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Stabilization of tilt order by chain flexibility in Langmuir monolayers
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Institut fir Physik, Universita Mainz, D55099 Mainz, Germany
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Langmuir monolayers are modeled as systems of short chains, which are confined to a planar surface at one
end, but free to move within the plane. The phase behavior is calculated in a mean field approximation, which
combines the self consistent field method with elements of classical density functional theory. It is shown that
phases with tilt order are unstable in systems of stiff chains, but can be stabilized by chain conformational
entropy in systems of sufficiently flexible chains. The chain entropy is also responsible for the appearance of
an additional untilted phase, the liquid expanded phase. The region of stability of the different phases is
discussed, and their microscopic structure is analyzed in some {&8tHI63-651X97)11405-2

PACS numbe(s): 68.15+e, 64.75+¢, 68.18+p, 68.35.Rh

[. INTRODUCTION sition is driven by the interplay between the entropy of chain
- ._disorder and the energy associated with collective chain
Monolayers of amphiphilic molecules have been studied,jignment. The latter may result from simple packing effects,
for many years for practical and fundamental reasons. Placeg} from additional(e.g., dipolay anisotropic interactions be-
on a solid substrate, they build Langmuir-Blodgett films, tween chain segments.
which have important technical applications, e.g., in thin film  The model hence successfully reproduced the LE and LS
technology{1]. Monolayers of lipids on water are of biologi- phases, yet it seemed to fail to display stable phases with
cal interest, since lipid bilayers—consisting of two weakly collectively tilted chains. Indications of tilt order were only
coupled monolayers—are essential ingredients of biologica¥een in the unstable regions of two phase coexistence. In that
membranes$2]. respect, the observed phase behavior was similar to that of
The phase diagram of Langmuir monolayérsnolayers gra_lfted rigid rod systems. _Grafted yods with fixed grafting
adsorbed at the air water interfaee low surface coverage is points may show t'rllt orde}r in a region of sErf_ac_e (;]C_Jvr?rage
qualitatively similar for long chain fatty acids, alcohols, and [10,11. However, the surface energy per chain is higher in

1 . : the tilted region than in the untilted region. When the rods
lipids (Fig. 1) [.3".1]' Its most remarkgble feature_ Is the Pres-are given translational degrees of freedom, the tilting transi-
ence of two distinct fluid-fluid coexistence regions at inter-

. ” - . tion is therefore replaced by phase separ 13.
mediate temperatures: the familiar “gas-liquid” transition at According to a E):ommonypri)cture tiI? ogjﬁek?inglLangmuir
low surface densities, and an additional transition from gq,qn4jayers results from a mismatch between head group and
“liquid expanded” (LE) phase to a “liquid condensed”

state at higher densities. The latter is indeed a transition be-

tween two fluid states, as shown by the experimental obser- {liquid .
vation that positional correlations in the condensed phase condensed) (b éE &gz
1}

decay exponentiallf5]. It is the monolayer equivalent of the ‘
“main” transition in bilayers, which is interesting from a é Z 22 g 1(liquid expanded)
untlted o

biological point of view, because it is found at temperatures
often close to the body temperatufdl.5°C in La-
dipalmitoye phosphatidylcholingDPPQ] [6]. At even
higher surface coverage, monolayers can display a rich spec-
trum of condensed phases, which differ from each other in
positional order, tilt order, and orientational order of the
backbones of the chainig,8]. In this work, we shall discuss
the condensed phases which can coexist with the expanded
phase, i.e. the high temperature untilted phds® and the
low temperature tilted phadé,, see Fig. 1

The nature of the transition between liquid expanded and
condensed phases has been discussed over many years. Inan .4
earlier papef9], we presented self consistent field calcula-

tions of a “minimal” model for Langmuir monolayers, FIG. 1. Phase diagram of Langmuir monolayers at low surface
where the amphiphilic molecules were modeled as semiflexsoyerage(schematiz. The liquid-gas coexistence region is repre-
ible chains with one end grafted to a planar surface. We havgented in a compressed way relative to the liquid expanded liquid

shown that two ingredients are needed to bring about coexondensed coexistence region. Whether the latter ends in an upper
istence between two liquid states: The chain flexibility, critical, or turns into a second order transitiéindicated by the

which stabilizes the expanded phase, and the chain anisadashed lingin a multicritical point, has yet to be establishedter
ropy, which dominates the liquid condensed state. The trarRef. [3]).

