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Dispersion function for plasmas with loss-cone distributions in an inhomogeneous magnetic field
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The dispersion relation for electromagnetic waves in a magnetized plasma with weakly inhomogeneous
magnetic field is investigated within the framework of a WKB approximation. A dispersion function useful for
the case of plasma particles described by a generalized loss-cone distribution is introduced, valid for waves
propagating in weakly relativistic plasmas, for any direction relative to the ambient magnetic field and to the
inhomogeneity. This dispersion function is in some particular cases related to other plasma dispersion func-
tions well known from the study of homogeneous plasmas. An application is made for the case of ordinary
mode waves propagating perpendicularly to the magnetic field in inhomogeneous loss-cone plasmas.
[S1063-651X97)07104-3

PACS numbgs): 52.25.Mq, 52.40.Db, 52.35g

[. INTRODUCTION plasma, whose derivation is detailed elsewhére In Sec.
Il we consider the case of particles described by nonrelativ-

The study of wave propagation and absorption in inhomoistic DGH distributions, and introduce the generalized
geneous plasmas can be made by using a formulation iplasma dispersion function for inhomogeneous plasmas.
which the dielectric properties of the plasma are described bypome properties of the inhomogeneous plasma dispersion
an effective dielectric tensor which incorporates inhomogefunction and several limit cases are discussed in Sec. IV,
neity effects, inserted into a dispersion relation which is for-including its relationship with other well-known plasma dis-
mally the same as that of a homogeneous plagthaThe  Persion functions appearing in the case of homogeneous
fundamental features of the formalism were developed in ®lasmas. In Sec. V we illustrate the use of the generalized
publication by Beskin, Gurevich, and Istomidenoted in dispersion function by considering the case of ordinary mode
what follows as BG), based upon the application of an it- Waves propagating perpendicularly to the magnetic field in
erative procedure to the wave equation, along with the reweakly inhomogeneous media. Finally, Sec. VI is reserved
quirement of energy conservation at all orders of the iteratioor the conclusions. Appendixes on the evaluation of relevant
[1]. The formulation is appropriate as long as the conditiongnomentum integrals, on the resonance condition for particu-
of validity of the WKB approximation are satisfied. lar cases, and on some characteristics of the anti-Hermitian

We have recently utilized the BGI formalism in the study Part of the components of the effective dielectric tensor can
of electron cyclotron absorption in inhomogeneous mediaPe found at the end of the paper.
both in the case of homogeneous magnetic figled] and in
the case of inhomogeneous magnetic figddl There is a
fundamental difference between these two cases. The unper- Il. THE DIELECTRIC TENSOR
turbed orbits of the plasma particles are affected by the mag- FOR INHOMOGENEOUS PLASMAS
netic field inhomogeneity, while they are not affected by
inhomogeneities in other plasma parameters such as dens'{%

o s of inhomogeneous plasmas, we have utilized the BGI
and temperature. The resonance condition in momentum

space is therefore affected by the inhomoaeneity. and aco_rocedure and obtained explicit expressions for the compo-
pac y the In g Y, hents of the dielectric tensor for inhomogeneous plasmas
cording to the BGI procedure an infinite number of correc-

tions is necessary to be added in order to build up the effecWhICh were written as

tive dielectric tensor, starting from a plane wave

In a previous publication regarding the dielectric proper-

approximation1].

In the present paper we introduce further developments in dnd
the derivation of the dielectric tensor for inhomogeneous S_ 3 T ”

S . . . . ; e=1 IZ E dr

magnetic field, and define a generalized dispersion function a Muon==« Jo
useful for the case of plasma particles described by a nonrel-
ativistic loss-cone distribution of Dory-Guest-Har(BGH) > j d3uu, £(f .)ellname™ N¥naI1= I+
type[6]. We also discuss some of the properties of this dis- 1 £(Teo) nas na

persion function, particularly its relationship with other dis- 2
persion functions which appear in the treatment of homoge- aa A7 [ 5 Ul
—&82 3| d®u-L(f.0), (D)

neous plasmas. a Mo Y

The plan of the paper is the following. In Sec. Il we
briefly describe the physical system to be considered and
write the components of the effective dielectric tensor for
electromagnetic waves in an inhomogeneous magnetizedhere
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where( ,(x)=[qg,Bo(X)/m,c] is the particle cyclotron an-
gular frequencym,, is the particle rest mass,, is the par-

ticle charge,c is the velocity of light, e=[(1/By)(dByg
1dx})]x =, andx/ is the unperturbed position of particle

Hi—l[ n
S |

Jn<ba§§>( Coswi:—j

A 1 n
TFi35(bagr)sing Bt = | = In(bar )sing a, - o o
&n | baty The validity of the expressions given by Hd) is limited
to the case where the distribution function is azimuthally
o . enl ]~y n symmetric,fa():fao(uf,u”). Among the reasons for the
£i1dn(0agn)| cospti =] 16+ = In(baén e, choice of this distribution is the fact that it allows the em-
1 1 . . . . s
phasis on the study of magnetic field inhomogeneities and
k u2c? simplifies all other features of the problem. Other kinds of
Dpe=yo—Kkicu—nQ,(1+ex)—e 1L sing, inhomogeneities, where the distribution is explicitly depen-
20, dent on position and therefore must exhibit the dependence
2esinylk on the constant of motiorP,=p, sing+m,/*Q(x")dx’,
o, =tan L “—Lz , were already discussed in previous studi2s4] (¢ is the
1—(enlky) azimuthal angle op).
2 12 The form of the effective dielectric tensor as given by Eq.
£ = (cos/ﬁi +sin2¢/;} (1) is not the most suitable for our present purposes. In order
n - 1 . . . .
Ky to rewrite Eqg.(1) in a more convenient form, we first note
that
kouc
ba: ) 2 . . ‘nl
Q, i | 1= (enlk)) —|25nensm(z,//)/kl}
e Na— pra—
€n=e€nQ 72, €n &n
N [bi—lcﬁrz—izsnbasin( lp)/cnr}'“_( Fra(7) ) I
L(fa)=2u T L(fa0), Wi W, \Wiw, )
Uy where
L(faO): —dy fO_(yu faO'
T I
Sh= sgn(n),

Here we have omitted the details of the derivation for the
sake of brevity, since they can be obtained from a previous K,=necu, /2,
publication[5]. In these expressionf,q is the distribution
function for electrons of populatior, with the summation
carried out over all electron populations. The ions do not
appear explicitly since Eql) has been developed for the o ) .
case of high frequency oscillations. It is assumed that the ion Due to the dyadidl,IT,,, the products involving Bessel
distribution is effective as a neutralizing background and carfunctions of orden and its derivatives are equal to the same
ries the current in the direction which must exist in the products involving Bessel functions and derivatives of order
plasma in order to satisfy the equilibrium configuration with [n|. Moreover, the derivatives of the Bessel functions ap-
the x-dependent magnetic field pointing in tizedirection ~ Pearing in Eq(1) can be eliminated by the use of the well-
[5]. u, anduj are the perpendicular and parallel componentnNown recurrence relation
of the normalized momentunu=p/(m,c), y=(1+u??

J,(z) andJ/(z) are the Bessel functions of orderand its 3(2)= EJ ()= 11(2)
derivative, ancg, €, ande, are, respectively, the unit vec- n z " e
tors in thex, y, andz directions.

