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Adsorption of linear polymers on impenetrable fractal boundaries
of checkerboard fractal lattices
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~Received 19 June 1996!

We study the problem of adsorption of linear chain polymers situated in fractal containers that belong to the
checkerboard fractal family, as well as the case of the closely related family ofX fractals. Each member of any
of the two families has a fractal impenetrable adsorbing boundary, and can be labeled by an odd integerb
(3<b<`). By applying the exact and Monte Carlo renormalization group method, we calculate the critical
exponentf, associated with the number of adsorbed monomers, for a sequence of fractals with 3<b<81. We
find that, in the region studied,f monotonically decreases with the increase ofb ~that is, with increase of the
container fractal dimensiondf). In addition, we observe that the obtained results are qualitatively the same as
in the case of fractals with Euclidean adsorbing boundaries, while the established quantitative differences can
be ascribed to the fact that the fractal nature of boundaries do enhance the polymer adsorption process. Finally,
we establish that the adsorption enhancement does not depend on specific variations of the sets of monomer-
wall interactions.@S1063-651X~97!04604-7#

PACS number~s!: 36.20.Ey, 64.60.Ak, 05.50.1q
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I. INTRODUCTION

Physics of a polymer chain in a good solvent near
impenetrable wall~boundary! with short-range attractive
forces has been extensively studied because of its prac
importance@1#, and as a challenging problem within th
modern theory of critical phenomena@2#. The most fre-
quently applied model for a polymer chain has been the s
avoiding random walk model~SAW!, so that steps of the
walk have been identified with monomers that comprise
polymer, while the homogeneous solvent surrounding
been represented by a Euclidean lattice. Under these ass
tions, the problem of polymer adsorption has been attac
by various theoretical methods, such as the mean-field
proach, Monte Carlo simulations, and the conformal inva
ance method, including certain simplifications~as the con-
cept of a directed polymer!. Despite many studies, th
polymer adsorption phenomenon, in the case of Euclid
lattices with homogeneous impenetrable boundaries,
been an active research problem. For example, the cross
critical exponentf, associated with the numberM of ad-
sorbed monomers, has been predicted, by the conforma
variance method@3#, to have the value 1/2 for two
dimensional Euclidean lattices. This value has been a to
of numerous investigations@4–9#, which have culminated in
rigorous proof achieved via an exact study of theO(n) loop
model on the honeycomb lattice@10#.

Unfamiliar difficulties as regards the polymer adsorpti
problem may appear in the case when the polymer-solv
system is enclosed within a fractal container, which, to m
things more difficult, may have an impenetrable frac
boundary. Such a situation can be approached by the S
model located on a deterministic fractal lattice bounded
an adsorbing wall. The corresponding problem has been
attacked by Bouchaud and Vannimenus@11# who established
phenomenological bounds for the crossover exponentf. To
551063-651X/97/55~5!/5671~9!/$10.00
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test the proposed bounds, Bouchaud and Vannimenus@11#
have initiated the renormalization group~RG! approach to
the problem and calculatedf for the two-dimensional and
three-dimensional Sierpinski gasket~SG! lattices~with base
b52, in both cases!. The knowledge of the critical exponen
f is of fundamental importance because it is a requisite
the assessment of the majority of observable physical qu
tities that appear in the adsorption problem. For this reas
the introduced RG approach@11# has been extended to othe
fractal cases@12–16#. The obtained results revealed intrigu
ing facts concerning the dependence off on the character-
istics of underlying fractal lattices and their adsorbi
boundaries, which call forth new studies under similar lin

In this paper, we study the polymer adsorption problem
the case of the infinite family of the checkerboard~CB! frac-
tals, as well as the case of the closely related family ofX
fractals. The peculiarity of the CB andX fractal families is
the fact that each member of any of the two families ha
fractal impenetrable boundary. We have applied the ex
renormalization group and Monte Carlo renormalizati
group ~MCRG! method to calculate the crossover expone
f for large sequences of both fractal families. The obtain
results provide a new large set of data needed for poss
identification of a finite number of fractal properties, whic
determine characteristics of the polymer adsorption phen
enon, and, in particular, those properties which determine
value of the critical exponentf. More specifically, the ob-
tained results allow us to test the validity of the phenome
logically established bounds@11#, and a closed-form expres
sion @13#, for f formulated in terms of the container fract
dimensiondf , the adsorption wall fractal dimensionds , and
the end-to-end distance critical exponentnB ~for the polymer
in the desorbed-bulk state!. Besides, the cases under stu
allow us to discuss the influence of particular shapes of
impenetrable adsorbing boundaries and the pertaining se
monomer-wall interactions on possible values of the cro
over exponentf.
5671 © 1997 The American Physical Society
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This paper is organized as follows. In Sec. II we fi
describe the CB andX fractals and present the gener
framework of the RG method for studying the polymer a
sorption problem on these fractals, in a way that should m
the method transparent for exact calculations, as well as
the Monte Carlo calculations. In Sec. III we give details
the relevant calculations and results for the critical expon
f for a sequence of the fractals under study. Discussion
the obtained results and their relevance to the current kno
edge of the polymer adsorption phenomena are given in
IV.

