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First-order rigidity on Cayley trees
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Tree models for rigidity percolation, in systems with only central forces, are introduced and solved. A
probability vector describes the propagation of rigidity outward from a rigid border. All components of this
“vector order parameter” are singular at teamerigidity thresholdp. . The infinite-cluster probability., is
usually first order ap., except in those cases which are equivalent to connectivity percolation. In many cases,
P..~AP.+(p—p.)Y? indicating critical fluctuations superimposed on the first-order jukp.(). Our tree
models for rigidity are in qualitative disagreement with “constraint-counting” mean-field theories. In an
important subclass of tree models “bootstrap” percolation and rigidity percolation are equivalent.
[S1063-651%97)16005-9

PACS numbd(s): 61.43.Bn, 46.30.Cn, 05.70.Fh

I. INTRODUCTION model has been lattices composed of Hookian springs. Direct
solution of the force equations for these lattices has provided
Soon after the resurgence of interest in percolation phequite variable estimates of the percolation threshold, and
nomena, the elastic constants of depleted materialsonsiderable controversy about the critical expong®tsd).
were studied. Although early work suggesteld that the In the mathematics community, there has been a long history
conductivity and elasticity exponents were the same, it wasf attempts to relate the connectivity of a “graph” to its
soon realized that the elasticity exponents were usually difability to support stresg1l0-13. The majority of physicists
ferent [2], and in particular one must draw a distinction were unaware, till recently5,15], that there is a rigorous
between the elasticity of systems which have only “centraltheorem which relates connectivity to rigidity but only for
forces” [3] and those which also have “bond-bending” graphs in the planeOf more practical importance is the fact
forces. If a system has bond-bending forces, the percolatiothat there ardast algorithmg 13,14 by which this theorem
geometry is in many ways similar to that of the connectivitycan be used to actually find the infinite clusfd] and
percolation problem. Of interest in this paper is the factstressed backbongs] of some graphge.g. the triangular
that when a system is supported by only central forceslattice with central forces These results are relevant to ran-
the percolation geometry iery differentrom that occurring  dom lattice[5], which are in many cases of most practical
in connectivity percolation. We illustrate this difference by interest.
developing and solving models for rigidity percolation on  There are two different types of mean-field theory avail-
Cayley trees, and by comparing those models with the analable for the rigidity transition. The first, based on an approxi-
gous results for connectivity percolation on tréds Many  mate “constraint counting,” predicts a second-order transi-
of the concepts we develop using tree models can be exion in the “number of floppy(flexible) modes™ [16], and
tended to regular lattices, as will be elaborated upon in théas been extensively applied to the rigidity of glasses and
paper. gels. However it was realized in that paper, and recently
There have been several groups of scientists and engguantitatively confirmed15], that the number of floppy
neers interested in the ability of central-force structures tanodes per site does not approach zero at the percolation
transmit stress. Besides its intrinsic interest, this problem igoint. There is also a recent phenomenological field theory
relevant to the analysis of engineering structures, glassegl7] which predicts first-order rigidity, but the connection
granular materials, and gellS]. The straightforward way to between the model parameters and the lattice parameters rel-
study this problem is to construct particular models whichevant to rigidity are not clear in that analysis. The tree mod-
have only central forces, and to study the types of structuresls developed here provide a more complete mean-field
which support stress. In the physics community, the standartheory for the rigidity transition. We find the infinite-cluster
probability shows a first-order jump, and, superimposed on
this first-order jump, there is a continuous singularity on ap-
*Permanent address: Instituto désiEg Universidade Federal proach to the transition from above. We also find that one
Fluminense, CEP 24210-340 Niteroi RJ, Brazil. subclass of our tree models is equivalent to tree models for
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a) b)

c)
FIG. 1. The geometry of treega) A z=5, b=1 tree.(b) One branch of the tree @#). (c) One branch of &=3 tree.

bootstrap percolatiofil8], although on regular lattices they Il. GEOMETRY AND DEFINITION OF VARIABLES
are not equivalent. The paper is arranged as follows. In Sec. .
II, we introduce the tree geometry and the vector probability, T_he structure_ of the tree models_ we conS|d_er s illustrated
(order parametgused to describe the transmission of rigid- N Fig- 1. Following normal convention, we defia¢o be the

ity from a rigid border. Section Il contains a detailed analy-"umber of branches of the tr¢for example, in Fig. (a) z

