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Dispersion function for plasmas with loss-cone distributions in an inhomogeneous magnetic field

R. Gaelzer, R. S. Schneider, and L. F. Ziebell
Instituto de Fı´sica, UFRGS, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brazil

~Received 25 April 1996; revised manuscript received 13 November 1996!

The dispersion relation for electromagnetic waves in a magnetized plasma with weakly inhomogeneous
magnetic field is investigated within the framework of a WKB approximation. A dispersion function useful for
the case of plasma particles described by a generalized loss-cone distribution is introduced, valid for waves
propagating in weakly relativistic plasmas, for any direction relative to the ambient magnetic field and to the
inhomogeneity. This dispersion function is in some particular cases related to other plasma dispersion func-
tions well known from the study of homogeneous plasmas. An application is made for the case of ordinary
mode waves propagating perpendicularly to the magnetic field in inhomogeneous loss-cone plasmas.
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I. INTRODUCTION

The study of wave propagation and absorption in inhom
geneous plasmas can be made by using a formulatio
which the dielectric properties of the plasma are described
an effective dielectric tensor which incorporates inhomo
neity effects, inserted into a dispersion relation which is f
mally the same as that of a homogeneous plasma@1#. The
fundamental features of the formalism were developed i
publication by Beskin, Gurevich, and Istomin~denoted in
what follows as BGI!, based upon the application of an i
erative procedure to the wave equation, along with the
quirement of energy conservation at all orders of the itera
@1#. The formulation is appropriate as long as the conditio
of validity of the WKB approximation are satisfied.

We have recently utilized the BGI formalism in the stu
of electron cyclotron absorption in inhomogeneous med
both in the case of homogeneous magnetic field@2–4# and in
the case of inhomogeneous magnetic field@5#. There is a
fundamental difference between these two cases. The un
turbed orbits of the plasma particles are affected by the m
netic field inhomogeneity, while they are not affected
inhomogeneities in other plasma parameters such as de
and temperature. The resonance condition in momen
space is therefore affected by the inhomogeneity, and
cording to the BGI procedure an infinite number of corre
tions is necessary to be added in order to build up the ef
tive dielectric tensor, starting from a plane wa
approximation@1#.

In the present paper we introduce further development
the derivation of the dielectric tensor for inhomogeneo
magnetic field, and define a generalized dispersion func
useful for the case of plasma particles described by a non
ativistic loss-cone distribution of Dory-Guest-Harris~DGH!
type @6#. We also discuss some of the properties of this d
persion function, particularly its relationship with other di
persion functions which appear in the treatment of homo
neous plasmas.

The plan of the paper is the following. In Sec. II w
briefly describe the physical system to be considered
write the components of the effective dielectric tensor
electromagnetic waves in an inhomogeneous magnet
551063-651X/97/55~5!/5859~15!/$10.00
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plasma, whose derivation is detailed elsewhere@5#. In Sec.
III we consider the case of particles described by nonrela
istic DGH distributions, and introduce the generaliz
plasma dispersion function for inhomogeneous plasm
Some properties of the inhomogeneous plasma disper
function and several limit cases are discussed in Sec.
including its relationship with other well-known plasma di
persion functions appearing in the case of homogene
plasmas. In Sec. V we illustrate the use of the generali
dispersion function by considering the case of ordinary mo
waves propagating perpendicularly to the magnetic field
weakly inhomogeneous media. Finally, Sec. VI is reserv
for the conclusions. Appendixes on the evaluation of relev
momentum integrals, on the resonance condition for part
lar cases, and on some characteristics of the anti-Herm
part of the components of the effective dielectric tensor c
be found at the end of the paper.

II. THE DIELECTRIC TENSOR
FOR INHOMOGENEOUS PLASMAS

In a previous publication regarding the dielectric prop
ties of inhomogeneous plasmas, we have utilized the B
procedure and obtained explicit expressions for the com
nents of the dielectric tensor for inhomogeneous plasm
which were written as
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2êzêz(
a

4pqa
2

mav2E d3u
ui

g
L~ f a0!, ~1!

where
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f a0 .

Here we have omitted the details of the derivation for
sake of brevity, since they can be obtained from a previ
publication @5#. In these expressionsf a0 is the distribution
function for electrons of populationa, with the summation
carried out over all electron populations. The ions do
appear explicitly since Eq.~1! has been developed for th
case of high frequency oscillations. It is assumed that the
distribution is effective as a neutralizing background and c
ries the current in they direction which must exist in the
plasma in order to satisfy the equilibrium configuration w
the x-dependent magnetic field pointing in thez direction
@5#. u' andui are the perpendicular and parallel compone
of the normalized momentum,u5p/(mac), g5(11u2)1/2,
Jn(z) andJn8(z) are the Bessel functions of ordern and its

derivative, andêx , êy , andêz are, respectively, the unit vec
tors in thex, y, andz directions.

The geometry utilized in the derivation of Eq.~1! has
been the following. The magnetic field has been conside
pointing in thez direction, and inhomogeneous in thex di-
rection,B05B0(x)êz . The waves were assumed propagat
in arbitrary directions, withki andk' as the components o
the wave vector, respectively, parallel and perpendicula
the magnetic field. The wave angular frequency has b
denoted asv. c denotes the angle between the vectork' and
the direction of the inhomogeneity. The inhomogeneity h
been assumed to be weak, such that the cyclotron frequ
has been written as

Va~xa8 !;Va~x!@11e~xa82x!#, ~2!
e
s

t

n
r-

s

d

g

to
n

s
cy

whereVa(x)5@qaB0(x)/mac# is the particle cyclotron an-
gular frequency,ma is the particle rest mass,qa is the par-
ticle charge,c is the velocity of light, e[@(1/B0)(dB0
/dxa8 )] xa85x , and xa8 is the unperturbed position of particl

a.
The validity of the expressions given by Eq.~1! is limited

to the case where the distribution function is azimutha
symmetric, f a05 f a0(u'

2 ,ui). Among the reasons for the
choice of this distribution is the fact that it allows the em
phasis on the study of magnetic field inhomogeneities
simplifies all other features of the problem. Other kinds
inhomogeneities, where the distribution is explicitly depe
dent on position and therefore must exhibit the depende
on the constant of motionP̄a5p'sinw1ma*xVa(x8)dx8,
were already discussed in previous studies@2–4# (w is the
azimuthal angle ofp).

The form of the effective dielectric tensor as given by E
~1! is not the most suitable for our present purposes. In or
to rewrite Eq.~1! in a more convenient form, we first not
that

e2 incna5F12~en /k'!22 i2Snensin~c!/k'
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1jn

2 G unu
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2t22 i2Snbasin~c!Knt
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where

Sn5 sgn~n!,

Kn5necu'/2,

Wn
65@ba

262bacos~c!Knt1Kn
2t2#1/2.

