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Exact analytical description of tracer exchange and particle conversion insingle-file systems

Christian Ro¨denbeck, Jo¨rg Kärger, and Karsten Hahn
Universität Leipzig, Fakulta¨t für Physik und Geowissenschaften, Linne´strabe 5, D-04103 Leipzig, Germany

~Received 22 November 1996!

The finite single-file system~diffusion in one dimension where the mutual passage of particles is inhibited!
with particle exchange at the margins and an attractive nearest-neighbor particle-particle interaction is inves-
tigated. As the central quantity, the residence time distribution is introduced and related to experimentally
observable quantities concerning tracer exchange and conversion. Exact equations determining these quantities
are derived. The numerical solution yields the dependence of these quantities on the system parameters. In
addition, the correlations in the single-file system are considered.@S1063-651X~97!02305-2#

PACS number~s!: 47.55.Mh, 66.30.2h, 02.50.2r, 05.60.1w
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I. INTRODUCTION

Single-file systems are one-dimensional diffusion syste
where the diffusing particles are not able to pass each o
Thus a given order of the particles within the system
strictly maintained. This extreme mutual hindrance of t
diffusing particles inhibits counter diffusion and drastica
decreases the mobility of the particles: In an infinite sing
file system the mean square displacement of a tagged pa
increases only proportionally to the square root of the ob
vation time @1# rather than the observation time itself.
lattice gas language, the single-file system corresponds to
one-dimensional exclusion model@2–5#. Note that some au
thors use the term single file in a less rigorous way, comp
ing systems with onlyrestrictedmutual passage as well.

Besides theoretical interest, the investigation of single-
systems has been motivated by a lot of applications, e.g
the description of superionic or organic conductors@6# or
transport through ion channels in biological membranes@7#
~for a more detailed summary see the introduction to@2#!.
Our work is motivated by the diffusional and catalytic pr
cesses in the one-dimensional channels of a lot of type
zeolites, e.g., Mordenite, L, AlPO4-5, ZSM-12, and many
more @8#. Investigations of a great variety of such syste
have been reported in the literature@9#. If the diameter of the
diffusing guest molecules exceeds the radii of the zeo
pores, the particles are not able to pass each other any lo
and the diffusion obeys single-file behavior, as was e
denced by pulsed field gradient NMR~PFG NMR! measure-
ments with a variety of zeolites and guest species@10#. We
are, in particular, interested in two phenomena, nam
tracer exchange and conversion. Experimental findings s
gest surprising features in the behavior of such systems,
, unusual temperature dependence of chemical reactions@11#,
which might be attributed to their single-file nature. By i
vestigating a simplified model we aim to elucidate charac
istic features allowing an interpretation of experimental
sults obtained at single-file systems.

In comparison to Fickian diffusion systems, the analy
of single-file systems is considerably complicated by the f
that the motion of a tagged particle is non-Markovian b
cause any displacement iscorrelatedto the positions of the
other particles and, therefore, to the past dynamical deve
ment of the whole system. Because of this difficulty, analy
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cal results were mainly confined to limiting cases~infinite
length, infinite density! or to approximations. The majority
of questions could only be answered by numerical simu
tions. This is what we also did in a previous paper@12#
concerning tracer exchange and catalytic reactions in sin
file systems. In the present contribution we give both amodel
describing a wider class of systems and ananalytical deri-
vation for basic quanities.~Throughout this paper, the sym
bols were chosen consistent to@12#.! The model and the
formalism are quite general and should be applicable to o
questions as well.

In Sec. II the model is presented. It is a lattice gas
Monte Carlo jump model. It is based on simplified intera
tion potentials motivated by the situation in zeolitic singl
file systems@13# but may equally be applied to systems of
different physical nature. The basic quantities are introduc

In Sec. III we give an exact derivation of sets of equatio
for these quantities. Numerical evaluation of these sets
equations allows the investigation of their dependence on
parameters of the system. Section IV presents and discu
results concerning the tracer exchange and the convers
The correlations characterictic of the single-file system
investigated.

II. MODEL

A. Transport dynamics

The single-file system is assumed as a linear chain oN
equidistant sites. These sites correspond to the troughs
periodic potential describing the interaction of the partic
and the channel walls~see Fig. 1!. Each pair of adjacen
troughs is separated by a potential barrier of heightEB . If an
isolated particle occupies one of the sites, the channel w
can transmit to it a fluctuating energy high enough to ov
come this barrier and to jump to a neighboring site. IfGdt is
the probability that the isolated particle performs such
activated jump from a particular site to a particular adjac
one within a time interval of lengthdt, the intracrystalline
hop rate of the isolated particleis given by

G5Ĝe2EB /RT ~1!

with the thermal energyRT. The pre-exponential factorĜ is
a property of the activation mechanism.
5697 © 1997 The American Physical Society
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At the margins, the channel shall be open to a surround
gas phase. The potential step to be surmounted by an isol
particle at one of the marginal sites 1 orN, respectively, in
order to be desorbed into the gas phase isEM . Thus, the
desorption rate of the isolated particleis

«5 «̂e2EM /RT. ~2!

Particles from the gas phase do not have to overcome a
tential barrier when entering one of the marginal sites of t
channel; thus theadsorption rate of the isolated particle

a5â ~3!

does not depend on temperature and can be related to
phase properties~e.g., the pressure! and the geometric situa-
tion at the channel orifices.

In addition to the channel-particle interaction felt by th
isolated particle there is a particle-particle interaction. W
introduce arepulsiveinteraction at short particle-particle dis
tances and anattractiveone at larger distances~see Fig. 2!,
as may be assumed for small organic molecules. For simp
ity the particle-particle potential is assumed to affect adjac

FIG. 1. Energy profile of the channel-particle interaction~sche-
matically!.

FIG. 2. Additional potential caused by a particle (s) occupying
site j21.
g
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sites only. Figure 3 gives the total potential felt by a particl
occupying sitei for the four different configurations in the
occupation of its neighboring sitesi21 andi11. Now con-
sider jumps of this particle to sitei11. At configuration~00!
the hop rateG (00) will be equal to the hop rateG of the
isolated particle. At configuration~10! the potential barrier to
be surmounted is higher by an interaction energyEI , i.e.,

G (10)5Ĝe2(EB1EI )/RT5vG. Here we introduce theparticle-
particle interaction parameter

v5e2EI /RT, ~4!

being the factor by which the hop rate reduces if the hop
directedaway from an occupied neighboring site. At con-
figurations~01! and ~11! a hop to the occupied sitei11 is
impossible,G (01)5G (11)50. This is the most important con-
sequence of the particle-particle interaction because it inhi
its any mutual passage of molecules within the channel a
thus causes thesingle-filenature of the system. The same
particle-particle influence applies to the adsorption and d
sorption processes at the margins.