Temperature

Molecular area
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tail segment size. The larger area of the head group con-

strains the coverage of the condensed phase, and stabilizes

surface coverage regions with tilt order. This mechanism is

doubtless the driving force for tilt order in many cases, but it

is certainly not the only one. For example, it hardly explains

the experimental observation of tilt order in monolayers of

triple chain phospholipid§14]. Another potential cause for

tilt is related to the internal structure of the chains: When the

chains are tilted, monomers can “hook” into each other, and

thus pack more effectively. Presumably, this is responsible

for the presence of tilt order in Monte Carlo simulations of

endgrafted bead-spring chaifisb,16. Tilt order may also be

induced by attractive interactions between the chains and the

bare surfacd10,17]. However, for hydrophobi¢ (CH,),]

chains on a water surface, that seems less likely. X
All these tilting mechanisms do not operate in the mini- "water" \head segment

mal model of Ref[9]. Therefore one would not expect to

find tilt order there, unless the model is extended in a suit-

able way. We shall show that the conformational degrees of FIG. 2. Schematic picture of the model. The inset shows the

freedom of the chains generate another mechanism for tHgnctional form of the bending potential.

stabilization of tilted states: As we discussed above, giving

the chains some flexibility brings a phase into existence, th&odlike tail segments of lengthy and diameteA,, and one

liquid expanded phase. On making the chains more and moféead segment, which is confined to a planar surface at

flexible, the condensed phase is also affected: The gain of 0. They are subject to three different types of potentials:

conformational entropy at lower surface densities compen- (i) External potentials, which confine the head segment at

sates in part for the loss of surface energy. As a result, thé<0 and the tail segments at-0.

region of stability of the condensed phase is extended. Pro- (ii) A bending potential, which favors parallel alignment

vided the chains are sufficiently anisotropic, the coverage af adjacent segments.

coexistence becomes low enough to support collective tilt. ~ (iii) The interactions between segments. Tail segments are
The influence of conformational chain disorder on tilt in @nisotropic, have a repulsive hard core, and attract each other

fatty acid monolayers has received some interest recentl§t larger distances. Head segment interactions are isotropic

[18,19. It has been argued that, in tilted phases, an increasgnd purely repulsive.

in the number of gauche defects in the chains reduces the tilt The external potentials;™ (head segmentaindh (tail

angle at the same area coverage. The present work discuss&gmentsare taken to be simply harmonic:

an antipodal, although related effect: Chain disorder stabi-

lizes homogeneous tilted phases at molecular areas, where hEX(r) 0, z<0 h{¥(r) _ kz?, z<0
ordered, straight, chains phase separate into two untilted keT kaz2, z>0 an keT |0, z>0,
phases. (1)

The purpose of this work is twofold: to explore the pos-
sibilities for tilt order within the minimal model, and to es- wherekg is the Boltzmann constant afidthe temperature.
tablish a complete phase diagram in terms of the variables The choice of the bending potential is guided by the idea
stiffness and chain anisotropy. The parameter region inhat tail segments in the model chain correspond to two
which tilted phases are stable will be determined, as well a&H, groups, each in a hydrocarbon chain. A molecule in an
the parameter region in which a liquid expanded and a liquidall trans conformation is then represented by a completely
condensed phase can coexist. Where those two regions ovettretched model chain with bending angies 0. A confor-
lap, one finds a phase diagram which is very similar to thgnation with onegauchekink is represented by a model
one sketched in Fig. 1. The paper is organized as followsghain, which has one bending andgle: (7/3) or co®=3. In
The model and the self consistent field method are describegew of these considerations, the bending potential is given
in Sec. Il. A variant of the moddd] is used, which allows, the form U(g)/(kBT):uo(g)' where u is an adjustable
among other things, for a more detailed study of chain destiffness parameter, and
fects. Section Il presents the predictions of the self consis-
tent field theory first for flexible chains, then for stiff chains. 0(0) — 25+ 34x2— 4003+ 480k*  with X=1— Ccosh.
The properties of the different phases are discussed in some )
detail (density profiles, nematic order, chain defectsd an
overvievy over the phase behavior is given. The results argg functioan(H) is plotted in Fig. 2. It has a minimum at
summarized in Sec. IV. cos()=3, and takes the valud,=1 there. The relative po-
tential barrielU ,,/Uy~4 has approximately the same height
as the energy barrier frotnans to gauchein popular poly-
ethylene modelge.g., by Rigby and Rog20]). Moreover,

A schematic picture of the model is shown in Fig. 2. Thethe thermal average of @ in a free model chain ati
amphiphilic molecules are modeled as chains contaiming =1, {cos())~0.7, is in rough agreement with the value ob-

1. MODEL
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tained for polyethylene a¢BT:_ Eq, wher(.aEg i; the energy UloAg), |zI<lof2, (XP+y?)<Aglm
of agauchedefect[calculated in the rotational isomeric state ~ K(r,w)= 0 otherwise. (5
(RIS) schemd21] ].