Due to the dyadicPna
2 Pna

1 the products involving Besse
functions of ordern and its derivatives are equal to the sam
products involving Bessel functions and derivatives of ord
unu. Moreover, the derivatives of the Bessel functions a
pearing in Eq.~1! can be eliminated by the use of the we
known recurrence relation

Jn8~z!5
n

z
Jn~z!2Jn11~z!.

Therefore the effective dielectric tensor can be written
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This expression looks as complex as the original, Eq.~1!, but is is more appropriate to be used with the generali
loss-cone distribution function to be introduced in the following section.

III. EFFECTIVE DIELECTRIC TENSOR FOR NONRELATIVISTIC DGH DISTRIBUTIONS

The momentum integrals of Eq.~3! will now be evaluated by assuming that the particles of populationa have a two-
temperature nonrelativistic DGH distribution function

f a0~u'
2 ,ui!5naS m ia

2p D 1/2m'a

2p

m
'a
la

2lal a!
u

'

2lae2~m'au'
2

1m iaui
2
!/2, ~4!

wherena is the density of the speciesa, l a is an integer quantity known as ‘‘the loss-cone index,’’m'a5mac
2/T'a , and

m ia5mac
2/Tia . The ratio between perpendicular and parallel temperatures will be denoted asr T5T'a /Tia .

Introducing the distribution~4! into Eq. ~3!, the integrations in theu space can be performed. The calculations are m
with use of the weakly relativistic approximation, a reasonable assumption forTa&10 keV, which implies that
g'11u2/2. The nonrelativistic distribution function given by Eq.~4! is consistent with this weakly relativistic approximatio
and it is frequently employed for the description of oblique absorption of cyclotron radiation in mild temperature los
plasmas. As a result of these integrations in momentum space, the components of the dielectric tensor for the partic
of l a50 ~anisotropic Maxwellian distribution! are written in terms of a function denoted byGr ,q,p,m,l , hereafter denominated
‘‘inhomogeneous plasma dispersion function’’ and defined as follows:

Gr ,q,p,m,l~z,b,sa ,na ,xna ,r T![2 i E
0

`

dt
~ i t !reizte2bt2/~12 i t !

~12 i t !q~12 ir Tsat !
p e

2r T~na
2
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2 t2!/~12 ir Tsat !

@Hna~ t !#m

@Sna~ t !# l
I l S Sna~ t !

12 ir Tsat
D , ~5!

where

Hna~ t !5na
22 i2Snnasin~c!xnat2xna

2 t2, Sna~ t !5Ana
422na

2cos~2c!xna
2 t21xna

4 t4,

and where we have introduced the following definitions:t5(v/ma)t, z5madna , dna512nYa(11ex), b5maNi
2/2,

xna5ma
1/2rn , sa512NBN'(sinc)/Ya , na5N' /ma

1/2Ya , Ya5Va /v, rn5nNB/2, andNB5ec/v. I n(z) is the modified
Bessel function of the first kind. Details of the calculation are shown in Appendix A, where for simplicity we only consid
isotropic case (T'5Ti).

For the more general case ofl aÞ0, the calculations are similar, although tedious, and the outcome is
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The function denoted byGr ,q,p,m,l* is defined
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whereD r 8,q8Gr ,q,p,m,l* [G(r1r 8),(q1q8),p,m,l
* .

TheGr ,q,p,m,l* function may be regarded simply as an au
iliary function appearing for loss-cone plasmas, since a
application of the differential operatorsD (n), the outcome
can again be written using the functionGr ,q,p,m,l* , evaluated
for h50, which is simply the inhomogeneous plasma disp
sion function defined by Eq.~5!,

Gr ,q,p,m,l* ~z,b,sa ,na ,xna ,r T ;h!uh50

5Gr ,q,p,m,l~z,b,sa ,na ,xna ,r T!.
-
r

r-

Therefore the inhomogeneous plasma dispersion func
given by Eq.~5! plays a central role in the present formul
tion. In Sec. IV we present some properties and special
pansions of this function which show its relationships w
other plasma dispersion functions already known from
study of homogeneous plasmas. In Appendix B some
these properties are utilized in order to show that the a
Hermitian part of the effective dielectric tensor is free
nonresonant terms, originating an absorption coeffici
which really describes absorption and/or amplification due
the wave-particle interaction.
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IV. THE INHOMOGENEOUS PLASMA DISPERSION
FUNCTION AND ITS RELATIONSHIP
TO OTHER DISPERSION FUNCTIONS

The inhomogeneous plasma dispersion function is defi
by an integral expression and can be related to other w
known plasma dispersion functions~PDF! appearing in the
case of homogeneous plasmas. This feature is particu
useful for computational reasons, since the analytic prop
ties of these functions are well studied, and many use
mathematical relationships can be found in the literature
what follows, we will initially consider some particula
cases, which can be dealt with more easily, before discus
the most general direction of propagation in inhomogene
cases.

A. Homogeneous case„e50…

In the homogeneous case, Eq.~5! reduces to

Gr ,q,p,m,l52 ina
2~m2 l !E

0

`

dt
~ i t !reizt

~12 i t !q1p

3e2bt2/~12 i t !e2na
2 /~12 i t !I l S na

2

12 i t D . ~9!

This equation can be written in familiar form as

Gr ,q,p,m,l5na
2~m2 l !Rq1p,r~z,b,na

2 ,l !, ~10!
d
ll-

rly
r-
ul
n

ng
s

whereRl ,m is the PDF defined by Eq.~62! of Ref. @7#. This
is the weakly relativistic PDF valid for waves propagatin
with arbitrary perpendicular wave number in magnetiz
thermal plasmas@7#. It can be related to Shkarofsky an
Dnestrovskii functions in the limit of nearly perpendicul
propagation, and all its properties can be found in Re
@7,8#.

B. Waves propagating with k' parallel to the inhomogeneity
„c50…

In the case ofc50 the functionsHna(t) andSna(t) ap-
pearing in the integrand of Eq.~5! are greatly simplified, and
the inhomogeneous PDF reduces to

Gr ,q,p,m,l52 i E
0

`

dt
~ i t !reizt

~12 i t !q1p e
2[na

2
1~b1xna

2
!t2]/ ~12 i t !

3~na
22xna

2 t2!m2 l I l S na
22xna

2 t2

12 i t D . ~11!