The parametersG, «, a, and v describe the transport
dynamics of the system completely. It is understood th
there are no correlations between the hop attempts from d
ferent sites or at different times. Physically this implies tha
any energy transmitted to a particle is given back to th
channel walls immediately after the successful, or unsucce
ful, hop attempt and dissipates there at once.

B. Site occupation and residence time

Consider a snapshot of the system at a given timet. Then
two types of information are relevant to our calculations

FIG. 3. Total potential felt by the tagged particle (^ ) at the four
different configurations of the neighbor particles (s).
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55 5699EXACT ANALYTICAL DESCRIPTION OF TRACER . . .
The first type, theparticle configurationof the system,
shall be described by the set of stochastic variab
S i ( i51, . . . ,N) with

S i5 H10J if site i is Hoccupiedvacant J ~5!

giving theoccupationsof the individual sites.
The second type of relevant information is the ‘‘age

structure’’ of the particles, which shall be represented b
stochastic variablest i defined in the following way:

t i5
~ time which the particle occupying
site i has already spent within the channel!. ~6!

In this definition, the property of the particle~its residence
time t i) is assigned to the site occupied by this particle.
site i is vacant (S i50) the variablet i is, therefore, an un-
defined quantity.

Graphically, one might represent the configuration by
linear pattern of blank or inked spots while the ‘‘age stru
ture’’ might be visualized by the respective color of the in

Now we define variables determining theprobability dis-
tribution of these stochastic quantities under the assump
thatsorption equilibriumis attained. The variablesQ i repre-
sent thesite occupanciesor theconcentration profile

Q i :5P~S i51!,
~7!

12Q i5P~S i50!.

From the profile one can define themean concentrationas

Q5
1

N(
i51

N

Q i . ~8!

The variablesw i(t) give the probability densities of the res
dence times or theresidence time distributions

w i~t!dt:5P~t<t i,t1dtuS i51! ~9!

In some cases it is more convenient to replace this co
tional probability by a joint probability,

w i* ~t!dt:5P~S i51,t<t i,t1dt!5Q iw i~t!dt, ~10!

distinguished by an asterisk and differing in theweight factor
Q i . Throughout this paper, all the quantities derived fro
these densities wear the asterisk, or not, according to w
of these definitions they are based on. Again, one might
troduce themean residence time distributionas

w~t!:5
1

QN(
i51

N

Q iw i~t!, ~11!

i.e., w(t)dt gives the ratio between the average number
particles having spent a time betweent andt1dt within the
channel( i51

N Q iw i(t)dt and the average total number
particlesQN.

The sorption equilibrium is always assumed to have b
maintained for a time longer than the residence times of
present particles. Then, all these probability distributions
s
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stationary, i.e., they do not vary with time. This fact is mos
essential to the analytical treatment of the system.

C. Moments and tracer exchange

We introduce themth momentsof the residence time dis
tributionsw i(t),

~m!m i5E
0

`

tmw i~t!dt ~12!

and theirweighted mean,

~m!m5
1

QN(
i51

N

Q i
~m!m i . ~13!

The first moments(1)m i are of special relevance becau
they give theaverage residence timeswhich can be related to
experimentally observable quantities. Tracer exchange
periments@14,15# determine theintracrystalline mean life-
timeas the integral over the tracer exchange curveg(t),

t intra5E
t0

`

@12g~ t !#dt, ~14!

where@12g(t)# is the relative amount of particles at tim
t which have already been within the channel at the ini
time t0. This is measured by tracking the exchange of t
molecular species with equal transport properties, e.g. ,
deuterated and the normal form of an organic molecule
the following we shall show that thedynamicallydefined
quantity t intra coincides with thestationarymean first mo-
ment (1)m given in Eq.~13!. Using the stochastic variable
defined above, the tracer exchange curve can be express

12g~ t !5

(
i51

N

P~S i51,t i.t2t0!

(
i51

N

P~S i51!

5

(
i51

N

Q iE
t2t0

`

w i~t!dt

(
i51

N

Q i

~15!

where we have used Eqs.~7! and~10!. Substitution into Eq.
~14! yields

t intra5

(
i51

N

Q iE
t0

`

dtE
t2t0

`

dtw i~t!

(
i51

N

Q i

. ~16!

Now we rearrange the integration

E
t0

`

dtE
t2t0

`

dtw i~t!5E
0

`

dtE
0

t

dtw i~t!5E
0

`

tw i~t!dt.

~17!

The second identity is valid only because of the stationa
of the probability densityw i(t). With Eq. ~8! this finally
gives the mean first moment according to Eqs.~12! and~13!
and we have
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t intra5
~1!m. ~18!

D. Laplace transform and conversion

Now we consider the irreversible conversion between t
species of particles with identical transport properties wit
the channel. Such systems, e.g., occur in zeolites where
sites are catalytically active. A reactant molecule occupy
such an active site will be converted into a product molec
with an intrinsic reaction rate

k5 k̂e2ER /RT. ~19!

Due to the exchange processes this product molecule
after some time, be desorbed into the surrounding gas ph
In return, new reactant molecules will enter the file from t
gas phase and diffuse to the active sites so that the rea
can go on. For simplicity we assume that there is such
excess of reactant molecules in the gas phase so tha
product molecules are adsorbed again.

Let h i* be the probability that sitei is occupied by a
reactantmolecule. Since we assumed that the system
been in sorption equilibrium for a time longer than the re
dence time of the ‘‘oldest’’ particle, the conversion is in
steady state. This means that thereactant concentration pro-
file h i* is stationary as well. It can be calculated from t
residence time distributionsw i* (t) by the following argu-
ment.w i* (t)dt is the probability that a given sitei is occu-
pied by a particle and that this particle has spent a t
betweent andt1dt within the channel since its adsorptio
as a reactant molecule from the gas phase. During this tim
had the chance of being converted into a product molec
~this conversion may have happened at an arbitrary time
an arbitrary site!. The probability, however, thatno conver-
sion has taken place ise2kt. The average probability tha
there is a particle at sitei and that this particle is still a
reactant molecule is, therefore, given by

h i*5E
0

`

e2ktw i* ~t!dt. ~20!