The mapping of carbon groups on chain segments should We shall also need the total density
not be taken too literally, since the model is so simple com-
pared to a real hydrocarbon chain. However, the choice of a
bending potential with two minima such as Eg) has the
advantage that it allows us to define chain defects and to
study defect distributions. Note that the energygaiuche = Where the integraf dw is performed over the full solid angle
defects is of order 300 K, i.e., room temperature, in units of47. With these definitions, we are able to formulate a con-
the Boltzmann constarkz . Hence an analysis of their dis- crete ansatz for the density functional We use a local
tribution can be instructive, especially in short chains. Fordensity approximation, i.e., the functionlis given as the
most other purposes, a simple harmonic potential such as héegral over a free energy density function.
been used in Ref9] is entirely sufficient, and yields quali- 1 1
tatively the same results. Il o - /

The interactions between segments are introduced in kT F f dr[ folp(r)]+ 327* f f dw dw
terms of a functional/[{py,(r,w),p:(r,w)}] of the center of
mass densities of heag) and tail (o) segments with ori- ><pt(r,w)pt(r,w’)[V(w-w’)—e]]. )
entationw(|w|=1) at positionr. The functional includes
short range repulsive hard core potentials as well as longer
range attractive interaction tails.

In an exact treatment of the above model,
perform ensemble averages over all possible configuratio
of chains, and the corresponding center of mass densities. E{
this work, we will resort to a local mean field approximation. €
The densitiepy, (r,w) are replaced by their ensemble aver-
ages, andF is taken to be a functional of average densities.
Single segments interact with others via average fields

1
p(N=7- f dwl p(r,w) + pr(r,w) ], (6)

The first term describes a reference system of identical
one has tgegments with isotropic hard core interactions. The free en-
neroy densityf o[ p] is derived from the_ hypothetlt_:al equation
state of a dense melt of such “ideal” chain segments:
ing part of a chain, the segments have no translational
degrees of freedom, and their equation of state has no ideal
gas contribution. Furthermore, segments are connected to
others at both ends, and therefore they mainly interact within
a plane perpendicular to themselves. Hence we assume that

SF their equation of state is reasonably well approximated by
EE AR (3)  the equation of state for hard disk&6], from which the ideal

Y gas term has been subtracted,

hm(r,w) =

The effect of local density fluctuations is neglected. 1
This approximation has a number of important implica- M(p)=p _2_1)’

tions. First, correlations between different chains are ne- (1-7)

glected. The problem therefore reduces to calculating the . .

partition function and the density distribution of a single With the reduced pressuié=p/kgT, the densityp, and the

noninteracting chairfrandom walk in the inhomogeneous Packing fractions,=pAelo. From this one can derive the

external fieldsh, ((r,w)=hi%+hg¥, which have to be de- € energy density using(fo/p)/dp=11/p"

termined self consistently using E¢(B) (cf. [22,23)). Note 7

that correlations within a chain are still present due to the fo[p]zp{r—h’ﬂl— 77)]- 9

chain connectivity. Second, the nonintegrable hard core in- 7

teractions requi_re spec_ial treatment. We will choose & COM- The second term in Eq7) accounts perturbatively for the
mon approach in density functional theoriest 23, which 5 nisqiropic and attractive interactions between tail segments,

is to expand around a reference system of purely repulsivg, 1 the eading order in the densities. The attractive part of
segments. Third, the mean field approximation does not ca;}he interaction is absorbed in a single parameteThe an-

ture the fact that stiff chains are always anisotropic, even ifgqrqnic part of the interaction is described by an even func-
ion V(x)=V(—x), and can be expanded in Legendre poly-

the constituting segments are not. Effective anisotropic interf
actions result, e.g., from packing effects. Within the mea

®

omials,
field approach, they have to be introduced explicitly in terms I
of an effective segment anisotropy. >
Since the segments are extended objects, the center of V(X)=V(—Xx)= 2 . P(X)v,. (10
1=2,4

mass density) corresponds to a segment mass density

A We shall neglect all contributions except for the lowest,
Ph,t(f,W)=J dr'Kp o(r=r1",W)pp (r',w). (4 =-v,. It should be emphasized again that the anisotropy
parametery cannot necessarily be traced back to an actual
The functionK(r,w) reflects the shape of a segment with anisotropy of single free segments. It is an effective param-
orientationw. Since the segments are fairly compact, theeter, which has to be introduced in a mean field theory in
orientation dependence of the shape functdn,w) can be order to include effects of the chain anisotropy. Thus it has
neglected, and it is reasonably well approximated by do be identified with an effective anisotrogyer segment,
simple step function. rather than with the anisotromf a segment.
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We complete the definition of the model by specifying themuch higher. In a simulation; can be determined from the
parameters,=k,=20/31,2, e=4013, andA,=2.011% (see  analysis of orientation correlations between segments in a
[9]). This choice is motivated as follows: The parametersmelt of free chains.
k,, andk, can be chosen arbitrarily, provided they are large The procedure used to solve the problem is similar to the
enough to ensure the confinement of the heads at the surfacecheutiens-Fleer method for lattice models of polymers at
and of the chains above the surface. The strength of thgurfaces22]. One defines recursively the end segment dis-
attractive interactiore determines the density within a hy- tributions (=n)
drophobic layer, and affects the jump in the surface coverage
at first order transitions. As shown in R¢g], e does not Wi (r,w) = i J AW/ W, o(r’,w’)el = nrw=Uw-w)JikgT
have much qualitative influence on the phase behavior; '’ A e ’
therefore it is not varied systematically here. In a virial ex-
pansiong is given by the integral over the Mayérfunction lo
of the attractive interaction, e= [(exH —vau(r)/ksT] r'=r—o[w+w], (13)
—1)dr. The parametere and the effective chain diameter
A, were chosen such that they are compatible with the size 1
and potentials of alkane chains, if one maps two gaH Wi (r,w)=-—— f dw’Wi+1(r"W’)e[_ht(r/xW)_U(W'W,)]/kBT’
groups on one model segment, with alkane potentials taken 4m
from Ref.[27].