This expression can be further modified by the use of
integral representation of the modified Bessel function@9#:

I n~z!5
zn

~2n21!!!pE21

1

dy~12y2!n21/2e6zy, ~12!

resulting in the expression
ing

e
of the

s.
in Sec.
Gr ,q,p,m,l5(
s50

m Sms D xna
2sna

2~m2s!

p~2l21!!! E21

1

dy~12y2! l21/2e2na
2

~12y!F~q1p1 l !,~r12s!„z2na
2~12y!,b1xna

2 ~11y!2na
2~12y!…,

~13!

where

Fq,r~z,a!52 i E
0

`

dt
~ i t !reizt

~12 i t !q
e2at2/~12 i t !52 ie2aE

0

`

dt
~ i t !rei ~z2a!t

~12 i t !q
ea/~12 i t !

is the well-known Shkarofsky function@7,8#.
Although complicated, Eq.~13! can be simplified when the particle Larmor radius is small (una

2 u!1.! With this assumption
we can expand the term exp@2na

2(12y)/(12it)# in powers ofna
2 , retaining only the first two terms of the expansion. Insert

this expansion in Eq.~13! and retaining only the lowest order terms on the ensuing summation, we arrive at

Gr ,q,p,m,l5
1

p~2l21!!! Fxna
2mS E

21

1

dy~12y2! l21/2Fq1p1 l ,r12m2na
2E

21

1

dy~12y2! l21/2~12y!Fq1p1 l11,r12mD
1mna

2xna
2~m21!E

21

1

dy~12y2! l21/2Fq1p1 l ,r12m22G , ~14!

in which the Shkarofsky function no longer depends onna
2 , Fq,r5Fq,r„z,b1xna

2 (11y)….
Expression~14!, when used in conjunction with the assumption of smallxna

2 , leads to greater simplification on th
dielectric tensor components. It will be used in Sec. V to derive a very simple expression for the dispersion relation
ordinary mode.

Similar approximations can be made for the general casecÞ0, which will be considered in the following section
However, such approximations will not be explicitly shown, since they would not be useful for the example appearing
V.
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C. Waves propagating with k' perpendicular to the inhomogeneity„c5p/2…

In the case of waves propagating withk' perpendicular to the inhomogeneity the functionsHna(t) andSna(t) also can be
reduced to simple expressions, and the inhomogeneous PDF can be written as

Gr ,q,p,m,l52 i E
0

`

dt
~ i t !reizte2bt2/~12 i t !

~12 i t !q~12 isat !
p e

2~na
2

1xna
2 t2!/~12 isat !

~na2 iSnxnat !
2m

~na
21xna

2 t2! l
I l S na

21xna
2 t2

12 isat
D . ~15!

This expression for the inhomogeneous plasma dispersion function can also be written in terms of Shkarofsky fu
under some restrictive conditions. We will demonstrate this by considering the following.

In the integrand of Eq.~15! we have an exponential function which can be written as follows, after introducing
representation given by Eq.~12!:

expF2
na
21xna

2 t2

12 isat
~11y!G5expF2

na
21xna

2 t2

sa~12 i t !
~11y!G(

s50

`
1

s! F ~sa
2121!~na

21xna
2 t2!~11y!

~12 i t !~12 isat !
G s. ~16!

This series representation remains finite even fort→`. In its derivation we have used the following identity:

1

12 isat
5

1

12 i t S 1

sa
1
12sa

21

12 isat
D .

With use of Eq.~16!, the PDF is modified into

Gr ,q,p,m,l5
2 i

~2l21!!!p (
s50

`
~sa

2121!s

s! E
21

1

dy~12y2! l21/2~11y!se2na
2

~11y!/sae2Fy

3E
0

`

dt
~ i t !rei ~Yy2Fy!teFy /~12 i t !

~12 i t !q1s~12 isat !
p1 l1s ~na

21xna
2 t2!s~na2 iSnxnat !

2m,

where

Fy[b1~xna
2 2na

2 !~11y!/sa , Yy[z2na
2~11y!/sa .

The quantities (na
21xna

2 t2)s and (na2 iSnxnat)
2m appearing in the integrand of the PDF can be expanded in powers oft, and

we obtain

Gr ,q,p,m,l5
1

~2l21!!!p (
s50

`
~sa

2121!s

s! (
k50

2m

(
h50

s S 2mk D S shD ~21!h1kna
2~m1s!2h2k~Snxna!2h1k

3E
21

1

dy~12y2! l21/2~11y!se2na
2

~11y!/saV~r12h1k!,~q1s!,~p1 l1s!~Yy ,Fy ;sa!, ~17!

where

Vr ,q,p~z,a;sa!5
] r

]zr
Wq,p~z,a;sa!, Wq,p~z,a;sa!52 i E

0

`

dt
eizte2at2/~12 i t !

~12 i t !q~12 isat !
p .

The functionWq,p(z,a;sa) has been studied in Refs.@10,11#, appearing in the case of a homogeneous plasma wi
Maxwellian distribution featuring temperature anisotropy. In that case, the parametersa is related to the temperature aniso
ropy. In our case, it is the inhomogeneity that plays the role of the anisotropy. Equation~17! can be written in terms of
Shkarofsky functions in particular cases@10#. Whenusa

2121u,1, the ‘‘anisotropic’’ term appearing in the denominator of E
~17! can be expanded as

1

~12 isat !
p 5

1

sa
p (

j50

` S p1 j21
p21 D ~12sa

21! j

~12 i t !p1 j . ~18!

When this expansion is introduced into Eq.~17! we obtain

V~r12h1k!,~q1s!,~p1 l1s!~Fy ,Yy ;sa!5
1

sa
p1 l1s(

j50

` S p1 l1s1 j21
p1 l1s21 D ~12sa

21! jF~q1p1 l12s1 j !,~r1k12h!~Yy ,Fy!, ~19!
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which is the desired result. The validity condition for the use of this form of the PDF is not very restrictive. For instan
present day tokamakse'1022 cm21, B}104 G, uVeu}1011 Hz, and the expansion utilized is valid as long asuN'u&102,
which is frequently satisfied for electron cyclotron waves.

D. Waves propagating at an arbitrary angle relative to the inhomogeneity

We will now consider the case of electromagnetic waves propagating in arbitrary directions relatively to the inhomo
and to the magnetic field. Equation~5! can be modified by considering that the argument of the Bessel function ca
considerably simplified by using Gegenbauer’s addition theorem~Eq. 9.1.80 of Ref.@9#!

1

Sna
l I l S Sna

12 isat
D 5

~12 isat !
l

~na
2xna

2 t2! l(k50

`

~21!kAk
l I l1kS na

2

12 isat
D I l1kS xna

2 t2

12 isat
D , ~20!

where

Ak
l [2l~ l21!! ~ l1k!Ck

~ l !~cos2c!, Ck
~ l !5 (

m50

k S l1m21
l21 D S l1k2m21

l21 D cos@2~k22m!c#,

Ck
~ l !~1!5S k12l21

k D .
This is a general expansion, which is useful for computational purposes only when a small Larmor radius approxim

valid.
With use of expressions~20! and ~12!, it is possible to write down the inhomogeneous PDF as

Gr ,q,p,m,l52 i(
k50

` Ak
l xna

2k

@2~ l1k!21#!!pna
2lE

21

1

dy~12y2! l1k21/2E
0

`

dt
~ i t !r12keizte2bt2/~12 i t !