Thus the reactant concentration profileh i* happens to be
nothing else than the Laplace transform ofw i* (t), with k
being the new variable. From the profile one obtains
mean number of reactant molecules per channel

H*5(
i51

N

h i* . ~21!

Obviously, this quantity describes the transport influen
on theoutput rateof product molecules per channel

K5H* k, ~22!

and can therefore be related to theeffectiveness factorh
widely used in the theory of heterogeneous catalysis.h is
defined as the ratio between the actual output of
transport-reaction system and the output that would be
tained if the product molecules were instantaneously
placed by new reactant molecules@15,16#. Thus one has via
Eqs.~21! and ~22!
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h:5
K

QNk
5

1

QN(
i51

N

h i* , ~23!

i.e., the effectiveness factor is given by the weighted me
over the reactant concentration profile.

III. ANALYTICAL TREATMENT

As shown in the preceding section, the calculation of
concentration profileQ i and the residence time distribution
w i* (t) give the key to important quantities of the system.
this section, we derive a set of equations for the probabili
Q i and a set of differential equations of the densit
w i* (t), which can be transferred into sets of linear equatio
for the moments(m)m i ~including the average residence tim
profile (1)m i) and the reactant concentration profileh i* .

Unfortunately, there are no sets of equations determin
these profiles directly. The reason is that the processes a
site arecorrelatedto the state~both configuration and ‘‘age
structure’’! of the system as a whole; they are no
Markovian. That is whyw i* (t) andQ i are probabilities of
thedependentset of stochastic variablesS i andt i . Thus we
have to look for suitablejoint probabilitiesand to calculate
the profiles from them by summation. The joint probabiliti
now refer to a Markov process.

A. Concentration profile

At first, we define probabilities of the individual configu
rations (s1 ,s2 , . . . ,sN) of the system

Qs1s2•••sN5P~S15s1 ,S25s2 , . . . ,SN5sN!. ~24!

Once these joint probabilities are known the concentrat
profile can be calculated

Q i5 (
s150

1

••• (
s i2150

1

(
s i1150

1

••• (
sN50

1

Qs1•••s i211s i11•••sN.

~25!

The joint probabilities Eq.~24! can be determined by a se
of linear equations. In order to understand the course of
calculation, first consider a fictional system with three sta
~probabilitiesQ (1), Q (2), Q (3) and transition ratesG1→2,
G1→3, etc.!. With, e.g.,G1→2dt being the probability of a
transition from state 1 to state 2 occurring during a tim
interval of lengthdt, one has the identity

Q~1!u t1dt5~12G1→2dt2G1→3dt!Q
~1!u t1G2→1dtQ

~2!u t

1G3→1dtQ
~3!u t , ~26!

where the first line on the right hand side describes the c
of no transition during the time intervaldt, the second one
the transition from state 2 to 1, and the third one the tran
tion from state 3 to 1. Similar identities hold forQ (2) and
Q (3). Provided the system is stationary, i.e., the probabilit
do not depend on time, one can omit the time depend
subscript and setQ (1)u t1dt5Q (1)u t5Q (1). Subtraction of
Q (1) on both sides and division bydt then give
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55 5701EXACT ANALYTICAL DESCRIPTION OF TRACER . . .
052G1→2Q
~1!2G1→3Q

~1!1G2→1Q
~2!1G3→1Q

~3!.
~27!

This is, of course, nothing else than a master equation
stationary process. Its derivation has been given in orde
prepare for the calculation in Sec. IV. The factors in front
Q (1) ~with the minus sign! represent the rates of all trans
tions whichmust notoccur to maintain the considered sta
1, while the factors in front ofQ (2) andQ (3) ~with the plus
sign! are the rates of the transitions whichhave tooccur in
order to switch into state 1.

Prepared in this way, we return to our considered sing
u
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file system. Although it has a vast number of configuratio
of the form (s1 ,s2 , . . . ,sN), there are only a few transi
tions with nonzero probability starting from each of the
configurations. Each such transition corresponds to a ho
a particle from an occupied site to a vacant neighboring s
from an occupied marginal site into the gas phase, or fr
the gas phase to a vacant marginal site, respectively. We
the complete set of equations at once in the form of Eq.~27!
and explain it term by term afterwards. For each configu
tion (s1 ,s2 , . . . ,sN) one has an equation of the followin
form:
052„a~12s1!1«s1~12Vs2!…Q
•••

2G (
j51

N21

„~12Vs j21!s j~12s j11!1~12s j !s j11~12Vs j12!…Q
•••

2„~12VsN21!sN«1~12sN!a…Q•••

1„as11«~12s1!~12Vs2!…Q
~12s1!•••

1G (
j51

N21

„~12Vs j21!~12s j !s j111s j~12s j11!~12Vs j12!…Q
•••s j11s j •••

1„~12VsN21!~12sN!«1sNa…Q•••~12sN!

;s1 , . . . ,sN50,1. ~28!
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So far, this set of equations has no unique solution beca
the equations add up to zero. The missing equation is
vided by the obvious identity

(
s150

1

••• (
sN50

1

Qs1•••sN51. ~29!

Here and in all the following equations we abbreviate
upper index ‘‘s1s2•••sN’’ by dots ‘‘ ••• ’’ indicating ex-
plicit deviations from the normal order only, i.e.,Q••• means
Qs1s2•••sN, Q (12s1)••• meansQ (12s1)s2•••sN, etc.

The two terms in each line of Eq.~28! always correspond
to the transitions due to hops between the same pair of ne
bor sites~or between a marginal site and the gas phase,
spectively! but in opposite directions. First consider line
1–3 ~minus sign! which correspond to transitions that wou
make the system leave the considered configuratio
(s1 , . . . ,sN). Line 1 considers the transitions due to ho
between the gas phase and site 1.a(12s1) is the transition
rate due to adsorption events; it is proportional to the ads
tion ratea of the isolated particle but zero in the case
s151 ~i.e., site 1 occupied!. «s1(12Vs2) represents the
transition rate due to desorption events; again it contains
respective rate« and the factors1 being zero if site 1 is
vacant. The remaining factor (12Vs2) has regard to the
attractive interaction between neighboring molecules: it
equal to 1 if the neighboring site is vacant (s250) but equal
se
o-

e

h-
e-

p-
f

e

s

to v if the hopping particle feels the attractive force of
particle at site 2 (s251); here we have made use of th
abbreviation

V512v. ~30!