All calculations were done with chains of tail length
=7. Free model parameters, which were systematically var-
ied, are the stiffness parametemand the anisotropy param-

eterv, hereafter given in units ofs. We shall comment ith Wo(r,w) = exp(—hn(r)/kgT) andvvn(r,w)=1. We con-
briefly on their connection with interaction parameters ingjder a homogeneous monolayer Mf chains, which each
other systems, e.g., simulation models. In a simulation, th@ccupy an area per molecwe Hence we have translational
effective stiffnessi can be estimated from matching the ther- invariance on thexy plane, and the single chain partition
mal averagdcosé) for the angled between adjacent bonds, function is given by

in a dense melt of free chains, with the average obtained for

a random walk of rods with the bending potentidll, Eq. 1 —

(2). The least accessible parameter is the effective anisotropy Zozm j dz dwWi(z,w)Wi(z,w), (13
parameterv. As noted earlier, its origin is due mostly to

packing effects. A lower bound can be calculated from thehich is independent df The center of mass density of the
excluded covolumethe second virial coefficientof two ith segment can be calculated via

stretched chains of the persistence length, divided by the
number of segments. In the present modelyatl—2, one
obtainsv~105. Such a calculation, however, neglects the
anisotropy in the attractive interaction. Moreover, the seg-
ment density in the hydrophobic layer is very higtee Fig.
10), such that higher order virial coefficients come heavilyand the total free energy per chafwith the de Broglie
into play. Hence the resulting effective anisotropy will be wavelengthi g)

I
r’=r+§0[w+w’], (12

1 Wi(z,W)Vvi(z,w)

hlzw= 5 — 14

01 ®
[+2
&
—~  -13.21 . . =
:'2 Fixed molecular area r 100 @
c —— Maxwell construction 2
> 2
a 1322+ 01 @
J -135 |y (arb. units) -130
% 13.23 L xis FIG. 3. Free energy per particle vs molecular
o ’ area at chain stiffness=2 and anisotropy
% LE =13.7. The thin line indicates the Maxwell con-
£ s394 LS struction. The inset shows the Gibbs free energy
-~ 7 per areag/(kgT) vs the chemical potential.
>
o
S
8 -13.25 u=
° v=13.7 -
o
S
L. 1326 : : !
2.0 3.0

25
Molecular area: A/A,;
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' ' (a 13.0
Untilted state

v=13

Tilted state

-13.2

V i35

-13.3

Free energy/molecule (arb. units)

14.0 !
' ' ' 2.0 2.5 3.0
(b)

Untilted state A/A,
----- Tilted state

FIG. 5. Phase diagram in the plane of anisotropgnd molecu-
lar areaA at chain stiffnessi=2.

Unless stated otherwise, the free energy and the chemical
potential will be given in units ofkgT and shifted by
In(\3)—1 in the following.
In practice, it is useful to expand functions of orientation
w in spherical harmonics. Moments up lte 10 were taken
u=2.1 v=13.7 into account, i.e., 121 functions, a number which proved suf-
‘ , . ficient. Thez direction was discretized in steps lgf5. The
30 mean field equations were solved iteratively, using the Leg-
endre coefficients of the fieIdIsL“,‘f(r,w) as iteration vari-
FIG. 4. Free energy per particle vs molecular ateafor u  a@bles. The iteration procedure combines a method proposed
=2 and different values of; (b) for v=13.7 and different values PY Ng[28] and simple mixing: Let the vector, be thenth
of u. In (a) different offset values have been subtracted from theguess of the set of iteration variablésthe fields calculated
free energy. A state with tilt order emerges at high chain stiffness ofrom there, andi,=f,—x, the remaining deviation. Follow-
high anisotropy(dashed ling ing Ng, we define the matri}J;;=(d,—d,—;) - (dy—dy—j)
and the vectoV;=(d,—d,_;)-d,, where the dimension of
U andV, i =max=jmax, IS arbitrary(2-5 in this work. We