The geometry utilized in the derivation of E@l) has Therefore the effective dielectric tensor can be written as
been the following. The magnetic field has been considered
pointing in thez direction, and inhomogeneous in tkedi- o w
rection,Bo=By(X)e,. The waves were assumed propagating e=1-iy, o > f dr
in arbitrary directions, wittk; andk, as the components of @ Ma®n==e Jo
the wave vector, respectively, parallel and perpendicular to _ oI
the magnetic field. The wave angular frequency has been xf d®uu, £(f ,0)€PreT Ry, ()] 2o
denoted a®. ¢ denotes the angle between the vedtpand (Wh Wh)
the direction of the inhomogeneity. The inhomogeneity has - 4P uy
been assum_ed to be weak, such that the cyclotron frequency —ezezz —g dSU—lL(fao)(Uf Uy, 3)
has been written as « M Y

Qa(Xe) = Qu(X)[ 1+ e(x=X)], (2 where

W, =[b2+2b,cod ¢) K+ K212

477qu
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|n\+1(W+)

W_

n

Hi

Na

+ Ny (W) Gl 1)+ FY2(7)b,siny e,

I 1 (Wo))

+i| [N} (W) Gp(7) F F2(7)(b,cosp+ K,T) |6+ —J|n|<w FYA 1)e,,

n

- __\/ICnTIbaCOSfI'FiSnbaSinl/f
na{ D=1 V& ~5b_cosyt1S,b,siny’

G, G, =-1, FY¥G> =—(K,r¥b,cosi+iS,b,siny).

This expression looks as complex as the original, @9, but is is more appropriate to be used with the generalized
loss-cone distribution function to be introduced in the following section.
Il. EFFECTIVE DIELECTRIC TENSOR FOR NONRELATIVISTIC DGH DISTRIBUTIONS

The momentum integrals of E@3) will now be evaluated by assuming that the particles of populatidmave a two-
temperature nonrelativistic DGH distribution function

2 2
l“ei('U‘LDIULJrMHHUH )/2, (4)

12 la
M Mia M 2
fao(UZ ,up=n, a) = o

27 2al 1L

wheren,, is the density of the species, |, is an integer quantity known as “the loss-cone indey,) ,=m,c?/T,,, and
,u”a:macle”a. The ratio between perpendicular and parallel temperatures will be denotee-ds /T,

Introducing the distributiori4) into Eq. (3), the integrations in the space can be performed. The calculations are made
with use of the weakly relativistic approximation, a reasonable assumptionTfez10 keV, which implies that
y~1+u?/2. The nonrelativistic distribution function given by Hd) is consistent with this weakly relativistic approximation,
and it is frequently employed for the description of oblique absorption of cyclotron radiation in mild temperature loss-cone
plasmas. As a result of these integrations in momentum space, the components of the dielectric tensor for the particular case
of 1 ,=0 (anisotropic Maxwellian distributionare written in terms of a function denoted 8y, , m|. hereafter denominated
“inhomogeneous plasma dispersion function” and defined as follows:

; izt — Bt2/(1—it)
Grapmi (250 arVarX r)z_if grere e 20, Ena(O17 [ Sha(V)
rapmiiS B Bas fas Ana 1T 0o (1-i)H1—irqo,t)P [Sna()] '\ 1=irro,t

>, ®

where

Hna() =12 =12S0,SiN(4) Xnat = Xoat?,  Sna(t) = v — 205009 24) x 7,17+ xnat®,

and where we have introduced the following definitions: (w/u,) 7, Z= t4bnas Ona=1—NY,(1+ €X), ,6’=,uaN|’|1/2,
Xna= 2., 0,=1—NgN, (SiNY)IY,, v,=N, Iu¥?Y,, Y,=Q, /0, py=nNg/2, andNg=ec/w. 1,(2) is the modified
Bessel function of the first kind. Details of the calculation are shown in Appendix A, where for simplicity we only consider the
isotropic case [, =T).

For the more general case lgf# 0, the calculations are similar, although tedious, and the outcome is

(- 1)' .
811:1_2 luia a | [A(l) 2

n——w

2% H %
N°Gg 11210 1/n| T 20T 120SINY) Xna( 91 172,200~ 140+ 91 172,200, ||+ 1)

n|

2.2 * | 2 % 2 %

+ 2rTVa5|n2'r/’( Go,112,3In),In| ;gg,l/z,zln\fl,ln\ - Vago,1/2,31n|,n|+1+Xnagz,1/2,3|n,|n+1) H (6)
h=0

2% H k
N“Go,1/2,1in|— 1jn| ~ 2N 1VaSINY) Xnal 91 112 20|~ 10|~ gf,1/2,2|n|,|n|+1)

n— —o

(- 1)' .
822:1_2 ILLLa a | [A(l) 2

2.2 * | * 2 % 2 %
+ 2rTVaC‘352‘/f( Go,12,3In),|n| ﬁgo,llz,zln\fl,\n\ - Vago,1/2,3jn|,n|+1+Xnag2,1/2,3]n,|n+1)

+ 2rTXna

In|
921/231n|\n|+—g§1/zz|n\ n| "V 921/231n|n|+1+Xnag*,1/z,3|n,|n+1)” ,
h=0
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(—1a

833:1_2 xa[1_5 la,O/rT]_Z /-’LLa a 2 [%3/2 n|, |n\] ’
a a a'

h=0

1)'a
2 Iu’J_a a(

In|

* 2 * 2 * 2 24
:g0,1/2,11n|71,|n|_ v2o(Go.112.21n - 140~ Go.12.2n, |+ 1) T Xna(92.112.20n| — 1jn| T 92,1/2,21n|,n|+1)) —I7vesin2y)

(1 : 2 : 2 2
{ D [ilZrTVaSIH(lﬂ)Xna(g’l’,l/z,sann|—Vag’I,1/2,31n|,n|+1+Xnag§,1/z,3|n,|n+1)

n——o

*inrg

|n|
* 2 *
X\ Go.1/2,3)n),n| 0,1/2,2|n| - 1jn| ¥ gO,1/2,3ln||\n|+1+Xnag;,llz,sln\,lnHl =2n11v,C04 ) XnaYT 1/2,2)n|— 1)n|

—1)a .
: 1/2: ( 2 H *iS,
S —'NII%: KrakaXa 1 [A( )nz‘ix {N(Xna91 32,10 - 1jn T V0€™ ”¢93,3/z,11n|71,|n\)

a1

H * 2 H 2 %
Fr1vo(SIN)[ G0 312 2)n), In| ~ Ya90,312,2n|,|n| + 1T 12V4COY w)XnagI,3/2,2|n|,|n|+l+Xnag2,3/2,21n|,n|+l]}] ,
h=0

— 1)l - .
1/2: ( H + 3

8(%3\:N||§ M1 alaXa 1 [A(Z)nz (10| (XnaG3 22.1jn— 1jn| £ i Ve 'S”‘/g’(;,slz,lln\—l,|n\)
139 . “~.