sis of tree models for both site and bond dilution. In Sec. Iv=>5]. In Fig. 1(a), each site of the tree is connected by only
we discuss the “house of cards” mechanism for first-orderone bond to a neighboring site. In general we may have
rigidity and discuss the failings of the traditional constraint-Pbonds or bars connecting neighboring sities example, in
counting mean-field theories in the light of the tree resultsFig. 1(c), b=3]. Theb bonds are assumed to be nonparallel,
We also calculate the number of floppy modes, and showo that each bond represents an independent constraint. Thus
that even the second derivative is nonsingular on trees. Thisvo variables in our analysis arandb. A third important

is not too surprising, since surface bonds dominate if avervariableg is the number of degrees of freedom per site, and
ages over the whole tree, as is done in the floppy modé discussed in the next paragraph. The feature of the tree
calculation. Section V contains a brief summary and conclugeometry which makes the analysis tractable is that we can
sion. calculate the probability of rigidity along separate branches
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of treesindependentlyand then combine the branches of thewith respect to the bordef4) P, (or Ty) is the probability
tree to form the final Cayley tree. For example one “branch” that a node has no DOF with respect to the border.
of the tree of Fig. (8) is presented in Fig.(b). We use the The vectorsP andT act as order parameters for the rigid-
letter P, with various subscripts, for the site probabilities of ity percolation problem on trees. However, it is also possible
the entire tre¢e.g., Fig. 1a)], while we useT, with various  to define these quantities on regular lattices, and it is likely
subscripts, to denote the site probabilities of the branches Qfat an algorithm could be developed based on these prob-
the trees. The qualitative behavior BfandP are the same, gpjjities. In fact for the case of a “diode response,” a trans-
and we concentrate for the most part on the analysiB.of  fer matrix could be used—this would be a “directed rigidity

_ Each noddfthe sites in Figs. ®) and 1b), and the el-  ,orcojation,” and might be appropriate for granular media,
lipses in Fig. 1c)] represents a “joint”(pointlike nod@ or  \yhere contacts only support compressive forces.

body” (see belowon a lattice or “graph,” and is assigned In many physical problems, it is important to distinguish

a certain number of dggr_ees of freedom. In. connectivity yoyeen the probability that a site is in the backbone and
percolation each node is either connected or disconnected, SO

it has only one possible “degree of freedom,” i.e., if a site is overconstraine(i?r_stress_edPB,_a_nd the probability that a
disconnected it has one degree of freedom, while if it isbackbone s_|te Isisostatic or rigidly conr_1ected but not
connected it has no degrees of freedom. If we consider areSsedwhich has probabilityPp). In particular, we have
lattice of joints connected by central-force springs, then eacRreviously defined5] P.,=Po=Pp+ Pg to be the “infinite
free joint has two translational degrees of freedom in twoi9id cluster” probability. This is closely analogous to the
dimensions, and three degrees of freedom in three dimerddfinite cluster in connectivity percolatiori9]. In this anal-
sions. However, when we make rigid clusters, they are rigicP9y, the overconstrained or “stressed” bonds are analogous
“bodies” so they also have rotational degrees of freedom!o the “backbone” in connectivity percolation, and rigidly
For example, d&odyin two dimensions has three degrees ofattached but unstressébostati¢ regions are analogous to
freedom(two translations and one rotatipwhile a body in  the dangling ends in connectivity percolation. Just as the
three dimensions has six degrees of freedtimee transla- dangling ends in connectivity percolation carry no current,
tions and three rotatiohsin general, we allow each site to the isostatic regions in rigidity percolation carry no stress.
haveg degrees of freedom. Some practically important val-However, for trees we found it clearer to first concentrate on
ues forg are as follows: P.., since there are important subtleties associated with the
definition of the appropriate boundary conditions for the
stressed backbone, so in this paper we do not diseyss
g=1 for connectivity percolation, (1a

. DILUTED CAYLEY TREES
g=d for a joint, (1b)
Consider Cayley trees of coordination numbers shown
in Fig. 1. In general our parameters aye(the number of
g=d(d+1)/2 for a body. (1  degrees of freedom per node (the coordination number-
actually we shall usually use=z—1), b (the number of