Free energy/molecule (shifted)

25
Molecular area: A/A,

N =N Zo—In(A/N3)—1 then invertU, determine the coefficientd;=U;*V;, and
B calculate X5=x,+ A (Xq_i—Xn) and fA=f + A (f,_;
dfg —f.). In the iteration procedure suggested by Ng, the (
f dz) | folp]—p dp +1)th guess ok is given byx,,,=f%. Unfortunately, this

method does not converge for the present problem. Good

—— | qwdw’ results were, however, obtained with the prescriptiqn,
302 | AW AW ez W) =xA+\(fA—x%), with \ ranging between 0.1 and 0.2. A
relative accuracy of 10° was usually reached within less
Xpt(Z,W')[V(WW')—e]J. (15) than_ 100 iteration steps. The iteratively qbtained solutions
for fixed surface coverage were usually unique, unless meta-

stable statese.g., tilted stat@sexisted. In that case, the so-
The chemical potentia, i.e., the free energy gain on adding lution with the lowest free energ{l5) was selected.
one chain, is therefore given by

Ill. RESULTS
1 oF - ZoA A. Stiff chains
keT N keT M2 (16) '
Figure 3 shows a free energy curve in a system of rela-
tively stiff chains =2, v=13.7). On increasing the mo-
S&cular area, the free energy exhibits two minima and then
rises. As the area tends to infinity, not shown, it diverges
negatively, following the ideal gas termIn (A/)\é). Hence
9 _ i F M~ 17) the Maxwell enveloping function has a negative slope, which
keT A |NkgT kgT)" guarantees the mechanical stability of the system: The

In the grand canonical ensemble, this leads to the Gibbs fr
energy per surface arep
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FIG. 6. Free energy per particle vs molecular area at chain stiff-

nessu=1 and anisotropy =20.3. Two solutions of the mean field
equations are shown, one corresponding to an untilted &taitk
solid line), and one describing a tilted stat@ashed ling The thin
line indicates the Maxwell construction.

spreading pressurBl/kgT=—dF/dA N1 is always posi-
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LS Ly

0.60 D Untilted state

----- Tilted state
|
0.40 1
S, n
0.20 | i
L ISR B
0.00 ‘ e===-== . ‘
2.0 25 3.0

A/A,

FIG. 8. Nematic order paramet&rand biaxiality » vs molecu-
lar area atu=1 andv=20.3. The solid line shows results for the
untilted state, the dashed line for the tilted state. Also indicated are
the locations of the tilting transitions | and Il at a fixed grafting
density, and of the coexistence regions between liquid phases in

tive. The pressure in the gas phase is, however, very low; jffyStems of mobile chains.

the Maxwell construction the common tangent with a coexmerge into one at a critical poifiEigs. 4a) and 4b)]. This
isting gas phase is practically horizontal. Figure 3 illustratesyoint is difficult to locate from just looking at the free energy
the situation where one has two distinct regions of phas@yryes, but can be identified via inspection of the Gibbs free

separation, first between a condensed pliaS¢ and an ex-

energy as a function of the chemical potential. On increasing

panded phas&-E), and then between an expanded phase ang oy, on the other hand, the free energy minimum belong-
the gas phase). The fact that there is phase separation cafng to the condensed phase decreases relative to the other
be inferred from the Maxwell construction, which does notminimum. A triple point is encountered, beyond which the

follow the free energy curve in those two regimes, and fromjquid expanded state is metastable, and the condensed phase

the observation that the Gibbs free enerdy) is not a
unique function of the chemical potentidig. 3, insel.
If one decreases the chain stiffnessr the chain anisot-

coexists with the gas phase. A state with collective tilt
emerges in the unstable surface coverage region. Tilt order
thus occurs in a system of fixed grafted chains, but is re-

ropy v, the coexisting expanded and condensed phas§fiaced by phase separation when the chains are allowed to

0.4 , ' [
----- Tilted state I
Untilted state__.---=T=~~~
03 oot |
l”
l"
l"
2} / |
A_° ;
- ’
© /
\Y/ !
01 / |
[
[
H
I
0.0
0.1 ; , .
2.0 22 2.4 26
AJA,

FIG. 7. In-plane alignment of segmerdsvs molecular area at

move.
So far, our results essentially confirm and complete the
results reported in Ref9]. Systems of relatively stiff chains

D
S

u=1 andv=20.3. The solid line corresponds to the untilted state,
the dashed line to the tilted state. At a fixed grafting density, the FIG. 9. Types of tilting transitiongsee the text for an explana-

tilted state is stable in the coverage region between | and II.

tion).
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‘2 02 r | ,’\\ \ 5 . FIG. 10. Density profiles of the monolayer in

3 0.0 A LN the directionz perpendicular to the interface, at

S 0 2 4 8 u=1 andv=20.3 in different phasedifferent

A=2.9 : LE region molecular aread\). Long and short dashed lines

o 08— . . — show the center-of-mass densities of tail and head

= 1 1 A: molecular area segmentspy, (z), respectively; the solid line

; shows the total segment densjiyz).