2 * * 2 %
T 1V,C082¢) XnaG1 32,200 n|+ 1T T TXnel 91 32,2/ 0| T X11a93,3/2,2]n),n| + 1)

— * 2 2 %
11 7v,C080( G5 372 2|, |n| ~ Vag3,3/2,2|n|,|n|+1_ Xnag2,3/2,21n|,n|+1)]]

h=0
The function denoted bg* a.p.m, IS defined
;'k,q,p,m,l(zlﬂio-a’Va!Xr‘la!rT;h)
to— Bt2(1—it)
f dt (i'e'e ” | e v 21 X2 I(1=irra, t+h)[H”“(t)]m _S”“(t) ] (7)
(1—|t 41—irqo,t+h)P [Sh (D] '\ 1—irtot+h
The differential operatord (™ are given by
I (l4—1)
(1) 2 g« 2 Je
A E[1+(1_rT)NHA1,ﬂm+|a(1+NHA1,1)W'
1- §a 1 dla=b)
A(z)—[Alﬁ e (l+/LHaNHA2 1)} A10+_(1+/~’LH(1NH 21)L7h(|a1),
Ja gla—D)
A®=[1+ ) NfA,,+(1 _rT)NH(3A11+ﬂ||aN||A32)]%|—+| [1+MHaN|\A21+N\|(3A11+ﬂ|\aN||A32)] =0 ©

whereA,, 4G g omi= g(r+r @)l - Therefore the inhomogeneous plgsma dispersion function
TheGf o p.m) function may be regarded simply as an aux- given by Eq.(5) plays a central role in the present formula-
iliary function appearing for loss-cone plasmas, since aftefion. In Sec. IV we present some properties and special ex-
application of the differential operators(™, the outcome pansions of this function which show its relationships with
can again be written using the functioii, , ., evaluated other plasma dispersion functions already known from the

for h=0, which is simply the inhomogeneous plasma disperStudy of homogeneous plasmas. In Appendix B some of
sion function defined by Eq5), these properties are utilized in order to show that the anti-

Hermitian part of the effective dielectric tensor is free of
2.B.0. v, T nonresonant terms, originating an absorption coefficient
G apm(ZB:0asVasXna TriM =0 which really describes absorption and/or amplification due to

=Gr.apmi(Z.B:0¢, Vo Xnas1)- the wave-particle interaction.
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IV. THE INHOMOGENEOUS PLASMA DISPERSION whereR, , is the PDF defined by Eq62) of Ref.[7]. This
FUNCTION AND ITS RELATIONSHIP is the weakly relativistic PDF valid for waves propagating
TO OTHER DISPERSION FUNCTIONS with arbitrary perpendicular wave number in magnetized

The inhomogeneous plasma dispersion function is define'i[i?ermal plasmas7]. It can be related to Shkarofsky and
. 9 > P P nestrovskii functions in the limit of nearly perpendicular
by an integral expression and can be related to other well-

known plasma dispersion functiof8DF) appearing in the propagation, and all its properties can be found in Refs.
case of homogeneous plasmas. This feature is particularV’S]'

useful for computational reasons, since the analytic proper-

ties of these functions are well studied, and many useful B- Waves propagating with k,parallel to the inhomogeneity
mathematical relationships can be found in the literature. In (¥=0)

what follows, we will initially consider some particular In the case ofy=0 the functionsH ,,(t) andS,,(t) ap-

cases, which can be dealt with more easily, before discussingearing in the integrand of E¢5) are greatly simplified, and
the most general direction of propagation in inhomogeneoughe inhomogeneous PDF reduces to
cases.

. T izt
Grqpmi= _if dt%e[vi+(ﬁ+xﬁanzll(lit)
R 0 —it
2 2 :2
Vo~ Xnal
x<vi—xﬁat2>m'l|(%)

A. Homogeneous casée=0)
In the homogeneous case, Ef) reduces to

o i izt
G :_i,,2<m—l>f g e
r,g,p,m,l a 0 (l_it)q+p

11

This expression can be further modified by the use of an

5 V2 integral representation of the modified Bessel funcfi@h
W @ BPI(L=it)g=vi/(1=it)| @ | (9)

1 (2) = —«— dv(1l-— 2 n—1/2etzy, 12

This equation can be written in familiar form as n(2) (2n—=1)N Wf—l Y-y 12

Groapmi=Va" "Raspi(z.8,02.1), (10 resulting in the expression
m 2s_2(m—s)
M\ XnaVa 1 1z (1
Grapmi= 2 ( S) TE—DT f_ldyu—yz)' Vo e U Fq i pin) (129 (2= Vel 1Y) BH Xha( 1Y)~ ve(1-Y)),

(13

where

(= (it)reizt 2 _ . J'oo (it)rei(z—a)t _
=_ —at?/(1-it) = _ja—a al(1—it)
For(z,@) |f0 dt(l—it)qe ie . dt a=ind e

is the well-known Shkarofsky functiofv,8].

Although complicated, Eq13) can be simplified when the particle Larmor radius is smalf (<1.) With this assumption
we can expand the term e[xpvi(l—y)/(l—it)] in powers ofvi, retaining only the first two terms of the expansion. Inserting
this expansion in Eq13) and retaining only the lowest order terms on the ensuing summation, we arrive at

1

1 1
gr,q,p,m,IZM[Xﬁgl f_ldY(l_yz)l_1/2-7'—q+p+|,r+2m_ Vif_ldY(l_yz)l_1/2(1_Y)~7:q+p+|+1,r+2m

1
+ myi)(ﬁ;m—l) f_ldy(1_y2)|_1/2-7:q+p+l,r+2m—2} ' (14)

in which the Shkarofsky function no longer depends»@n ]—"q,r=]-"q,r(z,ﬁ+xﬁa(1+y)).

Expression(14), when used in conjunction with the assumption of smzﬁjl, leads to greater simplification on the
dielectric tensor components. It will be used in Sec. V to derive a very simple expression for the dispersion relation of the
ordinary mode.

Similar approximations can be made for the general aagd, which will be considered in the following sections.
However, such approximations will not be explicitly shown, since they would not be useful for the example appearing in Sec.
V.
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C. Waves propagating with k, perpendicular to the inhomogeneity (= 7/2)

In the case of waves propagating wikth perpendicular to the inhomogeneity the functidhs,(t) andS,,(t) also can be
reduced to simple expressions, and the inhomogeneous PDF can be written as

(15

r |zt —Btzl(l—it) . om
G 1= f dt (It € —(V +)(naI2)/(1 io t)( ISanat)
r.q,p.m,

(1-it)%(1-io, 0)p® (RPrx2

Vot Xhat?
1-io,t

This expression for the inhomogeneous plasma dispersion function can also be written in terms of Shkarofsky functions,
under some restrictive conditions. We will demonstrate this by considering the following.
In the integrand of Eq(15) we have an exponential function which can be written as follows, after introducing the
representation given by E¢l2):
V§+X§ t2 00~ Dt Xaa)(AHY)|°
s R e R (1-i)(1-io.0)

(16)

“o1((
Es—

r‘lat
p[ a%my)

This series representation remains finite eventferc. In its derivation we have used the following identity:

1 1 (1 1-o.°
1ot 1-itlo, 1 iot)"
With use of Eq.(16), the PDF is modified into

i * (0.;1_
Grapm =R — D7 &

(It) eI(Y (IJy)t /(1 it)
J' dt —it Q+S(1 )p+|+s(V +Xna Z)S(V _|Sanat)2

S
) fl dy(l_yZ)Ifl/Z(l_,’_y)sefvi(ler)laaef(Dy
-1

where
D =B+ (xp— V) 1+Y0o,, Y,=z—vi(1+y)lo,.