II. FRAMEWORK OF THE RENORMALIZATION
GROUP APPROACH

The RG calculation of the crossover exponent for the
sorption problem on the CB fractals is, in principle, simil
to the previous applications of the RG method to the stud
of the same problem on other families of deterministic fra
tals @12–16#. However, the implementation of the R
method for the CB fractals is more complex and requi
additional elucidation. Before going into pertinent details,
shall briefly describe the structure of the CB and the rela
X fractals.

Each member of the plane CB andX family is labeled by
an odd integerb>3 and can be obtained as the result of
infinite iterative process of successive (r→r11) enlarging
the fractal structureb times and replacing the smallest pa
of the enlarged structure with the generator~initial structure,
r51). The generator of a CB fractal is a square, of s
b3b, composed ofb rows of unit squares, so that withi
each row and each column every other of them is remov
whereas in the case ofX fractals instead of unit squares w
put crosses composed of squares’ diagonals~see Fig. 1!.

FIG. 1. The first two steps (r51 andr52) of the self-similar
construction of the CB~a! andX ~b! fractals, in the caseb55.
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Taking into account the self-similar way of the constructi
of the fractals, one can easily show that the fractal dimens
df for an arbitrary CB fractal~as well as forX), specified by
b, is equal to ln@(b211)/2#/ lnb, so thatdf acquires the Eu-
clidean value 2 whenb→`.

To study the polymer adsorption problem on the CB a
X fractals, it is necessary to determine precise characteris
of their impenetrable fractal boundaries. It is convenient
assume that the adsorbing boundaries are the lower side
the corresponding fractals, and, as an example, in Fig. 2
depict the boundary of theb55 CB fractal at the second
(r52) stage of construction. From this figure, it follows th
the adsorbing boundaries can be conceived as fractal ch
comprised of three types of elementsA, B, andC. Mass
m of such a chain, on a scale of lengthl , is given by

m;l ds, ~2.1!

whereds is the corresponding fractal dimension. If, on th
r th stage of the fractal construction, we assume that the
mentsA, B, andC have the massesmA

(r ) , mB
(r ) , andmC

(r ) ,
respectively, we can write~in the caseb55) the recursion
relations

mA
~r11!53mA

~r !12mB
~r !12mC

~r ! , ~2.2a!

mB
~r11!52mA

~r !12mB
~r !1mC

~r ! , ~2.2b!

mC
~r11!54mA

~r !12mB
~r !13mC

~r ! . ~2.2c!

Owing to the self-similarity of the fractal boundary chai
one may assume the following behavior for larger :

mA
~r11!

mA
~r ! ;

mB
~r11!

mB
~r ! ;

mC
~r11!

mC
~r ! ;l. ~2.3!

FIG. 2. ~a! The impenetrable wall~the shaded region! with the
adsorbing fractal boundary~heavy line! of theb55 member of the
CB fractal family, at the second stage of construction. One sho
observe that, in this case, there are four elementary squares w
edges are not included in the boundary because such squares w
represent dead ends for adsorbed polymer modeled by a ne
starting and never-ending SAW.~b! The three types of element
that comprise the fractal boundaries of the CB fractals.
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55 5673ADSORPTION OF LINEAR POLYMERS ON . . .
The system of recursion relations~2.2! can have nonzero
solutions of the type~2.3! only in the casel57, which, in
conjunction with Eq.~2.1!, yieldsds5 ln7/ln5. This analysis
can be performed quite similarly forb.5 ~in both cases, tha
is, for CB andX fractals!, so that for arbitraryb one can
infer the general formula

ds5
ln~2b23!

lnb
. ~2.4!