E ] —— segment density

i 4 - - - - head segments(center of mass)

_§ — — - tail segments (center of mass)

show qualitatively the same behavior as found earlier in @oth the tilted and untilted phases, yet it stays higher in the
somewhat different model. Hence we shall not discuss thisilted phase. At the first order transitighl), S jumps from
regime in more detail. The phase diagram in the plane 00.37 in the tilted phase to 0.21 in the untilted phase. The
anisotropy vs molecular area at chain stiffnass2 is  value ofSin the tilted state is thus comparable to its value in
shown in Fig. 5. the nematic phase of liquid crystals, right at the transition to
the isotropic phasés=0.43 in the Maier-Saupmodel[29]).
B. Flexible chains The in-plane symmetry breaking is reflected by the behavior
%f the biaxiality, which is nonzero only in the tilted state.

The transition between .the Condensed. and. ‘?Xpa”de From these results the nature of the tilting transitions in
phases is governed by the interplay of chain flexibility and

) ; . . the system can be inferred. The discontinuous low coverage
chain anisotropy. In systems of more flexible chains, on

. . . ong ansition(Il) is associated with ordering and/or disorderin
recovers two phase coexistence .'f the hlghe_r conformatlonan single segments. It is thus essenyi&llzgnematic—isotropic ’
iesr:)ttrr(())%); is compensated for by higher effective segment Mransition, analogous to those found in liquid crystals. The

Free energy curves for the set of parameiersl and continuous high coverage transitigh, on the other hand,

v=20.3 are shown in Fig. 6. As in Fig. 3, there are two
successive first order transitions between fluid phases, pass-
ing from the gas phase&3) via a liquid expanded phagEE)
to a liquid condensed phasé ). Contrary to the case of ]
stiffer chains, however, the coexisting condensed phase is ".
tilted. Upon further compression of the monolayer, an addi-
tional continuous transition to an untilted stdteS) takes : ‘
place. 0.5 4
The tilt order can be measured in terms of the in-plane \
alignment of segmentsduz\/<wx)2+(wy>2. The fact that
d,#0 implies that the symmetry in thvey plane is broken.
Figure 7 demonstrates that the “tilted state” indeed displays
this kind of azimuthal order. In systems of fixed grafted
chains, the tilted state is stable in a coverage interval,
bounded by a continuous transition at high coveragarked

P,.(cos 6)

AP _(cos 0)

! AN ey
---- A=222 (untilted state) \ "~ //
AY

| in Figs. 6—8 and by a first order transition to the untilted ---- A=2.22 (tilted state) \ \_,f//
state at low coverag@narked l). When the chains are given ——- A=2. N/
lateral mobility, this second transition disappears in the co- 05 =’

. ) 0.0 -0.5
existence region of the, and LE phases. 1-cos 6

Further insight can be gained from an inspection of the
nematic order ir] the system. The relevant quantity here is the FIG. 11. Difference between the distribution of bending angles
traceless ordering matrp29] S=(3w;w;— d;;)/2. Ithas the  p(cos4) in the middle (i.e., between second and third tail seg-
eigenvalues{S, — (S— 7)/2,— (S+ »)/2}, with the nematic menty and at the end of the chaing, P ,iq(cOS ) =Ppq(COS 6)
order parameteB and the biaxialityn. The nematic order _p_ (cosé). Results are shown for the parameters1 andv
S is always nonzero, since the chains are always aligned te 20.3, and for different statgstable or unstabjeat different mo-
some extent in the direction perpendicular to the surface. Agcular areash. The inset shows the distributid,,q of the outer-
the molecular area increases, it decreases monotonically inost angle, which was identical in all cases.
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A/A,

FIG. 12. Phase diagram in the plane of anisot-
ropy v and molecular ared at chain stiffness
20.0 u=1. The inset shows a blowup of the region
where the liquid expanded phase is stable.

21.0
2.0 25 3.0

A/A,

results from in-plane ordering and/or disordering of whole The distribution of bending angles shown in Fig. 11, is
chains. The surface induces an orientation direction; hencenore interesting. It has by construction two maxima, one at
the transition is oiXY type[30]. The two types of transitions the bending anglé=0 and one at co8=0.5. The area un-
are illustrated in Fig. 9. der the second maximum gives the concentration of confor-
The structure of the monolayer shall be analyzed in somenational(gauche defects in the chains. As demonstrated in
more detail. The density profiles in the three phases do ndhe inset, the distribution for the outermost angle, the angle
differ remarkably from each other. Examples are shown irbetween the last two segments, is always the same up to the
Fig. 10. The total segment density is constant throughout theolecular areas which were considered. The main graph
layer, and independent of the surface area per chain or the téhows the deviations from this distribution for the inner
order. It is also independent of the chain stiffness and chaiangles. In the expanded phase, chains have more defects in
anisotropy, and only determined by the interaction parametahe middle than at the ends, i.e., they are more disordered
e (not shown. Compression results in thickening of the there. In the condensed phases, in contrast, the conforma-
monolayer. tional order is highest in the middle. This result is in agree-

A/A,

FIG. 13. Phase diagram in the plane of anisot-
ropy v and molecular ared at chain stiffness
u=1.5.