~12 i t !q~12 isat !
p1k e

2xna
2

~11y!t2/~12 isat !

3@Hna~ t !#mHl1kS na
2

12 isat
D , ~21!

where

Hn~z![e2zI n~z!.

The functionHna(t) can also be expanded, and we arrive at

Gr ,q,p,m,l5
1

p(
k50

` Ak
l

@2~ l1k!21#!! (l50

m

(
d50

m2l Sml D Sm2l
d D ~22Snsinc!lna

2~m2 l2d!2lxna
2~k1d!1l

3E
21

1

dy~12y2! l1k21/2Q[ r12~k1d!1l],q,~p1k!,~ l1k!„z,b,xna
2 ~11y!,na,sa…, ~22!

where

Qr ,q,p,l~z,a,b,na ,sa![2 i E
0

`

dt
~ i t !reizte2at2/~12 i t !

~12 i t !q~12 isat !
p e

2bt2/~12 isat !Hl S na
2

12 isat
D .
q
Using the same procedure utilized in the derivation of E
~16! results in the expression:

Qr ,q,p,l~z,a,b,na ,sa!

5 (
s50

`
bs

s!
~12sa

21!s

3P~r12s!,~q1s!,~p1s!
~ l ! ~z,a1b/sa ,na

2 ;sa!,

Pr ,q,p
~ l ! ~z,c,na

2 ;sa!5
] r

]zr
Rq,p

~ l ! ~z,c,na
2 ;sa!,
.
Rq,p

~ l ! ~z,c,na
2 ;sa!52 i E

0

`

dt
eizte2ct2/~12 i t !

~12 i t !q~12 isat !
p

3Hl S na
2

12 isat
D .

The functionRq,p
( l ) is similar to that defined in Eq.~7! of

Ref. @10#. It can be written in terms of the functionWq,p
previously analyzed by using expansion~A6! of Ref. @10#:

Hn~z!5S z2D
n

(
k50

`
~2 !k@2~n1k!#!

~n1k!! ~2n1k!!k! S z2D
k

. ~23!
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As we have said previously, this expansion is only use
for computational purposes in the small Larmor radius
proximation.

E. Nonrelativistic approximation

The nonrelativistic approximation for the effective diele
tric tensor of a Maxwellian plasma can be obtained from E
~3! by the use ofg'1 and by using the distribution~4!. In
this case, the tensor«J still is given by Eqs.~6!, but with a
slightly modified inhomogeneous PDF. Instead of express
~5!, the nonrelativistic inhomogeneous PDF will be given

Gr ,p,m,l52 i E
0

`

dt
~ i t !reizt

~11 i zat !
p e

2bt2e2~na
2

1xna
2 t2!/~11 i zat !

3
@Hna~ t !#m

@Sna~ t !# l
I l S Sna~ t !

11 i zat
D , ~24!

whereza512sa . Equation~24! can be obtained from Eq
~5! by replacing 0 fori t and2za for sa . In this case, of
course, the inhomogeneous PDFG is no longer dependent o
the quantityq.

Equation~24! is valid for arbitrary directions of propaga
tion. However, the particular case of parallel propagat
(c50) deserves special comments. In the case of par
propagation,za50, it is possible to use representation~12!
and arrive at

Gr ,p,m,l5
2 i

~2l21!!!pE21

1

dy~12y2! l21/2e2na
2

~12y!

3E
0

`

dt~ i t !reizte2[b1xna
2

~11y!] t2~na
22xna

2 t2!m.

Expanding now the last term in powers oft and rearrang-
ing the time integral, we can easily express the nonrelati
tic inhomogeneous PDF in terms of derivatives of the Fr
and Conte function:

Gr ,p,m,l5
2na

2m

~2l21!!!p (
j50

m Smj D ~xna /na!2 j

~2ma
1/2!r12 j11

3E
21

1

dy
~12y2! l21/2

ugn~y!ur12 j11e
2na

2
~12y!

3Z~r12 j !S ma
1/2dna

2ugn~y!u D , ~25!

wheregn
2(y)[Ni

2/21rn
2(11y), and

Z~n!~z!5
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dzn
Z~z!5 i2n11e2z2E

2`

iz
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Z~z!52ie2z2E
2`
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dte2t2.
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V. APPLICATION FOR THE CASE
OF ORDINARY MODE WAVES

For the case of electromagnetic waves propagating
pendicularly to the magnetic field in a magnetized plasm
and velocity distributions which are even inpi , the disper-
sion relation factors into two branches, known as the or
nary and the extraordinary modes. Under these conditi
the ordinary mode is specially suited to be used as an
ample for application of our formalism, since the dispersi
relation depends on a single component of the dielectric
sor, and can be written as

N'
25«33. ~26!

Using Eq.~6! and considering only one electron popul
tion, with loss-cone indexl a5 l e51 and equal perpendicula
and parallel temperatures, the«33 component can be formally
written in terms of the inhomogeneous dispersion function

«33512Xe1meXe (
n50,61

S G0,3/2,1,unu,unu~z,0,1,ne ,xne,1!

1
]

]h
G0,3/2,1,unu,unu* ~z,0,1,ne ,xne,1;h!U

h50
D , ~27!

where we have only considered harmonicsn50,61, since
we are interested in wave frequencies near the electron
clotron frequency, and where we have introduc
me5m'5m i .

In what follows, we only consider for simplicity the cas
of wave propagation parallel to the direction of inhomogen
ity (c50). Evaluating the derivative of the dispersion fun
tion, as indicated, we arrive at the following explicit expre
sion for the dispersion relation:

N'
2512Xe1meXe@G0,3/2,1,0,02G0,3/2,2,0,01ne

2G0,3/2,3,0,0

2G0,3/2,3,2,1]1meXe (
n561

@G0,3/2,1,1,122G0,3/2,2,1,1

1ne
2G0,3/2,3,1,12G0,3/2,3,3,22x1a

2 G2,3/2,3,1,1]. ~28!

A simplified version of the dispersion relation~28! can be
found with the use of the approximation given by Eq.~14!,
valid when the Larmor radius of the particles is small. It
also possible to assume thatxne

2 !1, an assumption valid
whenNB!2/Ame, which is easily satisfied by weakly rela
tivistic electrons near the cyclotron resonance. Moreover,
the harmonicsn50,21, it is easy to show that the Shkaro
sky functions can be approximated by

Fq,r~n50!'
1

me
, Fq,r~n521!'

1

z2b
.

The term corresponding to then521 harmonic is negligible
when compared to then50 term and can therefore be dis
carded.