The (N21)-fold line 2 describes all transitions due to ho
between the site pairsj , j11. Their rates are proportional t
G. The left term stands for a hop from sitej to site j11; its
rate is nonzero for s j51,s j1150 only; the factor
(12Vs j21) represents the interaction influence as discus
before. Analogously, the right term considers the backw
hop. Finally, line 3 is the mirror analog to line 1 describin
the adsorption and desorption processes at the right ma

Now we turn to the transitions whichlead to configura-
tion (s1 , . . . ,sN) ~lines 4–6, plus sign!. The structure of
these lines is very similar to that of lines 1–3 because
transitions correspond to the same particle hops. They di
though, in two points.

The probability factorQ••• is replaced by the probability
of the starting configuration where the respective transit
goes out. Note that the starting configurations for hops t
only differ in their directions have, nevertheless, an eq
mathematical form since, in both cases, the two sites
volved in the hop simply exchange theirs value. Of course,
there is no starting configuration for which the two transiti
rates~i.e., the two terms on the line! are nonzero simulta-
neously.
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In each term, factors of the form (12s i) are replaced by
s i and vice versa. This is because the values ofs i now
correspond to the configurationafter the transition, while in
lines 1–3 they had corresponded to the configurationbefore
the transition. The interaction factors (12Vs i) remain un-
affected since they do not change during the transition.

We have to supplement that in lines 2 and 5 the conv
tion
’
o

-

e

ie

-

l
e

-

s050, sN1150 ~31!

has been assumed in order to prevent further splitting
these lines into special cases.

B. The residence time distributions

In analogy to Eq.~24! we define joint probability densities
replacing the densitiesw i* (t) of Eq. ~10!
w i
s1•••s i21*s i11•••sN~t!dt5P~S15s1 , . . . ,S i215s i21 ,S i51,S i115s i11 , . . . ,SN5sN ,t<t i,t1dt!. ~32!
a-

e

ach
by
ial
in
In addition to the upper index of theQs1•••sN, the

w i
s1•••s i21* s i11•••sN(t) wear a lower indexi corresponding

to that of thew i* (t). It gives the number of the ‘‘tagged’
site: This site is meant to be occupied, and the particle
cupying it has spent a time betweent andt1dt within the
system@cf. Eq. ~32!#. That is why the upper index now con
tains the asterisk holding the place of the missings i which
would always be equal to 1. The upper and lower ind
together now distinguish theN32N21 quantities defined in
Eq. ~32!. ~In contrast, the upper index of theQs1•••sN can
distinguish between 2N quantities.! Again, the densities
w i* (t) can be computed from the joint densities by

w i* ~t!5Q iw i~t!5 (
s150

1

••• (
s i2150

1

(
s i1150

1

•••

3 (
sN50

1

w i
s1•••s i21*s i11•••sN~t!. ~33!

To establish a set of equations for the joint densit

w i
s1•••s i21* s i11•••sN(t), we first consider the fictional three

state system again. If we write Eq.~26! for t-dependent
quantitiesw (1)(t),w (2)(t),w (3)(t), we have to pay specia
attention to the argument. Sincet means the time a particl
c-

x

s

has already spent within the system, it increases bydt as the
time proceeds bydt. Consequently, we have to write

w~1!~t1dt!u t1dt5~12G1→2dt2G1→3dt!w
~1!~t !u t

1G2→1dtw
~2!~t !u t1G3→1dtw

~3!~t !u t .

~34!

If we now proceed as before@omitting the time subscript,
subtraction ofw (1)(t), and division bydt# w (1)(t) does not
cancel againstw (1)(t1dt) and we obtain, in the limit
dt→0, the first derivative with respect tot. The analog of
Eq. ~27!, therefore, reads

d

dt
w~1!~t !52G1→2w

~1!~t !2G1→3w
~1!~t !1G2→1w

~2!~t !

1G3→1w
~3!~t !. ~35!

Therefore, in order to get an equation for the joint prob

bilitesw i
s1•••s i21* s i11•••sN one has to replace the zero on th

left hand sides in Eq.~28! by the first derivative. Further
changes are due to the different forms of the indices: E
time the respective hop involves the tagged site indicated
the lower indexi , some lines of the equation take a spec
form. Again, we write the set of equations in full and expla
it afterwards.
d

dt
w i
•••52„a~12s1!1«s1~12Vs2!…w i

•••

2G (
j51

N21

„~12Vs j21!s j~12s j11!1~12s j !s j11~12Vs j12!…w i
•••

2„~12VsN21!sN«1~12sN!a…w i
•••

1„as11«~12s1!~12Vs2!…H d~t!Q0s2•••sN, i51

w i
~12s1!••• , else
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1G (
j51

N21

„~12Vs j21!~12s j !s j111s j~12s j11!~12Vs j12!…H w i11
•••s i210* s i12••• , i5 j

w i21
•••s i22* 0s i11••• , i5 j11

w i
•••s j11s j ••• , else

1„~12VsN21!~12sN!«1sNa…H d~t!Qs1•••sN210, i5N

w i
•••~12sN! , else

;s1 , . . . ,s i21 ,s i11 , . . . ,sN50,1; i51, . . . ,N, ~36!
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with the initial condition

w i
•••~0!50. ~37!

The relatively compact form of the set is possible only w
the additional convention

s i51. ~38!

Moreover, we omitted the argument which is always (t).
Note that the abbreviated upper index of thew i

••• contains

the asterisk instead ofs i : w i
••• meansw i

s1•••s i21* s i11•••sN ,
etc.

The rate coefficients in Eq.~36! are completely equal to
that of Eq.~28! because the underlying transitions are all t
same. The change in the index connected with the respe
transition, however, has now a different mathematical fo
in certain cases which, therefore, had to be seperated. C
sider first line 5. The ‘‘else’’ branch corresponds to the ‘‘no
mal’’ case, as in Eq.~28!. If i5 j the transition is due to a
hop either from the tagged sitei to site i11 or from site
i11 to the tagged sitei . The former case cannot lead to th
considered configuration~wheres i51) and need, therefore
not be considered@the convention Eq.~38! automatically
cancels the corresponding rate coefficient#. In the latter case
the particle which occupies the tagged site after the tra
tion, came from sitei11; that is why the variable with the
lower indexi11 has to be used here instead of that withi .
Its upper index reflects the situation before the hop: siti
was vacant~indicated by the 0 in the place ofs i), site
i11 was occupied~here indicated by the* because of the
formation law of the indices!, the other sites were unaffecte
Finally, the casei5 j11 means hops between sitei21 and
the tagged sitei and has to be treated in an analogous w

Now consider line 4 which deals with transitions due
hops between site 1 and the gas phase. If site 1 is not
tagged one we again have the ‘‘normal’’ case. The spe
case isi51. Again, the convention Eq.~38! provides a zero
transition rate in the case of desorption. In the case of
ive

n-

i-

.

he
al

d-

sorption, however, the particle occupying the tagged sit
after the transition came from the gas phase, i.e., it did
spend any time within the channel. Therefore, the density
its residence time is given byd(t). In order to obtain the
joint probability density needed here it has to be multipli
by the probability of the configuration before the transiti
which is characterized bys150.