The quantities Qi+xﬁat2)s and (v,—iS,xn.t)>™ appearing in the integrand of the PDF can be expanded in poweérsuod
we obtain

1 - logys2n @ 2m bk 2 s)~n—k 2h+k
Groaqpmi= e 1)”772 s & Z ( 1) (ShXna)
1 2
8 ffldy(l—yz)"l’z(1+y)sef”“(1”)’”"V<r+2h+k>,<q+s),(p+l+s>(Yy Pyi0q), (17

where

ar |zt —at?/(1-it)
Vr,q,p(zua;o'a): qu,p(zva; o-a)! Wq,p(zva;o-a) f dt(l_lt)q(l_lo_ t)p

The functionW, ,(z,a;0,) has been studied in Reffl0,11], appearing in the case of a homogeneous plasma with a
Maxwellian distribution featuring temperature anisotropy. In that case, the paramgterelated to the temperature anisot-
ropy. In our case, it is the inhomogeneity that plays the role of the anisotropy. Equafipcan be written in terms of
Shkarofsky functions in particular cagd€]. Whenlacjl— 1|<1, the “anisotropic” term appearing in the denominator of Eq.
(17) can be expanded as

0

1 1 p+j—1)<1—oal>i
(1—iog )P g_g,go ( p—1 | (1—it)P*" (18
When this expansion is introduced into Ef7) we obtain

1 & [pt+l+s+j—-1 N
V(r+2h+k),(q+s),(p+|+s)(q)yuYy;O'a):_|_0_p++sj§0 p+l+s—1 (=0, ) Fgrprirastjnrikram(Yy,Py), (19
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which is the desired result. The validity condition for the use of this form of the PDF is not very restrictive. For instance, in
present day tokamaks~10"2 cm 1, Bx10* G, |Q.|*10'" Hz, and the expansion utilized is valid as long|&s | <107,

which is frequently satisfied for electron cyclotron waves.

D. Waves propagating at an arbitrary angle relative to the inhomogeneity

We will now consider the case of electromagnetic waves propagating in arbitrary directions relatively to the inhomogeneity
and to the magnetic field. Equatigs) can be modified by considering that the argument of the Bessel function can be
considerably simplified by using Gegenbauer's addition thedieg 9.1.80 of Ref[9])

1 [ S | _(A-io'S . Ve ) xﬁatz)
%I'(l—iaat)_(uﬁxna 2)'z (- 1)A"*k<1 o) Tt (20
where
| , X I+m 1)(1+k—-m—1
=2'(I-1)!1(1+k)C{(cos2y), C\" 2_ _1 |cog2(k—2m)y],
1) k+21—1
k(l)_ k .

This is a general expansion, which is useful for computational purposes only when a small Larmor radius approximation is
valid.
With use of expression@0) and(12), it is possible to write down the inhomogeneous PDF as

® - r+2kgizto— Bt2(1—it)
2 Aana fl y(l_y2)|+k71/2f dt (It) e’e (1+y)t2/(lfiaat)

Grapmi =~ 2 DB+ - 1)1 2 T io,0r ke e
2
><[HM<t>]mHHK($), (21

where
Hu(2)=e 2 4(2).

The functionH,,,(t) can also be expanded, and we arrive at

[

1 _ m—X\
I S _ C N 2(m—1— &)=\ 2(k+ )\
Gr.q.pmi = 7T|<Eo[2(|+k) i, Z ( 5 )( 2Spsing)" v, Xna
1
XJ_1dy(1_y2)|+k_1/2Q[r+2(k+5)+}\],q,(p+k),(l+k)(zi:81)(§a(l+y)’Va’o'a): (22)

where

. i a2y 2

0 (It)relzte atc/(1—it) o2 ) v

— —bt?/(1—io,t) @
Qr.api(z,a,b,v,,0,)= |jo dt(1 (1= at)pe H, =01l

a

Using the same procedure utilized in the derivation of Eq.

» izte—ctzl(l—it)
(16) results in the expression: = a.p(Z:Cs v2i0,)= —if dt(1
0

—it)d(1—-io, )P

2
qup|(ZabV 0') H|<1V—)

—iot

The functionR{), is similar to that defined in E¢7) of

Ref. [10]. It can be written in terms of the functiow, ,

()
xXP previously analyzed by using expansi@k6) of Ref. [10]

r+29),(q+9),(p+9)(Zs a+blo,,1v2;0,),

Z\"S (5 2(n+k)]t [z\k
P(lz1 o(Z,C, Va,Ua)——R(”(Z c.v20,), Hn(z)=(§> IZ,O FR(2nTKIK (E) . (23
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V. APPLICATION FOR THE CASE
OF ORDINARY MODE WAVES

As we have said previously, this expansion is only useful
for computational purposes in the small Larmor radius ap-

proximation. For the case of electromagnetic waves propagating per-

pendicularly to the magnetic field in a magnetized plasma,
and velocity distributions which are even ), the disper-
sion relation factors into two branches, known as the ordi-

nary and the extraordinary modes. Under these conditions
the ordinary mode is specially suited to be used as an ex-
ample for application of our formalism, since the dispersion
ﬁelatlon depends on a single component of the dielectric ten-
sor, and can be written as

E. Nonrelativistic approximation

The nonrelativistic approximation for the effective dielec-
tric tensor of a Maxwellian plasma can be obtained from Eq,
(3) by the use ofy~1 and by using the distributio(). In
this case, the tensar still is given by Eqgs.(6), but with a
slightly modified inhomogeneous PDF. Instead of expressio
(5), the nonrelativistic inhomogeneous PDF will be given by

j dt
 [Hna(D]" (
[Sna(D)] "\ 1+ig,t

(it)"e'?t Nf=ea. (26)
(1+'§at)p Using Eq.(6) and considering only one electron popula-

S, (1) ) tion, with loss-cone indek,=1.=1 and equal perpendicular

Gr o= —ﬁtze—<vi+xﬁat2)/(1+igat)

(24 and parallel temperatures, thg; component can be formally
written in terms of the inhomogeneous dispersion function as

where{,=1-0o,. Equation(24) can be obtained from Eq.
(5) by replacing 0 forit and — ¢, for o,. In this case, of

course, the inhomogeneous PDRs no longer dependent on
the quantityq.