Substituting Eq.~14! in Eq. ~28! and neglecting all terms
proportional tox1e

4 , x1e
2 ne

2 , x1e
4 ne

2 , andme
21 , we arrive, after

some algebra, at
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«33512Xe1N'
2 z331NB

2c33,

z335
me

p

Xe

Ye
2 F E

21

1

dy~12y2!1/2F7/22E
21

1

dy
F9/2

~12y2!1/2G ,
c335

Xeme
2

4p F E
21

1

dy~12y2!1/2F7/2,22E
21

1

dy
F9/2,2

~12y2!1/2G ,
~29!

whereFq,r5Fq,r„z,x1e
2 (11y)…. The dispersion relation~26!

is now simply written as

N'
25

12Xe1NB
2c33

12z33
. ~30!

The homogeneous limit can be readily found from E
~29!. By makingNB→0, the integrals in Eq.~29! can be
evaluated and«33 reduces to

«33512Xe1
N'
2Xe

2Ye
2 $F7/2@me~12uYeu!#

22F9/2@me~12uYeu!#%,

where Fq(z) is the Dnestrovskii function@7#. This is the
same expression obtained from the usual treatment of e
tron cyclotron waves propagating in a homogeneous mag
toplasma with a DGH distribution, using the small Larm
radius approximation@12#.

The dispersion relations given by Eqs.~28! and ~30! can
now be solved, for a given set of parameters. Equation~28!
utilizes the full inhomogeneous plasma dispersion funct
defined in the present manuscript, with the refraction ind
also appearing in the right-hand side. It is solved with the
of a straightforward numerical procedure which finds the
siredN' , for each value ofv, Te , Xe /Ye

2 , andNB . The
dispersion functionsG are evaluated with the use of Eq.~13!
in terms of Shkarofsky functions, using the relationship@7#

Fq,r~z,a!5(
j50

r

~21!r S rj DFq~z,a!. ~31!

The approximated dispersion relation given by Eq.~30!,
on the other hand, features the refraction index explic
given by the right-hand side, and therefore there is no n
of any root-solving procedure. In the right-hand side of t
dispersion relation also appear Shkarofsky functions, wh
are also evaluated with the use of Eq.~31!.

As an example of application of these dispersi
relations, we considerTe55 keV, Xe /Ye

250.5, with
the loss-cone index for the electronic distribution giv
by l e51. For these parameters, the results obtai
from Eqs. ~28! and ~30! are virtually the same and cann
be easily distinguished in the graphics which follow. In F
1 we show the real part ofN' obtained from the disper
sion relation, for several values of the inhomogeneity para
eter ÑB5ckB /uVeu (ÑB50, 231023, 431023, 631023,
831023, and 131022).

Figure 2 shows the imaginary part ofN' , for the same
parameters. It is possible to observe the gradual displacem
.
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of the frequency of maximum amplification, which ap
proaches the electron cyclotron frequency as the inhomo
neity is increased.

The effect of the inhomogeneity on the wave amplific
tion may not appear substantial from the point of view of t
local spectrum of emission of electron cyclotron waves,
it could be relevant in the case of a nonlocal analysis of w
amplification using, for instance, a ray-tracing routi
coupled to the solution of the dispersion relation. Such
impressive task would be well beyond the scope of
present work, but it is nevertheless mentioned in order

FIG. 1. Real part of the refraction index for ordinary mod
waves vs normalized frequency, for several values of the inho
geneity parameterÑB (ÑB50, 231023, 431023, 631023,
831023, and 131022). Curvea, ÑB50; curve f, ÑB5131022;
the curves corresponding to the other values ofÑB appear between
the curves indicated bya and f, for increasingÑB . The parameters
considered arel e51, T'5Ti5Te55 keV, Xe /Ye

250.5, Ni50,
andc50.

FIG. 2. Imaginary part of the refraction index for ordinary mo
waves vs normalized frequency, for several values of the inho
geneity parameterÑB (ÑB50, 231023, 431023, 631023,
831023, and 131022). Curvea, ÑB50; curve f, ÑB5131022;
the curves corresponding to the other values ofÑB appear between
the curves indicated bya and f, for increasingÑB . The parameters
considered arel e51, T'5Ti5Te55 keV, Xe /Ye

250.5, Ni50,
andc50.
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point out possible uses and extensions of the present for
ism. For instance, inhomogeneity effects could play an
portant role in the study of the wave emission proce
dubbed as auroral kilometric radiation, that occur on the
roral zone of earth’s magnetosphere. Although the ma
mechanism is the most probable candidate to explain
emission process, recent nonlocal analysis, using a loc
homogeneous approximation for the dielectric tensor,
tained a total amplification that only marginally account
for the observations@13,14#.

Another potential application was also mentioned in
literature, connected to a different range of frequencies.
cent publications have suggested that the explicit effec
the inhomogeneity should be taken into account in orde
correctly reproduce the spectrum of ion-cyclotron waves
served on the plasma depletion layer, inside the sunward
of the magnetopause of earth’s magnetosphere@15#. It is our
intention to investigate the possibility of extension of t
present formalism to the ion-cyclotron range of frequenc
in order to be able to study this phenomenon.

Other results obtained for the ordinary mode are show
Figs. 3 and 4, in which we analyze the temperature dep
dence of the inhomogeneity effect for the ordinary mode,
ÑB5131022 and three values ofTe (Te54 keV, Te55
keV, andTe56 keV!, with the other parameters the same
in Figs. 1 and 2.

It can be easily seen that only a small variation on
temperature has a large effect on the instability. The low
the temperature, the greater the maximum amplification
the narrower the spectrum of emission. This behavior can
qualitatively understood by the analysis of the resona
condition of the dielectric tensor associated to a plasma w
an inhomogeneous magnetic field. The inhomogeneous te
of the resonance condition become important for wave em
sion ~or absorption! when propagation nearly perpendicul
to the ambient magnetic field is considered and when
temperature is decreased. This analysis is made in Appe
C.