A similar argument applies to line 6. Lines 1–3 are sim
lar to that of Eq.~28!: Since no transition occurs, no speci
cases have to be considered.

C. The reactant concentration profile

As indicated by Eq.~20! the profile of the reactant con
centration can be obtained from the densities of the reside
times by Laplace transformation. Thus we define

h i
s1•••s i21* s i11•••sN5E

0

`

e2ktw
i

s1•••s i21* s i11•••sN~t!dt.

~39!

Laplace transformation of Eq.~33! then gives

h i*5 (
s150

1

••• (
s i2150

1

(
s i1150

1

••• (
sN50

1

h i
s1•••s i21* s i11•••sN .

~40!

A linear set of equations determining the quantiti

h
i

s1•••s i21* s i11•••sN is most easily obtained by Laplace tran
formation of the set Eq.~36!. Taking into consideration tha

E
0

`

e2ktS ddt
w i
•••~t! Ddt5kh i

••• ~41!

@cf. Eq. ~37!# and

E
0

`

e2ktd~t!dt51, ~42!

one gets
052kh i
•••

2„a~12s1!1«s1~12Vs2!…h i
•••

2G (
j51

N21

„~12Vs j21!s j~12s j11!1~12s j !s j11~12Vs j12!…h i
•••

2„~12VsN21!sN«1~12sN!a…h i
•••
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1„as11«~12s1!~12Vs2!…H Q0s2•••sN, i51

h i
~12s1!••• , else

1G (
j51

N21

„~12Vs j21!~12s j !s j111s j~12s j11!~12Vs j12!…H h i11
•••s i210* s i12••• , i5 j

h
i21
•••s i22* 0s i11••• , i5 j11

h i
•••s j11s j ••• , else

1„~12VsN21!~12sN!«1sNa… H Qs1•••sN210, i5N

h i
•••~12sN! , else

;s1 , . . . ,s i21 ,s i11 , . . . ,sN50,1; i51, . . .N. ~43!

The inhomogeneity of this set consists in the terms withQ0s2•••sN andQs1•••sN210 in lines 4 and 6, respectively, which ar
known from the solution of Eq.~28!.

D. The moments

If the Laplace transformation in the preceding section is replaced by the ‘‘transformation’’ given in Eq.~12! one gets the
moments (m)m i and their mean(m)m. As before, we define

~m!m i
s1•••s i21* s i11•••sN5E

0

`

tmw i
s1•••s i21* s i11•••sN~t!dt, ~44!

yielding the weighted moments

~m!m i*5Q i
~m!m i5 (

s150

1

••• (
s i2150

1

(
s i1150

1

••• (
sN50

1

~m!m i
s1•••s i21* s i11•••sN ~45!

and, finally, (m)m, due to Eq.~13!. Applying the transformation Eq.~12! to the set Eq.~36!, we now observe that

E
0

`

tmS ddt
w i
•••~t! Ddt5@tmw i

•••~t!#t50
` 2E

0

`

mtm21w i
•••~t!dt52m ~m21!m i

••• ~46!

and

E
0

`

tmd~t!dt50, ~47!

and we get
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2m ~m21!m i
•••52„a~12s1!1«s1~12Vs2!…

~m!m i
•••

2G (
j51

N21

„~12Vs j21!s j~12s j11!1~12s j !s j11~12Vs j12!…
~m!m i

•••

2„~12VsN21!sN«1~12sN!a… ~m!m i
•••

1„as11«~12s1!~12Vs2!…H 0, i51

~m!m i
~12s1!••• , else

1G (
j51

N21

„~12Vs j21!~12s j !s j111s j~12s j11!~12Vs j12!…H ~m!m i11
•••s i210* s i12••• , i5 j

~m!m
i21
•••s i22* 0s i11••• , i5 j11

~m!m i
•••s j11s j ••• , else

1„~12VsN21!~12sN!«1sNa…H 0, i5N

~m!m i
•••~12sN! , else

;s1 , . . . ,s i21 ,s i11 , . . . ,sN50,1; i51, . . .N. ~48!
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Now the inhomogeneity is due to the terms2m (m21)m i
•••

on the left side, which are known if the moments are cal
lated successively. On calculating the first moments one
to use

~0!m i
•••5E

0

`

w i
•••~t!dt5Qs1•••s i211s i11•••sN, ~49!

which are solutions of Eq.~28!. The factors ‘‘0’’ in the cases
i51 and i5N, simply mean that the respective line va
ishes.

IV. RESULTS AND DISCUSSION

The sets of equations~28!, ~48!, and~43! deduced in the
preceding section were implemented into a computer p
gram which solved them using the Gauss algorithm. In t
way, the dependence of the profiles,Q i ,

(1)
m i , h i* , and their

means or totals,Q, (1)m, H* , on the system parameters cou
be studied. Scattered within the whole parameter range,
validity of the results was checked by comparison with
results of Monte Carlo simulations~using an algorithm simi-
lar to that described in@12#! confirming full conformity.

For a number of reasons it is convenient to introducedi-
mensionless parameters, as had been done in@12#. The pa-
rameter

v5
«

a
5

«̂

â
e2EM /RT ~50!

gives the ratio of the rates of adsorption and desorption
the isolated particle and is, therefore, tightly connected w
the sorption equilibrium. To get rid of the parameterG we
choose the average time between successive hops of an
-
as

-
is

he
e

f
h

iso-

lated particle,t51/2G, as a unit of the time scale and defin
the relative particle exchange rate

a5
a

2G
5

â

2Ĝ
e2~2EB!/RT ~51!

and, for the conversion, therelative reaction rate

k5
k

2G
5

k̂

2Ĝ
•e2~ER2EB!/RT. ~52!