Hered is the spatial dimension. We consider growing a treg?©nds connecting each neighboring pair of nodes on undi-
outward from a rigid boundary. A borithond percolationor ~ Uted trees and p (the probability that a site or bond is
site (site percolationis present on the tree with probability presen_l_ We first do the calculations for a_b_ranch of the trees
p. If there is a finite asymptotic probability that the center €€ Fig. 1b) for ab=1 casd, and then join the branches
node of the tree is rigidly connected to the boundary, then w&o9€ther to obtaiP.. . To illustrate the method we first per-
are above the rigidity percolation threshgdgd, whereas, if orm the casé=1, as illustrated in Figs.(&) and 1b) with

the probability of being on the infinite cluster dies out as theSite dilution.
number of levels becomes very large, we are betw The

behavior on crossing, depends on whether the transition is

first or second order, as will be discussed further below. In

the case of connectivity percolation, there is only one degree On any tree, rigidity can only be transmitted to higher
of freedom per node, and we only have to keep track of théevels of the tree if there are enough new constraints or
probability that connectivity is transmitted away from the bonds present to offset the number of degrees of freedom of
boundary. In the case of rigidity percolation it is necessary ta newly added node. For connectivity percolation only one
consider a larger set of site probabilities. In fact, each sitdoond is needed. If a node is added tg=a2 tree, two bonds
may have 0,1,2..g degrees of freedom with respect to the are needed to offset the two degrees of freedom of the added
boundary, so we define the probabilitieg,...,P, to be the  node. In general, if a node with degrees of freedom is
probabilities that a site has between 0 @andegrees of free- added, generic rigidity is transmitted to the next level of the
dom (DOF’s) with respect to the boundasa similar defini-  tree provided the node is occupiethd provided at leasy of

tion applies to the branch probabilitids. For example if the lower-level nodes to which the added node is connected
g=3, (1) P3 (or Ty) is the probability that a node has three are rigid. We define the probability that a node is rigid to be
DOF's with respect to the borde2) P, (or T,) is the prob- Ty, andTy to be the probability that a node hakeemain-
ability that a node has two DOF’s with respect to the bordering degrees of freedom. The branch probabilifigswith k

(3) P, (or Ty) is the probability that a node has one DOF =0,1,...g are then given by

A. Site diluted trees withb=1
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oy p., To approaches zero linearly, so the transitiorségond
To=p>, ( | )(TO)'(l—TO)“', order and the order-parameter exponght 1.
=9 In order for the problem to lie in the “rigidity percola-
tion” class, there must be at least two degrees of freedom per
a )(To)gl(l_TO)ag+l node, i.e.g=2. However, wherb=1, if a=z—1=2, then
-1 ' p.=1, as all bonds must be present in order to transmit ri-
gidity. Thus the simplest nontrivial cases age2, a=3,
(20 andb=1, which we now treat.

Tl:p(g

T = p( il)(To)gl(l_TO)agH for 1=l=g, Rigidity transition for g=2, «=3, and b=1
g From the first of Egs(2), we have

g-1 3 2
To=p[To+3To(1—Ty)l. 6

T=1- D T 0=P[To ol 0] (6)

=0 Of course, there is always the trivial solutidg=_0. In ad-

The left-hand side of Eqg2) refer to a node at one higher dition, Eq. (6) implies

level than the nodes on the right-hand side. Since we are o an
looking for asymptotic probabilities a long way from the To:w 7)
rigid boundary, we expect the probabilitids to approach 4

steady state values upon iteration of E(®. Expressions
similar to Eqgs.(2) are found when the transition is made
from the branch probabilitie3| [see Fig. 1c)] to the tree
probabilitiesP, [see Fig. 1a)], except that we now combine
z branches instead ad— 1 branches. Thus we find, for ex-
ample,

To ensure thaly=1 whenp=1, take the positive root. The
interesting feature here is that the argument of the square
root is negative fop<p.= £, so this root becomes unphysi-
cal (imaginary at p=3. For p<p., the only remaining
physical(rea) root is T;=0, so this implies that there is a
first-order jump inT, at p.= 2. The magnitude of this jump
ATo=2. Note also that on approach @ from above, we

. To(1-To)* ™. (3) find [18]

z
Po=p|:Zg

, To—i~(P—po*? ®
In fact once we have solved the first of Eq2), and have
foundT,, all of the other components & andT follow. In  which illustrates critical fluctations in addition to the first-
particular, if T, is first order at a particulgs, , then all of the  order jump inT,. This interesting behavior seems usual for
other components of and P are first order at thesame  both bootstrap percolation and for rigidity percolation, and it
p.. Thus we concentrate on the behaviorTgf. does not usually happen in ordinary thermodynamic phase

It is interesting to note that E@3) is the sameas Eq.(2)  transitions. From the second of E®), we have

of [18], which treatsbootstrap percolatioron treegwith the
change of variableR=1—P, g=m, andl =z—m). In boot- T1=3pTy(1-Tp)?, 9
strap percolation one considers that ferromagnetic order is )
propagatedonly if each site has at leash ferromagnetic Which has two solution§; =0 and the result found by sub-
neighbours. If we start with a ferromagnetic border, it is clearStituting Eq.(7) for Ty into Eq.(9). There is thus a first-order
that Eq.(3), with the above change of variables, describedUMmP In T, at th? same pas that found foff. The size of
the propagation of ferromagnetic order outward from thethis JumpAT,=3. Note thatT, is zeroatp=1, soT, rises
border. The correspondence between bootstrap percolatidfPm zero asp decreases, and peaks @t pc. Since T,

and rigidity percolation isiot exacton regular lattices. Now =1—To— Ty, all components of the vector order parameter
we solve Eqs(2) for some simple cases. are first order, and all of them have a singular correction near

p. as a consequence of E®).