FIG. 3. Real part of the refraction index for ordinary mo
waves vs normalized frequency, for curvea, Te54 keV; curveb,
Te55 keV; and curvec, Te56 keV. The parameters considered a
l e51, Xe /Ye

250.5, Ni50, c50, and ÑB5131022, for
T'5Ti5Te .
al-
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VI. CONCLUSIONS

In the present paper we have resumed the study of
dielectric properties of plasmas in a weakly inhomogene
magnetic field, using recently derived expressions for
components of an effective dielectric tensor to be utilized
the dispersion relation, which have been derived accordin
the BGI procedure@5#. We have rewritten these componen
for the case of a loss-cone distribution function, using
weakly relativistic approximation and introducing the s
called ‘‘inhomogeneous plasma dispersion function,’’ whi
has been shown to be related to other well-known plas
dispersion functions appearing in the case of homogene
media. The relationship between the inhomogeneous pla
dispersion function and other dispersion functions such
the Shkarofsky and Dnestrovskii functions~and even theZ
function, in the nonrelativistic case! is important not only for
computational purposes, due to the well studied analyt
properties of these functions and due to the existence of
rules and other useful mathematical relationships, but a
because it enabled us to obtain very important analyt
properties of theG function. For instance, we have show
that the anti-Hermitian part of the dielectric tensor is entire
due to the imaginary part of theG function, which is nonva-
nishing only in the case of wave-particle resonance. T
limit cases of propagation parallel, perpendicular, and
lique to the inhomogeneity direction have been consider
as well as the weakly relativistic and nonrelativistic cases.
an application, we have considered the case of ordin
mode waves propagating perpendicularly to the magn
field, along the direction of the inhomogeneity, demonstr
ing the displacement of the frequency of maximum ampl
cation which is a consequence of the inhomogeneity. I
worthwhile to point out that other formulations appearing
the literature, which do not include the frequency correct
due to the inhomogeneity, do not predict any effect due
the inhomogeneity for propagation parallel to the direction
the inhomogeneity@16#.

We believe that the displacement of the frequency
maximum amplification due to the inhomogeneity, coupl

FIG. 4. Imaginary part of the refraction index for ordinary mo
waves vs normalized frequency, for curvea, Te54 keV; curveb,
Te55 keV; and curvec, Te56 keV. The parameters considered a
l e51, Xe /Ye

250.5, Ni50, c50, and ÑB5131022, for
T'5Ti5Te .
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to the modification of the real part of the refraction inde
can have important consequences on the total amplifica
of the wave as it propagates inside a nonuniform medium
situation which therefore deserves to be investigated.
importance of taking explicitly into account the effect of th
inhomogeneity on the amplification of waves has also b
recently stressed by other authors, working on emission
cesses that occur inside the magnetopause@15#.

It is our intention to apply the general expressions o
tained for the inhomogeneous plasma dispersion function
further studies of wave propagation in weakly relativis
plasmas with inhomogeneous magnetic fields. It may app
that for useful applications the inhomogeneous plasma
persion function as given by Eqs.~13!, ~17!, and~22! may be
difficult to handle, due to the number of integrations a
summations over different variables and indexes. These
pressions are quite general and no attempt has been ma
simplify them beyond the intrinsic limitations of its deriva
tion, detailed in Ref.@5# and listed in Sec. II of the presen
paper, because the effective dielectric tensor written in te
of the inhomogeneous dispersion function features impor
properties, which do not depend on any particular appro
mation. We have seen in Sec. V an application to the cas
ordinary mode waves, which illustrate the practical use
the formulation. This application is quite simple, but it
possible to demonstrate that, for many cases of practica
terest, the general expressions are quite easy to handle
numerical application, due to the fast convergence of
series involved, and only a small number of terms has a
ally to be considered in the calculation. We may be m
explicit about the convergence of these expansions by c
sidering Eq.~22!, which is the expression featuring the grea
est complexity, since it has two power series expansions
the quantity (12sa

21) @see definitions after Eq.~22! and the
expansion given by Eq.~18!# and other two power series o
the quantityna

2 @one explicit in Eq.~22! and the other in the
expansion ofHn , Eq. ~23!#. However, each pair of serie
expansions can easily be rearranged in order to become
series and one finite summation, therefore reducing the n
ber of expansions to only one in Eq.~17! and two in Eq.
~22!, with the magnitude ofna

2 and (12sa
21) being impor-

tant in the determination of the convergence velocity of th
series. The quantityna

2 is nothing but the usual small Larmo
radius expansion parameter and can be handled as in
related homogeneous treatment. The other quantity,

12sa
215

2ÑBN'sinc

12ÑBN'sinc
, ÑB5

ec

Va
5
NB

Ya

is related to the inhomogeneity and can be even smaller
na
2 for typical situations. Moreover, in many cases of prac
cal applications, only one electron population is prese
which eliminates the summation over species in the die
tric tensor. Also the summation over harmonics can usu
be disregarded, since in weakly relativistic situations, for f
quencies near the electron cyclotron frequency, only one
monic term is relevant for absorption studies.

The conclusion is that the apparently cumbersome exp
sions for the inhomogeneous dispersion relation can
handled for numerical applications similarly to the we
,
n
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known plasma dispersion functions used for the case of
mogeneous plasmas. We have seen an example of the
proximations which can be made, in the derivation of t
approximated dispersion relation~30!, with nearly the same
numerical results as those obtained from the complete
pression given by Eq.~28!.

It is also worthwhile to point out in these conclusions th
along the derivation we have mentioned that the effect
dielectric tensor satisfies Onsager symmetry relations, as
pected from the time invariance from the microscopic eq
tions of motion. In contrast, other approaches of dielec
description of inhomogeneous media which do not incor
rate the BGI corrections do not satisfy Onsager symme
While discussing the proper symmetry properties of the
electric tensor, it can be explicitly shown that the an
Hermitian parts of the effective dielectric tensor are on
connected to resonant terms, which should be expe
within the framework of the linear kinetic theory, since
this case the only energy transfer process is related to
wave-particle resonance. However, as has been discuss
a previous publication@5#, alternative expressions for the d
electric tensor of an inhomogeneous plasma that do not o
Onsager symmetry show contributions from nonreson
particles in the anti-Hermitian part. Because the effect
dielectric tensor obeys Onsager symmetry relations, its a
Hermitian part naturally contains contributions only fro
resonant particles. We have incorporated this demonstra
in Appendix B. As a consequence of this property, the ima
nary part of the refraction index obtained from the dispers
relation, when the effective dielectric tensor is utilized, rea
describes wave-particle energy exchange due to wave d
pation or amplification.

The importance of satisfying Onsager relations was a
pointed out in a recent study of the onset of lower-hybr
drift instability in the magnetotail of Earth’s magnetosphe
in which it is recognized that the usual approach to study
effect of cross-field instabilities on particle acceleration lea
to nonsymmetric components of the dielectric tensor@17#.

With the BGI formalism, we have shown that even
very different circumstances, like inhomogeneities in dens
and temperature and gradients of the magnetic field, the
electric tensor is naturally derived with the correct symme
properties. Therefore it is the correct quantity to be used
the dispersion relation that describes wave emission
propagation in an inhomogeneous plasma.

In Appendix C, some limit cases of the wave-partic
resonance condition in inhomogeneous media are discus
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APPENDIX A: THE MOMENTUM INTEGRALS
AND THE DEFINITION

OF THE INHOMOGENEOUS PDF

In the components of the effective dielectric tensor
have the momentum integrals
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E d3uu'L~ f a0!e
iDnat@Fna~t!#~ unu21!