We describe equilibrium properties of a linear polymer
a good solvent by the self-avoiding walk model, which is
random walk that must not contain self-intersections. In
terminology that applies to the SAW, we assign the wei
x ~fugacity! to each step in the bulk~away from the adsorb
ing boundary! and the weightxw to each step performed o
the boundary. Herew is the Boltzmann factorw5e2ew /kT,
whereew is the energy of a monomer lying on the adsorbi
wall, andkT is the product of the Boltzmann constant a
the temperature of the solvent. The fractal structure of
adsorbing boundary of theX and CB fractals~see Fig. 3!
makes it necessary to introduce two additional weight
factors t5e2e t /kT and u5e2eu /kT, with the respective
monomer-wall interactionse t andeu . Accordingly,xt is the
weight of those steps that are performed in the layer adja
to the wall, whilexu is the weight of the steps along th
bonds that appear as bridges over unit holes on the adso
wall. The number of the adsorbed monomers~steps! M is a
function of temperatureT and its relation to the total numbe
of monomersN is assumed to be

M;H N~Ta2T!1/f21, T,Ta

Nf, T5Ta

~T2Ta!
21, T.Ta

~2.5!

FIG. 3. The adsorbing walls~shaded regions! in the case of the
X ~a! and CB ~b! fractals, forb55. The SAW steps~monomers!
along the bonds that comprise the adsorbing boundaries
weighted byxw. On the other hand, the SAW steps along the bo
~dotted lines! which lie in the layer adjacent to the boundary a
weighted by the factorxt. Besides, in the case of the CB fracta
there are bonds~marked by the downward oriented arrow in th
figure! which appear as bridges over unit holes, and if a SAW s
performed over such a bond it is weighted byxu. Finally, any SAW
step above the adsorbing boundary and its contiguous laye
weighted byx.
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whereTa is the critical temperature of the adsorption, a
f is the crossover exponent@2,17#. It follows that, for tem-
peratures higher thanTa , one should expect a vanishingl
small fraction of monomers adsorbed at the surface, whe
for T,Ta there should appear a finite fraction of adsorb
monomers.

In order to describe all possible configurations of cha
polymers on the CB (X) fractals, it is necessary to introduc
12 restricted partition functions, which we divide into thre
sets$F%, $G%, and$H% ~see Fig. 4!. The desorbed state of
polymer can be described by the three functionsF (r ), G(r ),
andH (r ), whose recursion relations, for arbitraryb, should
be of the polynomial form

F ~r11!5(
i , j ,k

f ~ i , j ,k!F ~r !iG~r ! jH ~r !k, ~2.6a!

G~r11!5(
i , j ,k

g~ i , j ,k!F ~r !iG~r ! jH ~r !k, ~2.6b!

H ~r11!5(
i , j ,k

h~ i , j ,k!F ~r !iG~r ! jH ~r !k, ~2.6c!

where the coefficientsf , g, andh, owing to the underlying
self-similarity, do not depend onr . The above set can b
regarded as the RG transformations which enables on
calculate the end-to-end distance critical exponent

n5
lnb

lnln
, ~2.7!

where ln is the largest eigenvalue of the transformatio
linearized at their nontrivial fixed point@18,19#.

The complete description of the adsorption problem
quires, in addition to the three bulk restricted partition fun
tions given by Eqs.~2.6!, a set of similar nine functions~see
Fig. 4! which satisfy the following recursion relations:

re
s

p

is

FIG. 4. Schematic representation of the twelve restricted pa
tion functions used in describing all possible polymer configu
tions within the r th stage CB andX fractal structure. Thus, for
example,F1 represents a part of the polymer chain~wiggled solid
line! which starts at the lower left vertex that lies on the adsorpt
wall, and exits at the lower right vertex that also lies on the adso
tion wall. The interior details of ther th order fractal structure is no
shown~it is manifested by the writhing of the solid line!.
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Fi
~r11!5 (

j 1 , . . . ,j 12
f i~ j 1 , . . . ,j 12!F

~r ! j 1F1
~r ! j 2•••F5

~r ! j 6G~r ! j 7G1
~r ! j 8G2

~r ! j 9H ~r ! j 10H1
~r ! j 11H2

~r ! j 12, i51, . . . ,5 ~2.8a!

Gi
~r11!5 (

j 1 , . . . ,j 12
gi~ j 1, . . . ,j 12!F

~r ! j 1F1
~r ! j 2•••F5

~r ! j 6G~r ! j 7G1
~r ! j 8G2

~r ! j 9H ~r ! j 10H1
~r ! j 11H2

~r ! j 12, i51,2 ~2.8b!