The remaining parametersN andv are already dimension
less by definition. The new set of parameters now isv, v,
a, k, andN.

Unfortunately, the parameter range accessible by the
gorithm is subject to considerable numerical limitations.
far the most serious one is the limitation of the file leng
N by memory size problems. Even using a special version
the Gauss algorithm taking advantage of the rather sp
coefficient matrix, the memory space needed is of the or
2N3N2N21 multiplied by the number of bytes per coeffi
cient. The computer equipment at our disposal, therefo
allowed a maximum ofN511. But even if these memory
limitations could be overcome, the computation time sets
limit approximately at the same place, since it increases w
increasingN due to a power law with an exponent of at lea
4. That is why all algorithms swapping parts of the matrix
the disc are of no use here. Iterative procedures like Ga
Seidel cannot help either because the matrix does not fu
their convergence criteria@17#. Although invoking the sym-
metry of the system would reduce the number of equati
per set by a factor of the order of 2 this corresponds me
to a gain inN by 1; instead, the symmetry would be lost as
means of checking for numerical instability. Recent tes
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however, suggest that the conjugate gradient method m
be a promising way to increase the maximal value of
system sizeN. In all calculations presented here, we cho
N58 as a compromise between computation time nee
and information gained.

The second limitation affects the range of the parame
k in the calculation ofh i* . Since the coefficient in front o
h i
••• ~i.e., the diagonal element of the matrix! contains a sum

roughly of the formN1k/G, the numerical accuracy~num-
ber of digits! of the computer sets a lower limit to the p
rameter k52k/G. Using double accuracy, we reache
k'10214 without signs of numerical problems.

It is worth noting, however, that the range of paramet
that can be evaluated by Monte Carlo simulations is limi
as well. Although the file length can easily be chosen up
almost any value without memory trouble, the computat
time necessary to reach sorption and reaction equilibrium
extraordinary. Tracer exchange studies forN550, e.g., are a
matter of weeks of uninterrupted computation. The range
k is confined for the same reason tok.1025 approximately.
Thus, the use of the exact solution indeed provides new
formation. The authors are optimistic that, pending furth
computer development, the restrictions mentioned should
overcome in the future.

A. The concentration profile

In the casev51 ~no attractive interaction of neighborin
particles! the concentration profile is uniform:Q i
51/(11v); i @12#. With increasing strength of the attractiv
interaction ~decreasingv) the particles concentrate in th
middle of the channel. Figure 4 shows some typical
amples.

In Fig. 5 we present the dependence of the mean con
trationQ on the parameters. The individual graphs show
dependence on the parameterv for different strengths of the
attractive interaction~different values of the parameterv).
The stronger the attractive interaction the narrower is
region ofv where the concentration changes from the alm

FIG. 4. Concentration profileQ i over the site numberi for
v510 and different strengths of the attractive particle-particle
teraction.
ht
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complete occupation (Q'1) to the almost empty channe
(Q'0). Outside this region, the mean concentrationQ still
varies withv ~the linear plot deceives the eye!: For largev
we have an asymptotic behaviorQ}1/v, while for smallv a
similar relation holds for the ‘‘vacancy concentration
(12Q)}v. The parametera does not influence the concen
tration, as can be shown by the detailed-balance argume

B. The tracer exchange

Figure 6 shows the average intracrystalline residence t
profile (1)m i for the same case as considered in Fig. 4. N
that this profile doesnot give the average time the particle
have spent at the individual sites, but the averagetotal time
they have spent in the channel when reaching a certain
As expected, this average time is largest in the center of
channel.

-
FIG. 5. Mean concentrationQ over v for different strengths of

the attractive particle-particle interaction.

FIG. 6. Average intracrystalline residence time profile(1)m i ~in
units oft51/2G) over site numberi for v510,a50.5, and differ-
ent strengths of the attractive particle-particle interaction.
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The weighted mean of the first moments or the intracr
talline residence time(1)m5t intra is given in Fig. 7, param-
eter ranges and symbols chosen equal to Fig. 5. For e
strength of the attractive interaction, one can distingu
three regions within the range of the parameterv: In the case
of very small v, where the channel is almost complete
occupied~cf. Fig. 5!, one finds, most probably, not more tha
one ‘‘isolated vacancy’’ in the channel which determines
dynamics alone; the curves for the different values of
parameterv are parallel and obey a power law inv. In the
opposite case, for large values ofv where the channel is
almost empty, one reaches the case of the isolated par
i.e., the system loses its single-file nature and behaves
cording to normal diffusion. Therefore, the system respo
does not depend on the parametersv andv anymore, be-
cause the isolated particle is unaffected by changes in
concentration or the particle-particle interaction. The th
region, the position of which depends onv, provides the
transition between theses two extreme cases and revea
actual characteristics of single-file diffusion. One obser
that the slope of the curves in this region increases w
increasing strength of the attractive interaction, i.e., the
tractive interaction enhances the sensitivity of the sys
response to changes in the parameterv ~as was already see
in the dependence of the concentrationQ on v).

Figure 8 shows the influence of the margin on the me
residence time. For very small values of the parametera the
marginal barrier dominates the dynamics of the system. T
influence, however, is driven back with increasing stren
of the attractive interaction.

C. The catalytic reaction

In Fig. 9, the reactant concentration profile at several re
tive reaction rates is given and compared with the total c
centration profile (k50). In the middle of the channel wher
particle exchange with the gas phase is slow, the reac
concentration drops. If the parameters are adjusted so tha
residence times in the channel center are large enough
simply if the channel is sufficiently long, the reactant co

FIG. 7. Mean intracrystalline residence time(1)m5t intra ~in
units of t51/2G) over v for a50.5 and different strengths of th
attractive particle-particle interaction.
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centration in the middle of the channel reaches zero~cf. the
casek51 in Fig. 9!. In this case, the mean number of rea
tant moleculesH* , does not increase any more if the fi
lengthN increases; i.e., the values ofH* calculated for such
cases are equally valid for arbitrarily longer channels@12#.

In comparison witht intra, H* depends on a further pa
rameter, the relative reaction ratek. To show the dependenc
on all the parameters one would need a considerable num
of diagrams. This is why a more compact representation
desirable. Moreover, we are particularly interested in
temperature dependenceof the conversion under single-fil
conditions. For zeolitic single-file systems, the paramete
which most strongly vary with temperature, arek and v,
while the other parameters,a, v, andN, are not, or only
slightly, temperature dependent. It would, therefore, be m

FIG. 8. Mean intracrystalline residence time(1)m5t intra ~in
units of t51/2G) dependent on the relative rate of particle e
change at the margin~parametera) for v51 and different strengths
of the attractive particle-particle interaction.

