and

]

]T
UJ

~0!~g!. ~91!

The first two quantities depend onT indirectly through the
free electron potential, which in our model is common to
the SC’s of all ions in the plasma. For direct application
Eq. ~89! these quantities can be calculated numerically,
modeled analytically. This, however, is beyond the scope
the present work. The analytic derivative (]/]T)UJ

(0)(g),
which contains the SC dependence, can, on the other h
be easily obtained, for any modified values ofQ and/or
(g), sinceUJ

(0)(g) depends on the plasma temperature o
through the quantitiesXs of Eq. ~12!. As shown above the
derivatives with respect to these variables are given in te
of the average occupation number of the corresponding s
Specifically, from Eq.~10! the derivative with respect toT is
written as

1

UJ
~0!~g!

]

]T
UJ

~0!~g!5 (
sPJ

1

Us~g!

]

]T
Us~g! ~92!

and from Eqs.~17! and ~25! we have

]

]T
Us~g!5 (

aPs

]

]Xa
Us~g!

]Xa

]T
5 (

aPs
ha~T!UQs21~g

a!,

~93!

where

ha~T!5
ga
kT F ~ea2m!

T
2

]

]T
~ea2m!G . ~94!
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Equation~51! expressesUs(g
a) for any aPs in terms of the

sameUs(g) and thus we obtain finally

]

]T
Us~g!5 (

n50

Qs21

zs
n~T!UQs2n21~g! ~95!

with

zs
n~T!5 (

aPs
gaha~T!~2Xa!

n. ~96!

The quantity (]/]T)ea is included in (]/]T)^a& of Eq. ~89!
@1#. The chemical potentialm(r,T), on the other hand, be
haves like@12# e2m/kT5a(r,T)T3/2/r, wherea(r,T) varies
smoothly; its derivatives can therefore be easily calculate

For evaluating thepressurewe require the derivative
]Etotal/]r that has the same form as Eq.~89! with the re-
placementsT→r. In addition to GPF’s, it depends likewis
on

]

]r
^r ,s&,

]

]r
^r &, and

]

]r
UJ

~0!~g!. ~97!

Again the important SC dependence appears
(]/]r)UJ

(0)(g), which is obtained in terms of GPF’s and h
the same form as Eqs.~92! and ~95! with the replacements
T→r and where

ha~r!52
ga
kT

]

]r
~ea2m!. ~98!
A
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VI. SUMMARY

In this work we have presented the elementary algebra
performing SC averages over any polynomial in the sh
occupation numbers. The LTE spectral moments as wel
SC average rates in non-LTE models are special cases.
analytic expressions for the averaged quantities are obta
by a succession of elementary operations where each
results in a GPF with reduced number of electrons and/o
shell’s statistical weight by unity. The calculation of the o
tained GPF’s becomes very efficient using a set of relati
that allow short calculation paths. Each GPF in turn is o
tained from GPF’s of neighboring systems~with respect to
the number of electrons and statistical weights! that are cal-
culated in previous steps. These paths thus reduce sig
cantly the required computer time. Using this technique
have also obtained analytic expressions for derivatives
GPF’s which are required to calculate accurately thermo
namical quantities such as specific heat and electronic p
sure including orbital relaxation and first-order energies
the Boltzmann factors. This allows the STA code to yie
consistent data for the equation of state in addition to op
ties.
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