Pna
2 Pna

1

~Wn
2Wn

1! unu , ~A1!

where the components of the tensorPna
6 are given in Eq.~3!,

as well as the definition of the quantityFna .
Using the definition ofDna from Eq.~1!, and considering

the weakly relativistic case,g'11u2/2, this integral can be
written as

E d3uu'L~ f a0!@Fna~ t !#~ unu21!

3
Pna

2 Pna
1

~Wn
2Wn

1! unu e
imadnat2 iN imauit1 imau'

2sat/21 imaui
2t/2,

~A2!

where the dimensionless variablet[(v/m)t has been intro-
duced. The quantitiesdna andsa are defined in Eq.~5!.

By considering the case of an isotropic Maxwellian d
tribution, given by Eq.~4! for l a50 and equal parallel and
perpendicular temperatures, we arrive at

2namaS ma

2p D 3/2E d3uu'
2 @Fna~ t !#~ unu21!

Pna
2 Pna

1

~Wn
2Wn

1! unu

3eimadnat2 iN imauit2mau'
2

~12 isat !/22maui
2
~12 i t !/2. ~A3!

Considering that the quantitiesWn
6 andFna are not de-

pending on the parallel momentum, and considering that
quantity ui only appears linearly in the components of t
tensorPna

6 , it is seen that the parallel integrals which w
appear in the calculation will be

I i
j5E

2`

`

duie
2maui

2
~12 i t !/22 iN imauitui

j , ~A4!

with j ranging from 0 to 2.
These parallel integrals are easily performed, with the

sult

I i
j5S 2p

ma
D 1/2e2bt2/~12 i t !

~12 i t !1/2
Ji
j , ~A5!

where

Ji
j5(

r50

j S jr D @11~21!r #

2ma
r /2 ~r21!!! S 2 iN it

12 i t D j2r

~12 i t !2r /2,

and where we defined (21)!!51.
After explicit use of the components of the tensorPna

6

and of the quantitiesWn
6 and Fna , it is seen that theu'

integrals which are useful for the calculation are

I'15E
0

`

du'u'e
2ma~12 isat !u'

2 /2Junu~Wn
1!Junu~Wn

2!,

I'2
6 5E

0

`

du'u'
2e2ma~12 isat !u'

2 /2Junu~Wn
7!Junu11~Wn

6!,

I'35E
0

`

du'u'
3e2ma~12 isat !u'

2 /2Junu11~Wn
1!Junu11~Wn

2!.

~A6!
-

e

-

These integrals can be easily solved, and are given
simple expressions involving the modified Bessel funct
I n @9#,

I'15
e2~na

2
1xna

2 t2!/~12 isat !

ma~12 isat !
I unuS Sna~ t !

12 isat
D ,

I'2
6 5

e2~na
2

1xna
2 t2!/~12 isat !

ma
3/2~12 isat !

2 FTn6I unuS Sna~ t !

12 isat
D

2Tn
7I unu11S Sna~ t !

12 isat
D G ,

I'352
e2~na

2
1xna

2 t2!/~12 isat !

ma
2~12 isat !

2 F Sna~ t !

12 isat
I unuS Sna~ t !

12 isat
D

2S unu1
na
21xna

2 t2

12 isat
D I unu11S Sna~ t !

12 isat
D G , ~A7!

whereTn
65Ana

262nacos(c)xnat1xna
2 t2.

In these integrals given by Eqs.~A5! and ~A7! it is pos-
sible to see the basic elements appearing in the definitio
the inhomogeneous plasma dispersion function appearin
Eq. ~5!. It is therefore a straightforward and tedious task
use these integrals and express the components of the e
tive dielectric tensor for loss-cone distributions withl aÞ0
andr TÞ1 in terms of the inhomogeneous PDF, as given
Eqs.~6!.

APPENDIX B: THE ANTI-HERMITIAN PART
OF THE EFFECTIVE DIELECTRIC TENSOR

General properties featured by the effective dielectric t
sor can be inferred either from the integral expression~1! or
from the formulation in terms of the inhomogeneous plas
dispersion function, as well as from the limit cases. For
stance, it has been shown that the BGI transformation
plied to a plane wave approximation for the dielectric ten
components restores an important property which should
expected for the dielectric tensor, from a physical point
view @5#. This property is the Onsager symmetry, which c
be confirmed by direct inspection of Eqs.~1! or ~3!. There is
another property, which is a consequence of the former
which is of paramount importance in the study of absorpt
or emission of radiation by inhomogeneous magnetoplasm
Namely, the fact that the anti-Hermitian part of«J must be
only due to resonant particles, in order that the absorp
coefficient obtained from the dispersion relation really d
scribes wave energy dissipation~or amplification!.

It is easy to show that the anti-Hermitian part of the ten
~6! satisfies this condition. The anti-Hermitian part of a te
sor «J is defined as

« i j
aH5

« i j2« j i*

2i
. ~B1!

In what follows, we demonstrate only the case of t
«12 component. The case of the other components is sim
and features less complexity. We also particularize for
casel a50 and r T51, for simplicity. Calculating the anti-
Hermitian part of«12 from Eq. ~6!, according to definition
~B1!, we obtain
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«12
aH52(

a
maXa (

n→2`

`

$ i2nasin~c!xna@G1,1/2,3,unu,unu9 2na
2G1,1/2,3,unu,unu119 1xna

2 G3,1/2,3,unu,unu119 #

1 in$unuG0,1/2,1,unu21,unu9 2na
2@G0,1/2,2,unu21,unu9 2G0,1/2,2,unu,unu119 #1xna

2 @G2,1/2,2,unu21,unu9 1G2,1/2,2,unu,unu119 #%2na
2sin~2c!

3@G0,1/2,3,unu,unu9 2unuG0,1/2,2,unu21,unu9 2na
2G0,1/2,3,unu,unu119 1xna

2 G2,1/2,3,unu,unu119 #22nnacos~c!xnaG1,1/2,2,unu21,unu9 %,

whereG5G81 iG9. Therefore it is clearly shown that the anti-Hermitian part of«12 is entirely due to the imaginary part of th
inhomogeneous PDF, which is nonvanishing only in the case of wave-particle resonance.

The connection between the imaginary part of the inhomogeneous PDF and the resonance condition can be dem
by looking at Eqs.~13!, ~19!, and~22! for the weakly relativistic approximation, and at Eq.~25! for the nonrelativistic case. In
the weakly relativistic case, all the expressions obtained show that the imaginary part ofG is determined by the imaginary pa
of the generalized Shkarofsky functionFq,r(z,a), which is related to the Shkarofsky functionFq(z,a), as seen in Eq.~31!.

The imaginary part of theFq(z,a) function is given by

Im@Fq~z,a!#5H 0, z2a>0

2pez22a@~a2z!/a#~q21!/2I q21@2a
1/2~a2z!1/2#, z2a,0
l

u
or
nc

k

i-
a

e

o-
t
o-
so

th
or
n
I

nti-

de-
e

e
are
hat

he

op-
o-
on-

the
ith
provided thatz anda are real.I q(z) is the modified Besse
function of the first kind of fractional order.