FIG. 9. Reactant concentration profileh i* for v510, v50.1,
a50.5, and different values of the relative reaction ratek. The
curve fork50 ~no conversion! coincides with the total concentra
tion profile.
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instructive tosimultaneouslyshow the influences ofk and
v and their interplay. The isoline representation ofH* , al-
ready introduced in@12#, meets all these requirements. In t
plane of the parametersk and v, the isolines connect al
points with equal values ofH* . The spacingbetween adja-
cent isolines tells us how strongH* varies with the param-
eters: Narrow spacings mean a strong dependence and
versa. Thedirection of the isolines with respect to the axe
reveals the relative influence of the two parameters: The
rameter whose axis direction is nearer to the direction p
pendicular to the isolines predominates in the considered
rameter region. The temperature dependence can be
from the isoline representation in the following way@12#:

For fixed values of«̂, â, Ĝ, EM , EB , andER @cf. Eqs.~50!
and ~52!#, both (lnv) and (lnk) are proportional to 1/RT.
Since we choose log axes in the (k,v) plane, one simply
moves on a straight line when varying the temperature.
ery given temperature interval corresponds to a certain
tion of this straight line. The more isolines are crossed
such a fixed section, the strongerH* depends on temperatur
~i.e., the higher is the absolute value of the ‘‘activation e
ergy’’ of H* ). If, with increasing temperature, the isoline
are crossed in ascending order, the ‘‘activation energy’’
H* is positive, or vice versa. Once the straight line is fix
~i.e., the temperature dependence of the parametersk and
v is fixed! the activation energy ofH* , within a given tem-
perature region, thus can be read directly from the direc
of its isolines~or, more precisely, from the angle between t
directions of the straight line and the isolines! and the mutual
spacing between adjacent isolines. In the following we g
the isoline representation for several choices of the rela
exchange ratea and the interaction parameterv.

Figure 10 shows the isolines ofH* for a system of fixed
length N58 with rapid particle exchange at the marg
(a550) and without attractive interaction (v51). This rep-
resentation is very similar to that already given in@12# ~there
the limit a→` was considered, and the file lengthN was
chosen large enough to ensure zero reactant concentrati
the channel center, so that the representation was valid
any sufficiently long channel!. The topology of Fig. 10 can
be understood in the following way. Consider first a li
parallel to thek axis for a small value ofv where the file is
almost completely occupied (Q'1). In the lower region of
the figure, where the reaction is fast, i.e., at large value
k, the molecules are converted soon after they enter
channel. This leads to a very small numberH* of reactant
molecules within the file. Ifk is decreased, i.e., the conve
sion becomes slower,H* increases, ultimately to reac
QN'N58, when almost all molecules in the channel r
main reactants until they leave. Ifk is further decreased
H* cannot increase any more, so that no more isolines
low above. Now fix the parameterk at such a small value
and increase the parameterv. Then,Q decreases from'1 to
'0 according to Fig. 5. Consequently,H* decreases from
'N to '0. In Fig. 10, this is expressed by the region
isolines parallel to thek axis. ~Of course, there are infinitely
more isolines forH*,0.46 which, however, are omitted
They would simply fill up the entire right part of the dia
gram, as well as the left lower corner.! Finally, consider a
large value ofk, e.g. ,k51022, and vary the parameterv
ice
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again. In this case, there is a maximum ofH* approximately
in the middle of the representedv range resulting from the
competition of two contrary effects. Ifv is decreased from a
high value the total number of particles in the file increas
so that, as in the case of smallk, H* might increase. Simul-
taneously, however, the mutual hindrance of the particl
increases so that their mobility drops and their residen
times increase~cf. the increasing mean residence time at d
creasing values ofv in Fig. 7!. If the time the particles stay
in the channel is long, their chance to be converted is hig
so that the numberH* of reactant particles eventually de
creases.

Now we reduce the particle exchange at the margin.
Fig. 11 the casea50.5 is considered. The direction of the
isolines is still the same as for the rapid exchange, but t
narrower spacings show that the sensitivity to the paramet
has increased. Moreover, for constantk the maximum of
H* has translated to larger values of the parameterv ~since
the concentration does not depend ona, this means that the
maximum is now attained at a lower concentration!.

Finally, we investigate the influence of the attractive in
teraction. We choosev51024 which is the strongest inter-
action of those considered before, see Fig. 12. There is
further translation of the isoline pattern to larger values
v, this time connected with the translation already observ
in the dependence of the concentrationQ on v ~see Fig. 5!.
For values ofH* larger than 2~corresponding to the case in
which more than only the two marginal sites contribute
the reaction!, however, we observe a drastic change in th

FIG. 10. Isolines of the mean number of reactant molecules p
channelH* , on the (k,v)-parameter space fora550, v51. ~All
isolines belowH*50.46 are omitted.!
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direction of the isolines; obviously the parameterv gains a
stronger influence in this parameter region. As we alre
stated before, the attractive interaction increases the sen
ity to the parameterv. The steeper direction of the isoline
expresses a change in the temperature dependence: Th
tractive particle-particle interactionenhances the activation
energyof H* .

D. Correlations

In Sec. III we stated as a premise that the stochastic v
ablesS i andt i are dependent on each other, and that th
correlations are responsible for the necessity of such giga
sets of equations. In order to get an idea of their strength
range we inspect the correlation coefficients. To start w
take the occupation-occupation dependence,

%~S i ,S j !5
Š~S i2^S i&!~S j2^S j&!‹

AŠ~S i2^S i&!2&^~S j2^S j&!2‹

5

(
~s1•••sN!

Qs1•••sN~s i2Q i !~s j2Q j !

A~Q i2Q i
2!~Q j2Q j

2!
,

~53!

where the sum is extended over all configuratio
( (s1•••sN)

5(s150
1

•••(sN50
1 . Without the attractive

FIG. 11. Isolines of the mean number of reactant molecules
channelH* , on the (k,v)-parameter space fora50.5,v51. ~All
isolines belowH*50.46 are omitted.!
y
iv-

at-
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particle-particle interactionv51, the occupations at differ-
ent sites are independent from each other,%(S i ,S j )5d i , j .
With increasing interaction strength, the dependence
creases, as is shown in Fig. 13 forv50.0001 andv54000
(Q50.249). This plot proves that the range of the correl
tions comprises the whole length of the channel, i.e., eve

er FIG. 12. Isolines of the mean number of reactant molecules
channelH* , on the (k,v)-parameter space fora50.5, v51024.
~All isolines belowH*50.46 are omitted.!