Hi
~r11!5 (

j 1 , . . . ,j 12
hi~ j 1 , . . . ,j 12!F

~r ! j 1F1
~r ! j 2•••F5

~r ! j 6G~r ! j 7G1
~r ! j 8G2

~r ! j 9H ~r ! j 10H1
~r ! j 11H2

~r ! j 12, i51,2 ~2.8c!
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where the coefficientsf i , gi , andhi , are not functions of
r , and each of them represents the number of ways in wh
the part of the SAW path of the corresponding type, with
the (r11)th stage fractal structure, can be comprised of
SAW paths within the fractal structures of the next low
order. Because of the independence ofr , these coefficients
can be calculated by studying all possible SAWs within
fractal generator only.

The above set of relations~2.8!, together with Eqs.~2.6!,
comprise the RG transformations which are needed to de
mine the crossover critical exponentf. Indeed, it has been
shown@11,12,15,16# that one can expect that the RG tran
formations of the type~2.6! and~2.8! should have three dif-
ferent nontrivial fixed points which correspond to the thr
different polymer states — the bulk state (T.Ta), the cross-
over state (T5Ta), and the adsorbed state (T,Ta). At the
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crossover fixed point~the special fixed point, in the parlanc
of surface critical phenomena! the two largest eigenvalue
ln and lf (ln.lf) of the linearized RG transformation
determine the crossover exponentf @11# through the for-
mula

f5
lnlf

lnln
. ~2.9!

To locate the relevant fixed points of the RG transformatio
~2.6! and ~2.8! we need to specify the initial conditions i
terms of the fugacityx and the Boltzmann factorsw, t, and
u. With this purpose in view, we observe that for any me
ber of theX fractal family the initial conditions can be de
fined in the case of a unit cross~initiator, r50)
F ~0!5x2, F1
~0!5x2w2, F2

~0!5x2wt, F3
~0!5x2t2, F4

~0!5x2wt, F5
~0!5x2w2, ~2.10a!

G~0!5x2, G1
~0!5x2wt, G2

~0!5x2w2, H ~0!50, H1
~0!50, H2

~0!50, ~2.10b!
e
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whereas, in the case of the CB family of fractals~for
b.3), the initial conditions cannot be formulated for th
corresponding initiator~unit square!; since relations of type
~2.10!, upon performing the iteration procedure according
Eqs. ~2.6! and ~2.8!, would imply self-intersections of the
SAW path. Therefore, for every CB fractal, the initial co
ditions have to be established for the fractal genera
(r51). We have found the appropriate initial conditions f
theb55 andb57 CB fractals. However, the correspondin
polynomials inx, w, t, andu contain too many terms. In
deed, there are 12 polynomials with altogether 1967
21 689 terms in the caseb55 andb57, respectively, which
makes it impractical to quote them here.

III. CALCULATION OF THE CROSSOVER EXPONENT

In this section we are going to present both the exact
the MCRG calculation of the crossover exponentf. The
exact RG calculation requires knowledge of coefficie
f , g, andh of Eq. ~2.6! ~which were found in@18# for the
3<b<9 fractals!, as well as knowledge of coefficient
( f i , gi , andhi) of the polynomials~2.8!. Using moderate
computer facilities, we have been able to calculate the la
o

r

d

d

s

er

coefficients forb53, 5, and 7. We shall first analyze th
caseb53, and at the beginning we point out that only neve
starting and never-ending SAWs are treated in the RG
proach applied in this paper. Hence, one can verify that
theb53 fractal (X or CB! infinite SAWs can be performed
only by makingG type of walks, that is, the partition func
tions of theF andH type are not relevant. Accordingly, w
may putF (r )5Fi

(r )5H (r )5Hi
(r )50, while for the restricted

partition functions of theG type we find

G85G3, ~3.1a!

G185GG1G2 , ~3.1b!