Connectivity percolation(g=1) N )
Order of the transition for general g andx, with b=1

In this case the first of Eq92) reduces to that found

previously[4]. For example, forx=3 In the first of Eqs(2), there is always the trivial solution

To=0. After removing that, the following equations holds:

To=P(3To(1-To)?+3T5(1-To)+ T3, (4 .
—p> [ F] Tt —Tg)e (10)
which yields the trivial solutionTy=0, and the nontrivial 1 pk:g k) © ( 0
solution
If g=1 (connectivity percolation there is always a term
T _3—V(4/p—-3) 5 independent ofl, on the right-hand side of this equation,
0~ 2 ' and this allows a real solution for arbitrarily smaly, and

hence the transition is second order. Howeveg32, the
The percolation threshold, occurs when the nontrivial so- constant term on the right-hand side is absent and the equa-
lution (5) approaches zero, and this occurspat=3. Near tion cannot be satisfied for an arbitrarily small ré&gl Thus
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there must be a first-order jump iy for anyz>g=2. It is Tp_y for u=1,..b
possible to solve Eq10) to find p. explicitly in the casey Qy= b (11
=a—1, in which case the first-order jump has magnitude u 1- E Ty, for u=0.

v=1

ATo=1—1/(a—1)? [18]. However, in general we resort to

numerical methods. Before describing the numerical resultsy, each sub-branch adds constraints to the newly added

we first introduce a matrix method which allows us to treathady, so the total number of constraints on the newly added

generalg, b, anda. body is=® ;u;. Thus the probability that the new node has
k degrees of freedom is,

B. Site-diluted Cayley trees for arbitrary g, @, and b g 9 g9 @
It is possible to generalize the Bethe lattices described 10~ p,;o ,22:0 mlaE:o Ty T T 0 g_zl il
above to cases where more than one bond connects neigh-

boring nodes. In the case of site dilution, removing a site 9 9
removes all of thé bonds that enter that site from a neigh- Ty=1,.g-1=P 2 2

8] ..,T|
bor. In contrast, bond dilution removes one bond at a time 101270 1i=o h ‘
and must be treated differentlgee, the later discussion in a
this sectiof. Returning to the site-dilution case, we note that, X8| g—k— 2, Ui) : (12
if b=g, generic rigidity is transmitted across the tree as soon =1
as connectivity percolation occurs. This is because any one g-1
connection between two nodes witkeg ensures transmis- Tg=1— >
sion of rigidity to the newly added node, provided of course =0

that the prior node is also rigid with respect to the boundary. ) ,
Thus, if b=g, there are only two possible states for eachWhere ¢ and ¢ are the step function and delta function, re-

node: rigidly connected to boundary and not connected at affPectively. _
to the boundary, and the model is “trivially” in the connec- O numerical purposes, a more convenient way of repre-
tivity percolation class. In contrast, if there are fewer thanS€Nting these equations is to add theub-branches one at a
g bonds connecting two nodes, more interesting node statégneLus'L”g 2 maLtrlx method. We define the vectdt
are possible, and we must again consider the full sef(To.T1i,T2,....Tg) to denote the probability that the
To,...,T4, Which allows the possibility of partial transmis- newly added body be in one of its possible constraint
sion of rigidity. We now develop a matrix method to treat the “States” after the additions of L sub-branches I(
nontrivial cases £b<g. =1,2,....). If we have a free node it hag degrees of

Consider adding a site to a branch of coordinaiowe ~ freedom so before the addition of any sub-branchs,
label the sites at the previous leviet 1,...« [for example, =(0,0,0...,1). Wethen have the recurrence relations
we label the lower ellipse in Fig.(8) i=1.] Each of these Ll L L L
nodes may havé;=0,1,...g degrees of freedom with re- To "=Tot To(To+ Tyt -+ Tpg)+ -+ Ty To
spect to the bordeffor example, the lower ellipse in Fig.
1(c) hasl, degrees of freedom with respect to the boider ang, fori=1,2,...g,