According to our results, the factorz2a appearing in the
functionF is given by

z2a5maS 12nYa~x!2
Ni
2

2
2
n2NB

2

4sa
~11y! D .

For a given choice of wave vector, wave frequency, ande,
the functionF is integrated in the variabley ranging from
21 to 1. The maximum contribution of the inhomogeneo
term comes fromy.1. Therefore a necessary condition f
the existence of a nonvanishing imaginary part in the fu
tion G is

12nYa~x!2
Ni
2

2
2
n2NB

2

2sa
,0. ~B2!

On the other hand, the resonance condition for the wea
relativistic case is given by Eq.~C6!, appearing in Appendix
C. We verify that the condition for existence of the imag
nary part ofG is exactly the condition for the existence of
resonance ellipse in momentum space.

In the nonrelativistic case, we have seen that theG func-
tion is given by Eq.~25!, which is expressed in terms of th
Z function. The argument of theZ function is real and is
given by

ma
1/2 dna

A2ugn~y!u
5ma

1/2 dna

ANi
21n2NB

2~11y!/2
.

Also in this case the maximum contribution for the inh
mogeneous term comes fromy.1, resulting in the argumen
of theZ function becoming exactly proportional to the res
nant velocity, as given by the right-hand side of the re
nance condition for the non-relativistic approximation~C8!.

Similar analysis applied to the tensor obtained with
plane wave approximation, without the use of the BGI c
rection, would result in anti-Hermitian parts featuring no
resonant contributions@5#. Therefore it is shown that the BG
s

-

ly

-

e
-
-

correction also restores the proper contribution to the a
Hermitian part of the dielectric tensor.

APPENDIX C: THE RESONANCE CONDITION

The complete resonance condition is given by the
nominator in Eq.~12! of Ref. @5#, and is repeated here for th
sake of completeness:

Dna5gv2kicui2nVa~11ex!2necu'sinw

2e
k'u'

2c2

2Va
sinc50 ~C1!

or

g2Niui2nYa~x!2nNBu'sinw2NB

N'u'
2

2Ya
sinc50.

The first three terms in Eq.~C1! come from the resonanc
condition of a homogeneous plasma. The last two terms
due to the inhomogeneity correction. It is clearly seen t
inhomogeneity effects appear even whenc50, when the
drift instability is absent, and may be significant near t
cyclotron frequency of thea population. The inhomogeneity
creates, in addition to the resonance broadenings due to D
pler and relativistic effects, a broadening due to the inhom
geneity. This may be important when the homogeneous c
tribution is small, even if the parametere is considered
small.

This statement can be made clearer by considering
angular wave frequency which resonates with a particle w
velocity v, near the cyclotron frequency. From Eq.~C1!, we
have

v5kiv i1n
Va

g
1nev'sinw1e

k'v'
2g

2Va
sinc. ~C2!
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If the particles have a velocity spread given byvT
2}Ta ,

then the first term in Eq.~C2! introduces an emission lin
broadening around thenth harmonic due to the Doppler e
fect given by@18#

~Dvn!1'nVauNiu S vTc D .
The second term corresponds to the ‘‘relativistic broad

ing’’ given by

~Dvn!2'nVaS vTc D 2.
The last two terms correspond to ‘‘inhomogeneous bro

enings,’’ which are given by

~Dvn!3'n2VaNBS vTc D ,
~Dvn!4'n2VaNBuN'usincS vTc D 2.

Therefore the first inhomogeneous linewidth compared
the two homogeneous ones gives:

~Dvn!3
~Dvn!1

5
nNB

Ni
,

~Dvn!3
~Dvn!2

5
nNB

~vT /c!
,

which shows that (Dvn)3 becomes important both when th
wave vector approaches the perpendicular and when the
perature is decreased. At the same time, the other inhom
neous broadening effect compared to the Doppler homo
neous contributions gives

~Dvn!4
~Dvn!1

5nNBUN'

Ni
US vTc D sin~c!.

It is seen that, compared to the Doppler term, this in
mogeneous contribution becomes important whenNi→0.
However, contrasting with the case of term (Dvn)3, it also
becomes important when the particle temperature is
creased. Compared to the relativistic case, however, the
tribution of the term (Dvn)4 is always small, except nea
resonances

~Dvn!4
~Dvn!2

5nNBuN'usinc.

In the next subsections we will consider some special ca
of Eq. ~C1!.

1. Waves with k' parallel to the direction
of the inhomogeneity„c50…

In this case the resonance condition reduces to

g2Niui2nYa~x!2nNBu'sinw50, ~C3!
-

-

o

m-
e-
e-

-

-
n-

es

which can be decomposed in Cartesian coordinates to
the equation of a complicated surface in three dimension

ux
21~12n2NB

2 !S uy2 n2NBYa~x!

12n2NB
2 D 2

1~12Ni
2!S ui2

nNiYa~x!

12Ni
2 D 222nNBNiuyui

5n2Ya
2~x!211

n4NB
2Ya

2~x!

12n2NB
2 1

n2Ni
2Ya

2~x!

12Ni
2 . ~C4!

This complicated surface reduces to an ellipsoid of re
lution whenNi50:

ux
21~12n2NB

2 !S uy2n2NBYa~x!

12n2NB
2 D 21ui

2

5
n2@Ya

2~x!1NB
2 #21

12n2NB
2 . ~C5!

In the homogeneous case,NB50, and the ellipsoid further
reduces to the well-known ‘‘resonance circle
u1
21u2

21ui
25n2Ya

2(x)21.

2. Weakly relativistic approximation

In this case we haveg'11u2/2, and the resonance con
dition ~C1! also reduces to the equation of an ellipsoid

sa

2
ux
21

sa

2 S uy2nNB

sa
D 21 1

2
~ui2Ni!

2

5nYa~x!211
Ni
2

2
1
n2NB

2

2sa
. ~C6!

Evidently, this ellipsoid exists if the right-hand side
positive. This is exactly the condition for the existence of t
imaginary part of theFq function, as given by Eq.~B2!. It is
clearly seen that the anti-Hermitian parts of the effective
electric tensor are nonvanishing only in the case of wa
particle resonance.

3. Nonrelativistic approximation

In the nonrelativistic approximation the resonance con
tion can be written as

nNBuy1Niui512nYa~x!, ~C7!

which can be reduced to a simpler form by rotation of ax
by an angleu52tan21(nNB /Ni):

ui5
12nYa~x!

An2NB
21Ni

2
. ~C8!

The right-hand side of Eqs.~C6! and~C8! is related to the
imaginary part of the inhomogeneous plasma dispers
function ~5! and ~25!, as we show in Appendix B
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