Equation(24) is valid for arbitrary directions of propaga-
tion. However, the particular case of parallel propagation
(=0) deserves special comments. In the case of parallethere we have only considered harmonics 0,1, since
propagation/,=0, it is possible to use representatich®)  we are interested in wave frequencies near the electron cy-
and arrive at clotron frequency, and where we have introduced
Me= My = M-

In what follows, we only consider for simplicity the case
of wave propagation parallel to the direction of inhomogene-
ity (¢#=0). Evaluating the derivative of the dispersion func-
tion, as indicated, we arrive at the following explicit expres-
sion for the dispersion relation:

£33~ 1= X+ /-’“exen:;+l ( g0,3/2,11n|,\n|(2:01117’e Xnerl)

17
+ %g3,3/2,11n|,\n|(zaollvve !Xneal;h)‘ h—O) ) (27)

—i 1 B R
Grpmi = 2|—1)!!7J_1dy(1_y2)I erny

(

Xfo di(it) ete (B4 T VIC (2 )2 12,

2_ 2
NT=1—Xe+ peXel Go,312,1,0,0 90,32,2,00" VeY0,312,3,0,0

Expanding now the last term in powerstoénd rearrang-
ing the time integral, we can easily express the nonrelativis-
tic inhomogeneous PDF in terms of derivatives of the Fried
and Conte function:

—Go3p321t MeXenZ+ . (90,312,117 29032,2.11

2 2
+ Veg0,3/2,3,l,l_ g0,3/2,3,3,2_ Xlag2,3/2,3,l,l- (28)

2m 2j
o= v (m) (anazl"a)_ : A simplified version of the dispersion relati¢®8) can be
P @I ST ) (2ug)TAT found with the use of the approximation given by Etd),
L o\ 1—1/2 valid when the Larmor radius of the particles is small. It is
(1-y9 S 2a- | ible t thpf <1 tion valid
Xf dy—— 1€ e y) also possible to assume thgf<1, an assumption vall
—1 7 v when Ng<2/\/ue, Which is easily satisfied by weakly rela-
2 tivistic electrons near the cyclotron resonance. Moreover, for
Xz(r+2j)( Ha ) (25) the harmonicsi=0,—1, it is easy to show that the Shkarof-
2lyvaWI)’ sky functions can be approximated by

where y5(y)=Nf/2+ pi(1+y), and

n

d 2 iz 2
Z(“)(z):ﬁZ(z)ziZ““e’z dte U(z+it)",

iz
Z(2)= 2ie‘22f dte .

1 1
fq,r(nzo)~;sy ]:q,r(n 1)~ﬁ

The term corresponding to time= — 1 harmonic is negligible
when compared to the=0 term and can therefore be dis-
carded.

Substituting Eq(14) in Eq. (28) and neglecting all terms
proportional toy 1., x2ev2, x1.v2, andu, *, we arrive, after
some algebra, at
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£33= 1= Xe+ N7 {35+ N3 s, 0.88
Me Xe fl 2N 1/2 fl F9/2
_Ee el 7 dy(1-y?) 1 2F - | dy—22
{33 - Yﬁ{ i Y(1=y9)"Fp i y(l_yZ)l 056
XEMg 1 2N1/2 1 ‘7:9/2,2 Re NJ_
l/fsa—? fﬁld)’(l_y ) Fapo— ffldy(l—yz)l ,
(29 0.84

where]—“q,r=]-"qyr(z,)(fe(1+y)). The dispersion relatio(26)
is now simply written as

0.82 | | 1 |

1—Xe+ N3 094 096  0.98
1Kot Nedss 30 /||

2
N 1-{3

The homogeneous limit can be readily found from EQ. FIG. 1. Real part of the refraction index for ordinary mode
(29). By making Ng—0, the integrals in Eq(29) can be waves vs normalized frequency, for several values of the inhomo-

evaluated and 33 reduces to geneity parameteNg (Ng=0, 2x10°% 4x10° 6Xx10?
NZX 8x10°3, and 1x10°?). Curvea, Ng=0; curvef, Ng=1x10"%
_ L%e the curves corresponding to the other valuedlgfappear between
€33=1— Xt =5 1{F 1-|Y o
33 € 2Yg {Fad el | e|)] the curves indicated bg andf, for increasingNg . The parameters
considered ardo=1, T, =T|=T,=5 keV, Xo/Y2=0.5, N;=0,
—2F g me(1=1[YeD 1}, andy¢=0.

where F(2) is the Dnestrovskii functiof7]. This is the ¢ he frequency of maximum amplification, which ap-

same expression obtained from the usual treatment of eleg;oaches the electron cyclotron frequency as the inhomoge-
tron cyclotron waves propagating in a homogeneous magne-.

X A . eity is increased.
toplasma with a DGH distribution, using the small Larmor  The effect of the inhomogeneity on the wave amplifica-
radius approximatiofl2].

X : 5 . tion may not appear substantial from the point of view of the
The dispersion relations given by Eq28) and (30) can

b ved. f X ¢ local spectrum of emission of electron cyclotron waves, but
now be solved, for a given set of parameters. EQUa@ i could be relevant in the case of a nonlocal analysis of wave
utilizes the full inhomogeneous plasma dispersion fu”Ct'Orhmplification using, for instance, a ray-tracing routine

defined in the present manuscript, with the refraction i”de%:oupled to the solution of the dispersion relation. Such an
also appearing in the right-hand side. It is solved with the USGmpressive task would be well beyond the scope of the
of a straightforward numerical procedure which finds the de'present work, but it is nevertheless mentioned in order to
sired N, , for each value ofw, To, Xo/Y2, andNg. The
dispersion functiong are evaluated with the use of E4.3)

in terms of Shkarofsky functions, using the relationsvp 0.04

, 0.03 -
r
fq,r(zia)z_Eo (_l)r(j)fq(zia)' (31) 0.02 -
j=
0.01 _
The approximated dispersion relation given by E2)), Im N,

on the other hand, features the refraction index explicitly 0
given by the right-hand side, and therefore there is no need

of any root-solving procedure. In the right-hand side of the -0.01

dispersion relation also appear Shkarofsky functions, which -0.02 | _
are also evaluated with the use of Eg1).
As an example of application of these dispersion -0.03 : : : .

0.94 0.96 0.98

relations, we considerT,=5 keV, X./Y2=0.5, with o/ |0]

the loss-cone index for the electronic distribution given
by lI.=1. For these parameters, the results obtained
from Egs.(28) and (30) are virtually the same and cannot  FIG. 2. Imaginary part of the refraction index for ordinary mode
be easily distinguished in the graphics which follow. In Fig. waves vs normalized frequency, for several values of the inhomo-
1 we show the real part di, obtained from the disper- geneity paramete&B (NBzo, 2x107%, 4x10°%, 6x10°3,
sion relation, for several values of the inhomogeneity paramgx 103, and 1< 10 2). Curvea, Ng=0; curvef, Ng=1x10 2
eterNg=ckg/|Qe| (Ng=0, 2X1073, 4X1073, 6X1073,  the curves corresponding to the other valuedgfappear between
8x10 3, and 1x 10 ?). the curves indicated bg andf, for increasind\lvB. The parameters
Figure 2 shows the imaginary part bf, , for the same considered ard,=1, T, =T|=T,=5 keV, Xe/Y2=0.5, Ny=0,
parameters. It is possible to observe the gradual displacemeatd ¢=0.
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0.88
0.04 , . , :
0.03 -
086 0.02 4
Re N, 0.01 4
Im NV
0.84 0
-0.01 _
-0.02 |- i
0.82 ' ' ' .
0.94 0.96 0.98 1 -0.03 ' I 1 |
w/|e| 0.94 0.96 0.98 1

w/|2]

FIG. 3. Real part of the refraction index for ordinary mode ] o )
waves vs normalized frequency, for curaeT.=4 keV; curveb, FIG. 4. Imaginary part of the refraction index for ordinary mode

T.=5 keV; and curve, T,=6 keV. The parameters considered are Waves vs normalized frequency, for curaeTe=4 keV; curveb,
l.=1. X./Y2=05 N,=0, ¢=0, and NBZ 1x10°2. for T.=5 keV; and curvee, T,=6 keV. The parameters considered are
e ] e e -~y 1 ] ]