FIG. 13. Correlation coefficient%(S i ,S j ) for v50.0001,
v54000 as a profile.
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site is dependent on every other one. The strength of th
correlations, however, varies with the parameters. As a m
sure of the overall correlations we define

%SS5A(
iÞ j

@%~S i ,S j !#
2 ~54!

and give its dependence on the parametersv andv see Fig.
14 ~the symbols are equal to Fig. 5!. The maxima of the
curves lie in the transition region between the almost co
pletely occupied and the almost empty channel. This is
deed expected: In the almost empty file one has correlat
free normal diffusion, while the processes in the alm
completely occupied file can be considered as ‘‘normal d
fusion of a vacancy.’’ This indicates once more that t
single-file character of the system is most pronounced in
region in between.

Likewise, we investigate the correlations between
residence times and the occupation via the correlation c
ficient
ith
u-
s
1

se
a-

-
-
n-
t
-

e

e
f-

FIG. 14. Overall occupation-occupation correlation%SS depen-
dent on the parametersv andv.
%~t i ,S j !5
Š~t i2^t i&!~S j2^S j&!‹

AŠ~t i2^t i&!2‹Š~S j2^S j&!2‹
5

(
~s1•••s i21s i11sN!

E
t50

`

dt w i
•••~t i2

~1!m i !~s j2Q j !

A~ ~2!m i2@ ~1!m i #
2!~Q j2Q j

2!
~55!
of

tri-
Eq.

cu-
~here the sum extends only over all configurations w
s i51), whose profile is shown in Fig. 15. If a site is occ
pied the particle obstructs the way of the other particles
that the positive correlation is understandable. Figure
gives the total correlation

%tS5A(
iÞ j

@%~t i ,S j !#
2. ~56!

FIG. 15. Correlation coefficient%(t i ,S j ) for v50.0001,
v54000,a50.5 as a profile.
o
6

In contrast to%SS , the correlation%tS is perceptible over
the whole range ofv and, in particular, doesnot vanish for
v51. These correlation coefficients confirm that the use
the joint probabilites ofS i andt i is indeed indispensable.

E. The residence time distributions

Finally, we give an example of the residence time dis
butions itself. The curves were obtained according to

FIG. 16. Overall correlation between residence time and oc
pation,%tS , dependent on the parametersv andv (a50.5).
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~36! by an adapted Runge-Kutta algorithm. In this case,
memory problems are less serious, while the necessary c
putation time is considerable.

Figure 17 shows the distributions for a special set of
rameters for sitesi51, . . . ,4~the curves for the other half o
the channel,i55, . . . ,8 are, of course, identical! together
with the mean residence time distribution according to E
~11!. In Fig. 18 the same curves are plotted for a larger ti
interval and on a log scale. The straight lines in this plot,
sufficiently long times, indicate that, in this region, all res
dence time distributions become single exponentials wit
common exponent@the least eigenvalue of the set Eq.~36! of
linear differential equations#.

The figures show that the mean residence time distr
tion w(t) is a monotonously decreasing function,

d

dt
w~t!,0 ;t, ~57!

FIG. 17. Intracrystalline residence time distributionsw i* (t) at
sitesi51, . . . ,4 andtheir meanw(t) for N58, v510,v50.1, and
a50.5.

FIG. 18. Intracrystalline residence time distributionsw i* (t) and
their meanw(t) on a log scale. Parameters as in Fig. 17.
e
m-

-

.
e
r

a

-

thus having its maximum att50. This is true for the mean
residence time distribution ofanydiffusional channel, as can
be understood in a line of argumentation reminiscent of
derivation of Eq.~36!. Consider the channel at two arbitrar
consecutive instants of timet and t1Dt, and consider an
arbitrary residence timet. At time t, there will beP particles
in the channel having a residence time betweent and
t1dt. At time t1Dt, some of these particles will have le
the file while a certain part, sayP8 with P8,P, is still in the
channel and has, of course, now a residence time betw
t1Dt and t1Dt1dt. On the other hand,no further par-
ticles than these can, att1Dt, have such a residence tim
Thus P8 is the number ofall particles having a residenc
time betweent1Dt andt1Dt1dt. Since we assumed sta
tionarity of the transport processes we need not pay any
tention to the time and may, in accordance with Eq.~11!,
write ^P&5QNw(t)dt and ^P8&5QNw(t1Dt)dt. From
P8,P we have^P8&,^P&, whence Eq.~57! is confirmed.

V. CONCLUSION

The stationary single-file system may be characterized
the concentration profileQ i and the residence time distribu
tionsw i(t). .From these probabilities, important quantitie
such as the mean intracrystalline residence timet intra5

(1)m
and the effectiveness factorh can be found. We derived set
of linear equations determining all these quantities. As a c
sequence of the strong correlations in the single-file syst
the necessary number of equations per set is extremely h
For sufficiently short channels, however, the sets of eq
tions can be solved numerically. In this way, the princip
dependence of these quantities on the system param
could be studied.

Currently, the presented derivation is applied to a mu
wider class of single-file systems as well, including chann
with unequal sites, consideration of the residence time at
certainsubset of sitesor even individual sites, systems whe
the mutual passage of molecules within the channel isnot
excluded completely, reversible reactions,mixtures of the
particle species outside the channel, conversion between
ticles with unequal transport properties, and long-range
particle-particle interactions.

Some remarks concerningdetailed balancemay be added.
It can be shown that the configurations satisfy a detail
balance relation, i.e., the ratio of the probabilities of tw
arbitrary configurations is equal to the ratio of the transiti
rates between them. Using this relation the probabilit
Qs1•••sN can be found in a much easier way than via E
~28!. We did not succeed, however, in finding an equivale
relation for the quantitieshs1•••sN. The reason is that thes
quantities correspond to thesteady stateof the conversion
which might be interpreted as a driven diffusion. Driven d
fusive systems, however, are known not to fulfill detail
balance. Finding similar relations is an important aim of f
ture work because this could considerably simplify the n
merical procedure and, in this way, facilitate the investig
tion of larger or more sophisticated systems.
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