We start by adding a “free body” to the tree, so it has
g degrees of freedom with respect to the boundary. However, Ty ' =TH(Ty+ Ty g+ + T+ Try 1 Too1+ T2 Th-2
when we add the new higher-level body to the tree, we also L
add ab bonds. But not all of the bonds that are added are to+TrpTo- (14)
“useful” in reducing the number of degrees of freedom of
the newly added body with respect to the border. For ex
ample, if a lower level node already hgsdegrees of free-
dom with respect to the border, no matter how many bonds
connect it to the higher-level body, it does not produces any,iip,
constraint on the newly added body with respect to the
boundary. Therefore we must define the “number of useful 1 B B B, 0O - 0
bonds” u, which lies along any sub-branch. If a lower-level T, To - 0
body has zero degrees of freedom with respect to the border, 0 0 T Ty y - .
then every bond is “useful.” If the lower-level body hasone ~ [ . . . . . .
degree of freedom with respect to the border, then the first™ | = N o o ) '
bond that is added is used to “cancel” this degree of free- P ; N R ;
dom, and does not constrain the newly added node, so that P : : i 0 ' Ty
only b—1 of the bonds are useful. In general if a body has 0 O 0 R ¢ r
i degrees of freedom, only=b—i of the added bonds are
useful in producing constraint in the higher-level body. Thuswhere
the probabilityQ, that a sub-branch has useful bonds is g
gi\gv;n by (note that since we are consideringsb<g, Qq F:z T, (16)
= I=b

(13

Equationg(13) and(14) may be put into matrix form, so that

TH=MTL=(M)T, (15

o

—

—
T
-



and

b—k
By= |Zo T 17)
Finally, we must include the possibility that the site is
present or absent, so the probability vector obeys
T=p(M)*T+(1-p)TO. (18)

As before, the left-hand side of E¢L8) is the probability
vector at the next level of the tree in terms of the probabili-
ties at the lower level$which are in the matrixv).

A little algebra shows that Eq18) reproduces th&=1
equations[Egs. (2)], as it must. We illustrate the matrix

method with a special caséb# 1) which is analytically
solvable.

Nontrivial solvable casew=2,g=3,b=2
For , b=2 andg=3, Eq.(18) yields

To 1 To+Ty To 0 0
Ti| 0 T,+T; T, To 0
]7Plo o T+T; T, 0
T3 0 0 0 T,+Ts 1
0
1 0
+( _p) 0
1
The first two of these equations yield
To=P(T5+2T,To) (19
and
T, =p(2TeX+T3), (20)

whereX=T,+T3. Since the sum of th@’s is 1, we have
X=1-T,—T;, and this, with Eqs(19) and(20), yields

3T3—4(2—1/p)To+ 1/p?=0. (21)
Solving for T, yields,
(4p—2)+2v(2p-1)*>-3}

3p
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FIG. 2. Rigidity percolation of site-diluted tree&) a=4, g
=3, andb=3. The infinite cluster probability of one branch)
and the probabilityT; are plotted. In this case the behavior is the
same as connectivity percolation, pg=1/a and the transition is
second-order, wittB=1. (b) =5, g=3, andb=2. Ty, T, T,,
and T; are plotted. All are first order and singular at the same

Pc-

[see Fig. &)], all of the components of can be nonzero,
although all of them are singular at the same percolation
point. This figure also illustrates that the rigidity transition is
first order even though sometimes it is omgaklyfirst or-
der.

In Fig. 3, we illustrate the dependence of rigidity perco-
lation on the coordination number. In the case we choose

Then the argument of the square root becomes negative f‘Pfere,g=2 andb=1, the transition is always strongly first

p<p., given by p.=(1+v3/2)/2~0.933, so thatAT,
=0.6109.

Numerical results for general bg, «

The results of iterating the matrix Eq4.8) are presented
in Figs. 2—4. Figure @) illustrates that, fog<b, the prob-
lem reduces to the connectivity percolation case. The trans
tion is second order, and only two components of the vecto
T (To and Ty) are non-zero. In contrast, wheésw>g>b

order. The behavior negr=1 is typical of site dilution on
any lattice, because the leading term in the probability that a
site is not rigid with respect to the boundary, is just the
probability that the site is absent, i.e;p. As a increases,
the point at whichT, breaks away from %+ p tends top

=0, as intuitively expected.