T -T=Te. le=1, X/Y2=05, Nj=0, =0, and Ng=1x102, for
T, =T)=Te.
point out possible uses and extensions of the present formal- e VI. CONCLUSIONS
ism. For instance, inhomogeneity effects could play an im-
¢ y Pay In the present paper we have resumed the study of the

portant role in the study of the wave emission process,,. . X . .

dubbed as auroral kilometric radiation, that occur on the auﬂgsﬁgé %Ejjerﬂiisngf rilssm@ség%gfﬂ%gﬁ;&??&ei’#j
roral zone of earth’s magnetosphere. Although the mas.eéomponents of an effective dielectric tensor to be utilized in
- . . the dispersion relation, which have been derived according to
emission process, recent nonlocal analysis, using a Iocal%e BGI proceduré5]. We have rewritten these components

homogeneous approximation for the dielectric tensor, obgy the case of a loss-cone distribution function, using the
tained a total ampllflcatmn that only marginally accountedweak|y relativistic approximation and introducing the so-
for the observation§13,14. . ~ called “inhomogeneous plasma dispersion function,” which
Another potential application was also mentioned in thenas heen shown to be related to other well-known plasma
”terature, connected to a different range of frequenCies. RjSspersion functions appearing in the case of homogeneous
cent publications have suggested that the explicit effect ofedia. The relationship between the inhomogeneous plasma
the inhomogeneity should be taken into account in order talispersion function and other dispersion functions such as
correctly reproduce the spectrum of ion-cyclotron waves obthe Shkarofsky and Dnestrovskii functiofend even th&
served on the plasma depletion layer, inside the sunward sidanction, in the nonrelativistic casés important not only for
of the magnetopause of earth’s magnetosphEsg It is our ~ computational purposes, due to the well studied analytical
intention to investigate the possibility of extension of theproperties of these functions and due to the existence of sum
present formalism to the ion-cyclotron range of frequenciestules and other useful mathematical relationships, but also
in order to be able to study this phenomenon. because it enabled us to obtain very important analytical
Other results obtained for the ordinary mode are shown iProperties of theg function. For instance, we have shown
Figs. 3 and 4, in which we analyze the temperature deper{hat the anti-Hermitian part of the dielectric tensor is entirely

dence of the inhomogeneity effect for the ordinary mode, fordue to the imaginary part of th@ function, which is nonva-
NB:1><10*2 and three values of, (T,=4 keV, T,=5 nishing only in the case of wave-particle resonance. The
e e 1 e

keV, andT.=6 keV), with the other parameters the same asl!mIt cases (.)f propagathn pgrallgl, perpendicular, and ob-
in Figs. 1 and 2 lique to the mhomogenelt_y _dl_rectlon have b_ee_n_con5|dered,
' g L as well as the weakly relativistic and nonrelativistic cases. As

It can be easily seen that only a small variation on the

h | ff he i bility. The | an application, we have considered the case of ordinary
temperature has a large efiect on the instability. The lowep, e \yaves propagating perpendicularly to the magnetic

the temperature, the greater the maximum amplification an eld, along the direction of the inhomogeneity, demonstrat-
the narrower the spectrum of emission. This behavior can bﬁ]g the displacement of the frequency of maximum amplifi-
qualitatively understood by the analysis of the resonanc@ation which is a consequence of the inhomogeneity. It is
condition of the dielectric tensor associated to a plasma Withyorthwhile to point out that other formulations appearing in
an inhomogeneous magnetic field. The inhomogeneous termige literature, which do not include the frequency correction
of the resonance condition become important for wave emisdue to the inhomogeneity, do not predict any effect due to
sion (or absorption when propagation nearly perpendicular the inhomogeneity for propagation parallel to the direction of
to the ambient magnetic field is considered and when théhe inhomogeneity16].

temperature is decreased. This analysis is made in Appendix We believe that the displacement of the frequency of
C. maximum amplification due to the inhomogeneity, coupled
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to the modification of the real part of the refraction index, known plasma dispersion functions used for the case of ho-
can have important consequences on the total amplificatiomogeneous plasmas. We have seen an example of the ap-
of the wave as it propagates inside a nonuniform medium, @roximations which can be made, in the derivation of the
situation which therefore deserves to be investigated. Thapproximated dispersion relatidB0), with nearly the same
importance of taking explicitly into account the effect of the numerical results as those obtained from the complete ex-
inhomogeneity on the amplification of waves has also beepression given by Eq28).
recently stressed by other authors, working on emission pro- It is also worthwhile to point out in these conclusions that
cesses that occur inside the magnetopdlisg along the derivation we have mentioned that the effective
It is our intention to apply the general expressions ob-dielectric tensor satisfies Onsager symmetry relations, as ex-
tained for the inhomogeneous plasma dispersion function fopected from the time invariance from the microscopic equa-
further studies of wave propagation in weakly relativistictions of motion. In contrast, other approaches of dielectric
plasmas with inhomogeneous magnetic fields. It may appeatescription of inhomogeneous media which do not incorpo-
that for useful applications the inhomogeneous plasma disrate the BGI corrections do not satisfy Onsager symmetry.
persion function as given by Eq4.3), (17), and(22) may be ~ While discussing the proper symmetry properties of the di-
difficult to handle, due to the number of integrations andelectric tensor, it can be explicitly shown that the anti-
summations over different variables and indexes. These eXdermitian parts of the effective dielectric tensor are only
pressions are quite general and no attempt has been madecmnnected to resonant terms, which should be expected
simplify them beyond the intrinsic limitations of its deriva- within the framework of the linear kinetic theory, since in
tion, detailed in Ref[5] and listed in Sec. Il of the present this case the only energy transfer process is related to the
paper, because the effective dielectric tensor written in termwave-particle resonance. However, as has been discussed in
of the inhomogeneous dispersion function features importard previous publicatiofi5], alternative expressions for the di-
properties, which do not depend on any particular approxielectric tensor of an inhomogeneous plasma that do not obey
mation. We have seen in Sec. V an application to the case @dnsager symmetry show contributions from nonresonant
ordinary mode waves, which illustrate the practical use ofparticles in the anti-Hermitian part. Because the effective
the formulation. This application is quite simple, but it is dielectric tensor obeys Onsager symmetry relations, its anti-
possible to demonstrate that, for many cases of practical in-lermitian part naturally contains contributions only from
terest, the general expressions are quite easy to handle inr@sonant particles. We have incorporated this demonstration
numerical application, due to the fast convergence of thén Appendix B. As a consequence of this property, the imagi-
series involved, and only a small number of terms has actuaary part of the refraction index obtained from the dispersion
ally to be considered in the calculation. We may be moreelation, when the effective dielectric tensor is utilized, really
explicit about the convergence of these expansions by cordescribes wave-particle energy exchange due to wave dissi-
sidering Eq{(22), which is the expression featuring the great- pation or amplification.
est complexity, since it has two power series expansions on The importance of satisfying Onsager relations was also
the quantity (1 o, *) [see definitions after Eq22) and the ~ pointed out in a recent study of the onset of lower-hybrid-
expansion given by Ed18)] and other two power series on drift instability in the magnetotail of Earth’s magnetosphere,
the quantityvi [one explicit in Eq.(22) and the other in the in which it is recognized that the usual approach to study the
expansion Of’}—{n' Eq (23)] However, each pair of series effect of cross-field instabilities on partiCle acceleration leads
expansions can easily be rearranged in order to become of@ nNonsymmetric components of the dielectric ter{saf].
series and one finite summation, therefore reducing the num- With the BGI formalism, we have shown that even in
ber of expansions to only one in E(L7) and two in Eq. Vvery different circumstances, like inhomogeneities in density
(22), with the magnitude o and (1~ o) being impor- and temperature and gradients of the magnetic field, the di-
tant in the determination of the convergence velocity of thes&!ectric tensor is naturally derived with the correct symmetry
series. The quantity? is nothing but the usual small Larmor Properties. Therefore it is the correct quantity to be used in
radius expansion parameter and can be handled as in ififle dispersion relation that describes wave emission and

related homogeneous treatment. The other quantity, propagation in an inhomogeneous plasma. ,
In Appendix C, some limit cases of the wave-particle

resonance condition in inhomogeneous media are discussed.