17.0

17.5
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FIG. 14. Projection of the phase diagram in anisotropyhain FIG. 15. Same as Fig. 14, with different axis variables. See the

stiffnessu, and molecular ared into the (,v) plane. Short dashed text for an explanation.
lines indicate multicritical lines, long dashed line critical lines, and
the solid lines are triple lines, where three phases can coexist §&ms of slightly more flexible chains<1.45, the transition
indicated. Shaded areas are parameter regions where tilted pha%’eén also be continuous in a window of(see Fig. 14
can be stable. Coexistence of liquid phases is found in the hatched Figure 14 summarizes the phase behavior for chain stiff-
area(expanded phase and one of the condensed phasdsn the nesses ranging between betwees 1 and 2. It shows a
dark shaded arefdilted and untilted condensed phas8ee the text . . - - .
for a further explanation. projection of thg three dimensional phase diagram in the
(A,u,v) volume into the @,v) plane. The shaded area des-
ignates the region where a tiltég state is stable. The tran-
sition from this phase to the untilted LS phase is continuous
én the light shaded area, and first order in the dark shaded
region(i.e., the two phases phase sep3aratle light shaded
area is thus bounded by two lines of tricritical points. The
liquid expanded(LE) phase is stable in the hatched area,
which is bounded by a tricritical or critical line, and a triple
line. At very large chain stiffnessj~ 3.5, these two lines
merge and disappednot shown. Hence we recover the
rigid rod result reported in the literature. Monolayers of rigid
rods display neither stable tilted phases nor a liquid ex-

ment with molecular dynamics simulatiof®1,32 and other
model calculation$33].

We close this section with the discussion of the phas
diagram at chain stiffness=1 (Fig. 12. At low chain an-
isotropy v, there is only one single untilted liquid phase,
which coexists with the gas phase. A tilted phaseemerges
at a tricritical pointy =20.1, and separates two untilted lig-
uid regions, the expanddtlE) and condensed.S) phases.
The transition between tHe, and LS states is continuous at
lower values of the anisotropy, and replaced by phase
separation at the tricritical point=22.7. We note that the
tilting transition in monolayers of chains with fixed homoge- par\}\?ed Ehﬁse' ¢ this di ith a f int
neous grafting density remains continuous. The tilt order pai:. te sha Icommenf OE IS 'i‘ﬁrafm \3” a fw pOINtS.
rameter vanishes continuously at a critical line, which is, Irst, monolayers of chains with Tixed anisotropyv
however, hidden in the coexistence region if the chains are, 16.4, d|§play t|I'ted phaseg only if thg chams.are SUff"
mobile. Beyond the triple point, where the liquid expandedC'enﬂy flexible. Thls suk_)s_tgntlates our claim, that tilt order is
phase becomes metastable=(20.5), the region of stability stabilized by chain flexibility.

. . . Second, the untilted condensed and expanded phases,
Sf:tgj tilted phase narrows down and finally disappears alt)oth fluid, are not fundamentally different from each other.

The possibility of, e.g., hexatic order is ignored within our
approximations. Such ordering has, however, been reported
in the liquid condensed phase of lipid monolayg§ and is

We have seen that systems of stiff chains exhibit fluidpresumably present in our model too. If this is indeed the
fluid coexistence of two untilted liquid phases, whereas, incase, the coexistence between the LE phase and the LS or
systems of flexible chains, the liquid expanded phase coexX:, phase is expected to end in a multicritical point, and the
ists with a tilted condensed phase. In an intermediate rangansition to turn into a continuous transition at lower values
of stiffness, one can find both. An example is the phase diaef u or v.
gram for chains of stiffness= 1.5, shown in Fig. 13. Phase  Third, the role of temperature has to be discussed. Assum-
separation between an expanded phase and an untilted cdng that the segment density in the monolayer does not
densed phase sets in at the critical pairt 16.8. A tilted change much in the temperature regime of interest, the tem-
phase emerges at=17.1 in the coexistence region between perature enters mainly via the chain stiffnesand the chain
the expanded and untilted phases. The liquid expanded phaasisotropyv. These parameters contain the Boltzmann factor
ceases to be stable at the triple pairt17.4. TheL, and LS  1/kgT, and may have a complicated temperature dependence
phases are separated by a narrow coexistence region; in sys-addition. Let us neglect the latter and takg «<1/T for