i- If we start from a rigid border, it is evident upon direct
iteration using the matrix method that the transmission of
rigidity depends ona and theratio b/g. In the limit b/g
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09 | d
08 | 1
sa
07 F p
TO 0.6 | -
05 |- N FIG. 3. Ty for g=2 andb=1 and fora=3
b (@, a=5 (b), =8 (c), «a=12 (d), and a=17
04 8 (e). The transition is always first order.
03 | 4
c
02 - d 4
01+ € <
0.1 02 03 04 05 06 o o8 0o 1
=1, we have connectivity percolation, while,ifg—0, the C. Bond-diluted Cayley trees

transition is first order ang.= 1. Using trees, we are able to  ag for the site-diluted case. we define the vectr
probe various values ob/g and we present results for =(To,T1,T2,...,Ty). Now, we assume there is a total bof
Pc(a,b/g) in Fig. 4. It is seen that for all case®.  possible bonds between two nodes, and each is present with

~G(b/g)/a for a—=, where the functior& is independent  propability p, so the probabilitys, thatk bonds are actually
of . We also find that for anp/g<1, the transition is first present is

order, and the size of the first-order jumfp3, andp. itself
increases smoothly d5g decreases.

From the site-dilution problem, we conclude that the ri-
gidity transition is always first order, except in cases where it
trivially reduces to connectivity percolation. However, thereSince each node hagdegrees of freedom, at mogtinde-
is a square-root singularity superimposed on the first-ordependent bondgan connect two nodes. K bonds(with k
jump in T, for all b/g<<1. However, on site-diluted lattices >g) connect two node&— g of them will be redundant, and
with b<g, the only rigid clusters are those which are at-the two nodes will form part of a cluster that is internally
tached to the rigid border. In contrast, in bond percolation itrigid. Any number of bonds in excess gfdoes not add to
is possible to haventernal rigid clusters, and the casés the number of independent constraints. Therefore the prob-
> g are nontrivial. Thus we now describe calculations for theability g, thatk independenbonds are present between two
transmission of rigidity on bond-diluted trees. nodes is, for genera andb,

Sk=

b
k)pk(l—p)b‘k for k<b. (23

01

FIG. 4. p. as a function ofb/g and «. The
data are forb/g=2(a), b/g=3(b), b/g=1(c),
b/g=%(d), andb/g=1 (e).

0.04 |

0.01 |
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s, for k<g @
b U= uy. (26)
=9 2 s; for k=g (24) k=1
i=9
0 for k>g,b. If U=g, then the new node body will be rigid. Otherwise it

will have k=g—U degrees of freedom. Formally we then
As in the site-dilution case, thesebonds are not all “use- write

ful” in transmitting constraint from the boundamnlessthe

sub-branch along which they lie is at least partially con- g 9 g

strained. In particular, if the lower-level node hiadegrees  T;= > > .- > Qu,Qu,--Qu P(f,ug,Up,....U,),
of freedom with respect to the boundary, oidy-i of the up=0u=0  u,=0

bonds connecting that node to the newly added node actually (27)
impose constraint. Clearly ik=<i, the branch imposes no

constraint(with respect to the boundargn the newly added Where

node. We thus define thesefulbondsu=k—i, because they

are able to propagate constraint outward from the boundary. S(U—(g—f)) for 0O<f=g
The probabilityQ, for a branch to have useful bonds on it O(f.g.2.U)=) 5y —-q) for £=0,

is then given by

(28)

where, as in the site case, we used the step function and the

g-u
S T for u=1,...g Kroneckers to ensure that the constraint counting is correct.
< As for the site-diluted case, we can write the E@F) in
Qu= 9 (29 matrix form:
1-> Q, for u=0.
vt TLHI=MTL, (29
Now taking « such sub-branches, the total numhkkof use-
ful bars is with
1 (Q1+ Qo+ +Qg) (QatQsz+:-+Qg) -+ Qg
10 Qo Q1 0 Qg1
M=| 0 0 Qo Qg2
0 0 0 e Qo

Again starting from a bare node wiffi°’={0,0,..,0,1}, and after connecting legs, we obtain the desired probabilities as
T:(M )aTO (30)

To illustrate the matrix method for the bond case, we again do a solvable cask#ith

Nontrivial solvable casex=2, g=3, b=2
From Egs.(23) and(24), we have,

(0o,91,92,93) =[(1—p)?,2p(1—p),p?,0]. (31)
Then from Eq.(25), we have,

(Q0,Q1,Q2,Q3)=[1—(p?+2p(1—p))To— p?T1,2p(1—p) To+ p?T4,p?T(,0]. (32

Using these expressions in the matrix equati29), we have

To 1 (2p—p)To+p*T,y pTo 0 210
T 0 1-(2p—p*)To—p*T;  2p(1-p)To+p?T, pTo 0
T,] |0 0 1-(2p—p)To—p?Ty  2p(1—p)To+p?T, 0
T, 0 0 0 1—-(2p—p?)To—p?T, 1
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From the first of these equations, we find

To=p3To{(4—3p)To+2pTy},

while the second implies

SubstitutingT,=1/2p*— (4—3p) To/2p from Eq. (33) into
Eq. (34) yields a quadratic equation ifi;. Solution of this

T1=2p*To[1-(2p—p?)To—p?T4]

+[2p(1—p)To+p?T,]%

equation gives the nontrivial solution

2-3

2—3
p+2p2+ \/( 5 P

+2p?