1 —NBNLsinw ~ € Ng
l-0,=———"—, BIQ—IY—
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tric tensor. Also the summation over harmonics can usually
be disregarded, since in weakly relativistic situations, for fre-
guencies near the electron cyclotron frequency, only one har-
monic term is relevant for absorption studies.

The conclusion is that the apparently cumbersome expres-
sions for the inhomogeneous dispersion relation can be In the components of the effective dielectric tensor we
handled for numerical applications similarly to the well- have the momentum integrals

APPENDIX A: THE MOMENTUM INTEGRALS
AND THE DEFINITION
OF THE INHOMOGENEOUS PDF
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. i | B These integrals can be easily solved, and are given by
f d3uu, £(f 0)ePraF,.( T)](|““1)(W,W+) ~, (A1)  simple expressions involving the modified Bessel function
n n In [9]1

where the components of the tenddy, are given in Eq(3), e (Vat xa tDI(1-iogt) S, (1)
as well as the definition of the quantiBy,, . I, = _ nl( < )

Using the definition oD, from Eq.(1), and considering Ha(l=io,t) 1-io,t
the weakly relativistic casey~1+ u?/2, this integral can be o (PR DI(Aio S..(1)
written as 1% = = ;)

12 ,u,zlz(l—iaat)z n'in| 1_i0'a,t
| dPuu, £t P01 s
Tl |

|1 I |

at*na R R i 2 i 2
X L e'ﬂaﬁnat—'Nuﬂaunt‘*"ManUat/Z*"P«aUHt/Z’ 22 o
(W, W) eI | 5,0 (S
(A2) +3 wi(l—io )2 [1—io,t Ml 1—ig,t
where the dimensionless varialtke (w/ ) 7 has been intro- in+ Vot Xhat? Shalt) (A7)
duced. The quantities,, and o, are defined in Eq(5). A prpsray L U sy

By considering the case of an isotropic Maxwellian dis-
tribution, given by Eq.(4) for 1 ,=0 and equal parallel and whereT: = /12 + 21,,COSE) Xnat T Xo0t>-
perpendicular temperatures, we arrive at In these integrals given by Eq8A5) and (A7) it is pos-
a2 - sible to see the basic elements appearing in the definition of
'“afaz —1)_naTna he inh | dispersion functi ing i
N dBuL?[F,, (t)]n-n_—" the inhomogeneous plasma dispersion function appearing in
H (27T> i1 Fnalt)] (W, W) Eq. (5). It is therefore a straightforward and tedious task to
use these integrals and express the components of the effec-
tive dielectric tensor for loss-cone distributions with# 0

N e andrt#1 in terms of the inhomogeneous PDF, as given by
Considering that the quantitie4,; andF,,, are not de- Egs. (6).

pending on the parallel momentum, and considering that the
quantity u; only appears linearly in the components of the
tensorll,,,, it is seen that the parallel integrals which will
appear in the calculation will be

@l Hadnal = INj Uit = Ul (1=i0,0/2= pouf(1-i0)/2 (A3)

APPENDIX B: THE ANTI-HERMITIAN PART
OF THE EFFECTIVE DIELECTRIC TENSOR

. * 2. . , General properties featured by the effective dielectric ten-
|f|=f duje #ati (2= Nalty) (A4)  sor can be inferred either from the integral expressioror
o from the formulation in terms of the inhomogeneous plasma
with j ranging from 0 to 2. dispersiqn function, as well as from the limit cases. For in-
These parallel integrals are easily performed, with the reStance, it has been shown that the BGI transformation ap-
sult plied to a plane wave approximation for the dielectric tensor
V2 BRIt components restorgs an Iimportant property whi_ch sho_uld be
Iﬂ= 2_77 e Ji (A5) expected for the dielectric tensor, from a physical point of
IR (1—it)12 f\ ' view [5]. This property is the Onsager symmetry, which can
be confirmed by direct inspection of Ed4) or (3). There is
where another property, which is a consequence of the former and
o i\ [1+(=1)7 —iNgt) I _ which_is .of paramount imp(_)rtance in the study of absorption
Jf|=r20 (r Tﬂr,z—(r -1 (ﬁ) (1—it)~ "2, or emission of radiation by inhomogeneous magnetoplasmas.

Namely, the fact that the anti-Hermitian part 8fmust be
only due to resonant particles, in order that the absorption
coefficient obtained from the dispersion relation really de-
scribes wave energy dissipatiéor amplification).

It is easy to show that the anti-Hermitian part of the tensor
(6) satisfies this condition. The anti-Hermitian part of a ten-
sor £ is defined as

and where we defined{(1)!'=1.

After explicit use of the components of the tenddy,
and of the quantitiesV, andF,,, it is seen that thei,
integrals which are useful for the calculation are

l1= fo du, u, e #al1717aDUL23 | (W) 3 0 (W), gt

N
) TR (B1)
|f2:f dulufewa(l*i%qu/{]ln'(wrf)\]‘n'+1(Wni), In what follows, we demonstrate only the case of the
0 &1, component. The case of the other components is similar
and features less complexity. We also particularize for the
_ [~ 3 - pa(l-io Hu? 2 + - casel ,=0 andr{=1, for simplicity. Calculating the anti-
s Jo du,uie 2 (Wa ) Jjag+2 (W )- Hermitian part ofe,, from Eg. (6), according to definition
(A6) (B1), we obtain

e
aH_ 1
Sij =
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0

aH__ . . " 2 H~n 2 "
g12= E Maxan E {i2v,sin( ) Xnal 91,112,3)0), 0| = Va91,112,3)n), 0|+ 1 Xna93,122,3)n),|n| + 1]
a s —

: " 2r o1 " 2 7 " 2
+in{| n|go,1/2,1|n|—1,|n\ = vl Go12.2n - 1jn| = Go,12,2)n), nf+ 1) T Xnal 92,1220~ 10| T 92,12, 2)n || + 1]} = VaSIN24)
1" " 2 A1 2 "
X[Go.12.3in0, 0|~ N1 G0,172, 210~ 1jn| — YaF0.172.3in), ]+ 1T XnaT2.172,30n] 1|+ 1] — 2NVoCOLY) XnaG1.172,2/n — 10}

whereG=G’' +iG". Therefore it is clearly shown that the anti-Hermitian part ¢fis entirely due to the imaginary part of the
inhomogeneous PDF, which is nonvanishing only in the case of wave-particle resonance.