C. Phase behavior
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simplicity. Under this assumptionp (1) ~*2 is proportional  long wavelength fluctuations of the direction of tilt destroy
to the temperature, and {u)? is temperature independent. the long range tilt ordef37]. However, one can still expect
The second quantity is interesting in its own right, since itquasi-long-range order, i.e., correlation functions decay alge-
can be related to the chain lengthIn a continuum approxi-  braically.
mation, where chains are treated as space curves of length If the chains are free to move in the plane, tilt order is
L, Lxn and stiffnessy, »<u with orientational dependent replaced by phase separation in systems of stiff chains. In
interactionsV, Vv, it can be shown that only two of these systems of flexible chains, tilted phases remain stable to
parameters are independent, e.qu/n) and @n) [34]. some extent. The conformational entropy of the chains sta-
Hence varying the chain length has the same effect as bilizes tilt order. In fact, it favors phases at lower surface
varying (v/u)*?. One can speculate that this remains quali-coverage in general, which engenders both tilted phases and
tatively true for discrete chains. an additional untilted phase, the liquid expanded phase.
The different possibilities for temperature dependent As a function of the chain stiffnes®r, as we have ar-
phase behavior can be read off from Fig. 15, which redrawgued, the chain lengthone can distinguish between four
the diagram of Fig. 14 in the axis variables/()*? and different regimes.
(vu)*2. For example, the phase diagramsaftu)*>=3 and (a) Very stiff chains(rigid rod limit): Only one first order
(v/u)¥?=4 resemble Figs. 5 and 12, respectively. In theorder transition is found, from the highly diluted gas phase to
neighborhood of the fluid-fluid coexistence region, increasthe untilted liquid condensed phase.
ing the “chain length” variable ¢/u)*? produces almost the ~ (b) Stiff chains(or short chains An additional untilted
same effect as decreasing the temperature. This fits to tH#ase appears in a temperature interval. One finds two suc-
experimental observation that the addition of two (CH cessive fluid fluid transitions from the gas phase, passing the
groups to a system has a comparable effect to the reductidifiuid expanded phase, to the liquid condensed phase.

of the temperature by 10—20 °(35,36. At (v/u)*?=3.4, (c) Chains of intermediate stiffness: Tilted phases can be
the phase behavior of Fig. 13 is recovered, which is similastable. Depending on the temperature, the liquid expanded
to the experimental phase diagram sketched in Fig. 1. phase coexists with either a tilted or an untilted condensed

Note that mean field theories generally overestimate tranPhase.
sition temperatures. The effect is particularly strong in two (d) Flexible chaingor long chaing The liquid expanded
dimensional systems, where the fluctuations even prevent tHéhase coexists with a tilted condensed phase. Upon compres-
possibility of true long range tilt ordéB7], and second order sion of the monolayer, the tilted phase turns into an untilted
tilting transitions are replaced by Kosterlitz-Thouless-typePhase via a continuous or first order transition.
transitions. Hence the phase diagrams cannot be expected to Hence a complex phenomenology is already found in this
be quantitatively correct, and Fig. 15 gives just a qualitativesimple model, which incorporates only a few aspects of the
picture of the phase behavior. This picture could be tested iRydrophobic tails in amphiphilic molecules, and entirely dis-

simulations, by systematic variations of chain length and@gards the structure of the head groups. The different phases
chain stiffness. in Langmuir monolayers at low surface coverage are largely

recovered.
IV. CONCLUSIONS We conclude t_hat the essential features of the phase be-
havior of Langmuir monolayers can already be produced by
We have discussed the interplay of chain anisotropy anthe alkane tails of the surfactant molecules alone. Neverthe-
conformational entropy in simple model systems for Lang-less, the head groups have an important influence on the
muir monolayers: systems of short chains, which are conphase diagram. For example, it has been mentioned that
fined to a planar surface at one end. The phase behavior agiked phases can be stabilized by a mismatch between head
function of chain stiffness and effective anisotropic interac-group and tail segment size. This is most likely the dominant
tion was calculated in the mean field approximation. tilting mechanism in monolayers of single chain am-
We found that systems of chains with fixed grafting phiphiles, e.g., fatty acids. Future investigations will have to
points, i.e., fixed homogeneous grafting density, display tiltexplore this factor.
order in a density interval. It is bounded by a continuous

trgnsitiqn to an unt.il_ted phase at high coverage, and by a ACKNOWLEDGMENTS
discontinuous transition at low coverage. The high coverage
transition involves ordering of whole chains and is X¥ | have greatly benefited from discussions with M. Schick,

type, and the low coverage transition is caused by orderintf. Binder, P. Nielaba, H. Lange, C. Stadler, and A. Halperin.
of segments and is reminiscent of the nematic-isotropic tranP. Nielaba and K. Binder are gratefully acknowledged for
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