2

1.50%

4

(33

(34)

(39

FIG. 5. Rigidity percolation for abond-
diluted tree with =2, g=2, andb=40. The
transition is close to second order, and there is an
interesting nonmonotonic behavior T .

This again becomes imaginary at the rigidity threshold,
which we find to bep.=0.919, and the first order jump in
TO iS, ATO:O810

Numerical results for general bg, «

First we note that, fob=1, the site dilution and bond
dilution are the same, provided we make the transformation
Psite— Poond @Nd T site= Poond! bong thus we focus attention on
b=2.

We present numerical results for bond-diluted trees in
Figs. 5 and 6. In Fig. 5, we show that even wheng and
many internal rigid clusters can exist on the trees, the rigidity
transition remains first order. In fact, we have not found any
values ofg or b for which the bond-diluted trees are second
order, except the trivial cage= 1. However the rigidity tran-
sition is weakly first order for largb/g. A second interest-
ing feature of Fig. 5 is the nonmonotic behaviorigf. Nev-
ertheless on all of the trees we studied, the rigidity transition

FIG. 6. p. for bond-diluted trees. The data are
for g=3,b=1 (a); g=2, b=1 (b); g=6, b=5
(c); g=6,b=10 (d); andg=2, b=10 (e).

200
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rigid subclusters. In Fig. (@), removal of the arrowed bond
leads to six rigid subclusters, while, in Figlby, removal of
the arrowed bond leads to the formation of four rigid sub-
clusters. In both cases we refer to clusters of mutually rigid
bonds In contrast, in connectivity percolation, removal of a
“cutting” or red bond leads to the breakup of the system
into two subclustersOn large rigid clusters, the removal of a
“cutting” or red bond usually leads to formation of many
subclusters, and this “cluster collapse,” like a “house of
cards,” provides a mechanism for a first-order rigidity tran-
sition. However, it does ndhsurea first-order transition, as
it depends orhow manyclusters are formed when a cutting
bond is removed. In reverse, the phenomenon of cluster col-
lapse is “cluster freezing” in which there is a sudden jump
in the average cluster size as many clusters suddenly become
/ mutually rigid (for example, by replacing the arrowed bonds
in Fig. 8. It is likely that these ideas can be used to develop
scaling arguments for the amount of cluster collapse required
for there to be a first-order rigidity transition, and we are
a) currently working in that direction.

B. Comparison with constraint counting methods

For simplicity, first consider bond percolation, for which
the argument is simplest. Onragular lattice there areN
nodes of coordinatiom, with each node having degrees of
freedom, and withb bonds connecting each pair of nodes.
Now we dilute the bonds of the network, withthe prob-
\ ability that any one bond is present. Then, “on average,” the

number of degrees of freedorfiN, that remain at dilution
p is [16]

fN=Ng—pbzN2+B, (36)

where the factor ofis due to the fact that each bar is shared
between two nodes is the number of bonds that are “re-
dundant” in that they are in regions of the lattice which
would be rigid even if they were removed. The mean-field
b) approximation reduces to assuming tBat 0, so thatf =g
—pbz2, and thusf approaches zero gi.=2g/bz. This
FIG. 7. The effect of removing a bond on the cluster size dis-counting procedure is slightly modified on trees, as the bor-
tribution. (8) Removing the arrowed bond from this rigid cluster der is rigid, so that every bond which is next to but lower
leads to six separate rigid clustefB) Removing the arrowed bond than a node in the tree contributes to the rigidity of that node
from this connected cluster leads to four separate rigid clusters. (the bonds are not “shared” as on a regular laftice
In this case, the constraint counting is
is unique and first order. As in E(B), there appears to be a
singular behavior superimposed on the first-order jump in fN=Ng—pbaN+B. (37
To. On the bond-diluted trees, the percolation threshold de- . . .
pends on all three parameteysb, and«, nevertheless there Thus we have the same expression as in E8), W'th the
is a simple behavior in the large limit (see Fig. 6, so that 'ePlacementa(tree)~2z/2 (regular lattice. If we again as-
Po~G(g,b)/a for a—os. sume thaﬂ_3=0, we find pC(B=O)=g/_(ba). This estimate
is grossly in error when compared with the actual results for
trees(see Fig. 6. Clearly the stronger the first-order transi-

IV. "HOUSE OF CARDS” MECHANISM tion, the greater in error the constraint-counting mean-field
AND COMPARISON WITH OTHER WORK theory becomes.