G285G2
3 , ~3.1c!

where we have used the prime symbol as a superscrip
the (r11)th order parameters and no indices for ther th
order parameters. Henceforth, for the sake of simplicity,
treat only theX fractal case. For the requisite initial cond
tions, we can use Eqs.~2.10!, and thus we find that the abov
set of the RG transformations has three nontrivial fix
points — (G51, G150, G250), (G50, G150, G251),
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and (G51, G15t, G251), which, according to numerica
investigations of the RG flow@see Fig. 5~a!# correspond, re-
spectively, to the polymer bulk phase, adsorption phase,
to the coexistence of the two phases. Accordingly, in
b53 case, there is no multicritical point which could corr
spond to the crossover behavior of the polymer system,
consequently, the critical exponentf is not defined~one can
verify that the same situation is valid for theb53 CB frac-
tal!.

We have already pointed out that for theb55 andb57
CB andX fractals we have been able to perform exact R
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calculations. The corresponding RG transformations~2.6!
and ~2.8! in the caseb55 are given in the Appendix
whereas in the caseb57 the pertinent transformations re
quire much more space and we do not give them~the rel-
evant data are, however, available upon requests address
the authors!.

In the caseb55, a numerical analysis of the relation
~A1!, together with the pertinent initial conditions, revea
existence of the following nontrivial fixed points~with the
order of coordinates that corresponds to the order of relev
equations given in the Appendix!:
~F ~B!
* ,G~B!

* ,H ~B!
* ,0,0,F3~B!

* ,0,0,0,0,0,0!, ~3.2a!

~F ~B!
* ,G~B!

* ,H ~B!
* ,F ~B!

* ,F ~B!
* ,F ~B!

* ,F ~B!
* ,F ~B!

* ,G~B!
* ,G~B!

* ,H ~B!
* ,H ~B!

* !, ~3.2b!

~0,0,0,F1~A!
* ,0,0,0,F5~A!

* ,0,1,0,0!, ~3.2c!
ry
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which we shall term, respectively, the bulk, crossover, a
the adsorption fixed point. For the bulk fixed point~3.2a!, the
first three nonzero coordinates have the valuesF (B)*
50.66371,G(B)* 50.72464, andH (B)* 50.10003@18#, while
the coordinateF3(B)* is the nontrivial solution 0.477 93 of th
equation

F3~B!
* 5F38~F ~B!

* ,G~B!
* ,H ~B!

* ,0,0,F3~B!
* ,0,0,0,0,0,0!.

~3.3!

The bulk fixed point can be reached, for theX fractal, start-
ing fromxc50.8359~or fromxc50.5648 for the CB fractal!,
and for the relatively small parameterw @see Fig. 5~b!#. The
RG transformations~A1!, linearized at the bulk fixed point
have only one relevant eigenvalueln56.6077, which, in
conjunction with the formula~2.7!, givesnB50.852 35@18#.
When w reaches the special-point valuew* (t,u) the RG
transformations~A1! lead to the crossover fixed point~3.2b!,
and if one linearizes the RG transformations at this fix
point, one finds two relevant eigenvaluesln56.6077 and
lf54.09110, which according to Eq.~2.9! gives
f50.74610. Finally, iterations of the RG transformatio
~A1! that start on a point of the critical line, fo
w.w* (t,u) @see Fig. 5~b!#, lead to the adsorption poin
~3.2c! which is characterized byF1(A)* 51/F5(A)* in such a
way thatF1(A)* is a function of the initial values forw, t, and
u. The adsorption fixed point is also characterized by
single relevant eigenvaluelA57 yielding the end-to-end
distance critical exponentnA50.827 09, which turns out to
be equal to 1/ds @see Eq.~2.4! for b55#. The latter result
implies that, for the corresponding initial conditions, the a
sorbing boundary is completely covered by the polymer.

A numerical investigation of the RG equations in t
caseb57 confirm the existence of the fixed points of th
type ~3.2!, with the following specific values —
F (B)* 50.568 05, G(B)* 50.622 96,H (B)* 50.058 49@18#, and
F3(B)* 50.416 33, while the calculation of the critical exp
d

d

e

-

nents gives nB50.815 02, f50.644 87, andnA51/ds ,
whereds is the fractal dimension of the adsorbing bounda
@see Eq.~2.4! for b57#.