The connection between the imaginary part of the inhomogeneous PDF and the resonance condition can be demonstrated
by looking at Eqs(13), (19), and(22) for the weakly relativistic approximation, and at Eg5) for the nonrelativistic case. In
the weakly relativistic case, all the expressions obtained show that the imaginary gastadtermined by the imaginary part
of the generalized Shkarofsky functidf, ,(z,a), which is related to the Shkarofsky functidf(z,a), as seen in Eq.31).

The imaginary part of theF,(z,a) function is given by

0, z—a=0

Ml Fa(za)]=) _ me? [ (a-2z)/a] 9"V _,[2a4a-2)"?], z-a<O0

provided thatz anda are real.l4(2) is the modified Bessel correction also restores the proper contribution to the anti-
function of the first kind of fractional order. Hermitian part of the dielectric tensor.
According to our results, the factar-a appearing in the

function F is given b
g y APPENDIX C: THE RESONANCE CONDITION

N2 2
—a= - _
Z—a=p,| 1-nY,(X) 5

2
NB(1+y) The complete resonance condition is given by the de-
4o, ' nominator in Eq(12) of Ref.[5], and is repeated here for the

_ ) sake of completeness:
For a given choice of wave vector, wave frequency, and

the functionF is integrated in the variablg ranging from

—1 to 1. The maximum contribution of the inhomogeneous Dno=yo—Kkjcu—nQ,(1+ex)—necu, sing
term comes frony=1. Therefore a necessary condition for K u2c2
the existence of a nonvanishing imaginary part in the func- I singy=0 (C1
tion G is 20,
NZ  n2N3
I B or
— —_—— < .
1-nY,(x 2 20, 0 (B2)
" N, u?

On the other hand, the resonance condition for the weakly i — 1Y (%)= n1NaU. Sine — N ——sing=0

relativistic case is given by EC6), appearing in Appendix Y o(X) B =T~ B 2Y, y=0.

C. We verify that the condition for existence of the imagi-
nary part ofG is exactly the condition for the existence of a
resonance ellipse in momentum space.

In the nonrelativistic case, we have seen thatghenc-
tion is given by Eq(25), which is expressed in terms of the
Z function. The argument of th& function is real and is

The first three terms in EC1) come from the resonance
condition of a homogeneous plasma. The last two terms are
due to the inhomogeneity correction. It is clearly seen that
inhomogeneity effects appear even whg¢r0, when the
drift instability is absent, and may be significant near the

given by cyclotron frequency of ther population. The inhomogeneity
creates, in addition to the resonance broadenings due to Dop-
12 %na _ 1 Sna pler and relativistic effects, a broadening due to the inhomo-
Ha Fa INZ+ n2N2 ' ity. Thi be | hen the h
V2| yn(y)| \/N”+n Ng(1+y)/2 geneity. This may be important when the homogeneous con-

tribution is small, even if the parameter is considered

Also in this case the maximum contribution for the inho- small.
mogeneous term comes froya=1, resulting in the argument This statement can be made clearer by considering the
of the Z function becoming exactly proportional to the reso- angular wave frequency which resonates with a particle with
nant velocity, as given by the right-hand side of the resovelocity v, near the cyclotron frequency. From EG1), we
nance condition for the non-relativistic approximati@zs). have

Similar analysis applied to the tensor obtained with the
plane wave approximation, without the use of the BGI cor- 2

i |d | i 1 H it f 1 Qa . kLULy .

rection, would result in anti-Hermitian parts featuring non- w=kp|+n—"+nev, sinp+ e sing.  (C2)
resonant contribution$]. Therefore it is shown that the BGI Y 2Q)

a
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If the particles have a velocity spread given &3~ T,,, which can be decomposed in Cartesian coordinates to give
then the first term in Eq(C2) introduces an emission line the equation of a complicated surface in three dimensions:
broadening around theth harmonic due to the Doppler ef-

fect given by[18 N°NgY (X)) ?
9 y[ ] U§+(1—H2Né)(uy—w
B
uT
(Awn)1*n9a|N|(?)- ,
+(1 Nz)(u —nN'Y“(X)) 2nNgN; U, U
- T 17-N2 | BIY[HyH]
” 1-N;
The second term corresponds to the “relativistic broaden-
ing” given by N*NGY2(x)  n?NFYZ(x)

_ ~2y2
=n?Y3(x)— 1+ 4
Y 7Y (x) 1N | 1N €4
<Awn>2~nna<—T) :
¢ This complicated surface reduces to an ellipsoid of revo-
lution whenN;=0:

The last two terms correspond to “inhomogeneous broad-

HZNBYQ(X)>2 2
u

enings,” which are given by uZ+(1—n2N3) uy—m +uf
(Awp)s~ HZQaNB(%), n?[Y5(x)+N§]—1 e
© 1-n?N3 (€5
2
. uT
(Awn)4”“29aNB|Nl|Sln¢(?) : In the homogeneous caséz =0, and the ellipsoid further

reduces to the well-known *“resonance circle”
uf+u3+uf=n?Y5(x) 1.
Therefore the first inhomogeneous linewidth compared to
the two homogeneous ones gives: 2. Weakly relativistic approximation

In this case we havg~1+u?/2, and the resonance con-

(Awn)s _NNg (Awp)s _ NNg dition (C1) also reduces to the equation of an ellipsoid

(Awp)y Np ' (Awp)z (vr/0)’
Ty 5 Og nNg\2 1 ’
which shows that £ w,,); becomes important both when the 2 Ut 5 Uy~ F5U=N)
wave vector approaches the perpendicular and when the tem- ¢
perature is decreased. At the same time, the other inhomoge- Nﬁ n?N3
neous broadening effect compared to the Doppler homoge- =NYo(X)—1+ 7+ 20 (C6)

a

neous contributions gives

Evidently, this ellipsoid exists if the right-hand side is
vt . positive. This is exactly the condition for the existence of the
= |siny). imaginary part of theF, function, as given by EqB2). It is

clearly seen that the anti-Hermitian parts of the effective di-
It is seen that, compared to the Doppler term, this inho-electric tensor are nonvanishing only in the case of wave-
mogeneous contribution becomes important wip-0.  particle resonance.
However, contrasting with the case of tertvd,,) 3, it also
becomes important when the particle temperature is in-

creased. Compared to the relativistic case, however, the con- In th lativisti imation th di
tribution of the term QA w,), is always small, except near . h the nonrelativistic approximation the resonance condi-
resonances tion can be written as

N,

Nj

(A‘Un)4 .
(Bwp; 8

3. Nonrelativistic approximation

(Awp)s _ NNgUy+Nju=1-nY,(x), (C7)
Bon, NNg|N | |sing.

which can be reduced to a simpler form by rotation of axes

— —1 .
In the next subsections we will consider some special case%y an anglef= —tan “(nNg/N)):
of Eq. (CD).
_ 1-nY,(x) 8
U= ——=——.
1. Waves Wit.h k. parallellto the direction ” \/n2N§+ Nﬁ
of the inhomogeneity(#=0)
In this case the resonance condition reduces to The right-hand side of EqsC6) and(C8) is related to the

imaginary part of the inhomogeneous plasma dispersion
Y= Nju—nY,(x) —nNgu, sinp=0, (C3)  function (5) and (25, as we show in Appendix B.
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