A. “House of cards” mechanism for first-order rigidity

The mechanism for the first-order rigidity transition is il- C. Global constraint counting

lustrated in Fig. 7@ for an =2, g=2, b=1 tree, and in It has been observed that, in two dimensida$§], al-
Fig. 7(b) for the bond-diluted triangular lattice. In these fig- though the number of floppy modes is always continuous,
ures, we presented a rigid cluster, and indicated a bonthe second derivative of that quantity is singular. This is
which we then remove. On removal of the arrowed bondpased on counting the number of degrees of freedothe
both of the rigid clusters “break” up into more than two whole lattice If we perform a similar calculation on trees,
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FIG. 8. Floppy modes on a bond-diluted tree
with =6, g=3, and b=1. The number of
floppy modes per siteff is continuous as are its
first (f') and secondf(") derivatives.

the surface bonds dominate, nevertheless the results are ider on trees. However there is a square-root singularity su-
teresting. Thus we performed a calculation which keeps tracperimposed upon the first-order transition occuring in the
of the number of redundant bonds on the trees for all levelinfinite-cluster probability. For example, this is explicitly
going outwards from a rigid boundary. We performed thedemonstrated in Eq(8).

calculation for bond-diluted lattices with=1. In that case, (2) A constraint-counting mean-field theory which ignores
the number of redundant bondslevels away from the redundant bonds is qualitatively incorrect for trees. This
boundary is given by method does not describe correctly the nature of the rigidity
« transition. It can also grossly underestimpte especially if
_ L-l N [—=1\k( 1 _ ol 1ya—k the transition is strongly first order.
Bi=a gg (k g)( k)(pTO JA=pTo 9% (3) We defined a vector order parameter which describes

(38  the number of degrees of freedom two points have with re-
spect to each other. Although there is the possibility of mul-
tiple phase transitions with such a vector order parameter, we
find that there is only one transition on trees.
L (4) The number of floppy modes and its first and second

B=2 B,. (39 derivatives are nonsingular, probably due to the dominance

=1 of surface bonds on trees.

(5) Bootstrap percolation and rigidity percolation are ex-
actly the same ob=1 trees, but different on regular lattices.

wherelL is the total number of levels in the tree. The total
number of redundant bonds in the tree is

From global constraint counting, we then have

_ It is not clear, at least to these authors, to which céafse
f=g—pa+B/N,. 40 ' '
9~ pa s (40 eithep, the current field theory of Obukhov appligk7].
Ng=a"/(a—1) is the number of sites on the level tree. Taken together with numerical results in two and three

Results forf, af/ap, and#?f gp? are presented in Fig. 8. Itis dimensiond5,20,21, there is now quite strong evidence that
clear from these calculations that there is no singular behavhe rigidity transition on random lattices is oftérst order,
ior in the second derivative dfon trees. However, there is a in contrast to the large number of earlier papers which have

peak in the second derivative, but at a valugpofonsider- ~assumed the opposite. Although the the evidence is strong
ably less thamp,. that the infinite-cluster probability is usually first order, the

triangular lattice dat@5] suggest that thetressed backbone
is second order. Thus the elastic constants may be second
V. CONCLUSIONS order, while the infinite cluster is first order. We suggest that
We have shown that it is straightforward to develop andthe singular behavior superimposed on the first-order transi-
analyze tree models for the transmission of rigidity from ation in P, is in fact a reflection of the second-order character
rigid border. In order to analyze these models we must, irof the backbong20]. It is interesting to note that the super-
general, consider the transmission of “partial” rigidity, as position of a first-order jump and a critical behavior occurs
partially rigid structures may lead to rigidity higher up the in some exactly solvable “vertex models™ of ferroelectrics
tree. Some of our main conclusions are the following: [22]. It is also possible that on some lattices, the partial-
(1) Except for some “trivial” cases which are equivalent rigidity probabilitiesP4,P,...P4 may be singular at different
to connectivity percolation, the rigidity transition fisst or-  disorder thresholds. To our knowledge, there has been no
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numerical study of that possibility on regular lattices yet. ACKNOWLEDGMENTS
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