Exact RG approach to the adsorption problem on the
and X fractals with b>9 is a forbidding task using the
present day computers, and for this reason we apply
MCRG technique. To learn specific values of the crosso
exponent forb>9, we need to calculate the eigenvalu
lf @see formula~2.9!#, sinceln has been already found for
sequence of fractals up tob581 @19# ~which appears to be
an upper limit for calculations using a computer with t
Intel 80860 microprocessor!. Calculation oflf ~for the same
sequence of fractals! requires solution of the eigenvalu
problem for the RG transformations~2.8! linearized at the
crossover fixed point, which in practice necessitates eva
tion of 81 partial derivatives of the type]Y8/]X, whereX
and Y stand for any pair of quantities from the s
$Fi ,Gi ,Hi% ~calculated at the crossover fixed point!. Within
an exact RG approach, calculation of these derivatives
sumes knowledge of all coefficientsf i , gi , andhi , which
was a feasible task in the casesb55 andb57. For b>9,
within the MCRG approach, we conceive the quantit
Fi , Gi , andHi , as the grand-canonical partition function
of ensembles of the corresponding SAWs~see Fig. 4!.
Within this approach the requisite partial derivatives can
written in the form

]Y8

]X
5
Y8

X
^NX&Y8, ~3.4!

where^NX&Y8 is the average number of the SAW elements
the typeX, within the fractal generator, calculated in acco
dance with the grand-canonical ensemble of the typeY.
Thus, to findlf , we need to solve the eigenvalue proble
of the matrix whose elements are the 81 derivatives of
type~3.4! evaluated at the fixed point~3.2b!. The coordinates
of the crossover fixed points~3.2b! have been found in Ref
@19#, so that it remains to evaluate only^NX&Y8 at the same
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fixed point, which, within the MCRG approach, can be d
rectly measured~see, for instance,@15# and references quote
therein!. The final results for the crossover critical expone
f, together with the requisite eigenvalues (ln andlf), are
given in Table I.

IV. DISCUSSION AND SUMMARY

In this paper we have presented the exact and MC
calculations for the crossover critical exponentf which de-
scribes the adsorption phenomenon of a linear polymer,
good solvent, on impenetrable boundaries of fractal cont
ers modeled by the CB~andX) fractal lattices. For the firs
three members (b53, 5, 7) of both ~CB and X) fractal
families we have performed exact RG analysis, which
vealed that in the caseb53 there is no multicritical behavio
described by Eq.~2.5!, that is, the crossover exponentf in

FIG. 5. ~a! The critical fugacityxc curve for theX fractal la-
beled byb53 as a function of the parameterw for a givent. The
RG transformations~3.1! iterated by starting at the horizontal pa
of the curve lead to the bulk fixed point (G51, G150, G250),
whereas if the iteration starts at the part of the critical fugac
curve xc51/w that appears beyond the point (w*51, xc*51), it
leads to the adsorption fixed point (G50, G150, G251). Fi-
nally, when the RG iteration starts at the point (w*51, xc*51) it
leads to the fixed point (G51, G15t, G251), which corresponds
to the first order phase transition. The abrupt increase of the num
of adsorbed monomersM , at this fixed point, is related@16# to the
discontinuous first order derivative of the singular part of the f
energy per monomerf sing5kTlnxc(w,t). ~b! The critical fugacity
curve for the CB andX fractals withb.3. Behavior of the RG flow
is analogous to theb53 case, except for the point„w* (t,u),xc* …
which is now related to the crossover fixed point~3.2b!, while the
bulk and adsorption fixed points are given by Eqs.~3.2a! and~3.2c!,
respectively.
t
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a
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this case is not defined and the adsorption of monomer
not a continuous critical phenomenon. This implies that
the caseb53 the adsorption phenomenon is a first ord
phase transition, which is accompanied with a jump in
numberM of adsorbed monomers@this number is related to
the derivative of the critical fugacity; see Fig. 5~a!#. For
b.3 there appears to be a continuous adsorption of mo
mers on the corresponding boundaries~whose fractal dimen-
sions ds→1, when b→`). A similar appearance of an
abrupt change to continuous behavior has been observe
the case of adsorption of directed polymers on rough s
strates@20#. This appearance has been explained by a
crease in the roughness~which may be related to the self
similarity of the fractal boundaries! of the corresponding
adsorbing walls. Finally, it may be appropriate to note th
the change in the type of the adsorption phase transition
also been observed in the case of a boundary within a g
roughness providing that the monomer-wall interaction in
layer adjacent to the wall may change its intensity@16#.

For fractals withb>9 we have found it formidable to
perform exact RG calculations, and thus for a seque
(5<b<81) we have applied the MCRG method. The re
ability of the MCRG results is manifested by the fact that
the casesb55 andb57 the MCRG results deviate at mo
0.15% from the exact results. For the sake of a better ass
ment of the global behavior of the crossover exponentf as a
function of the fractal scaling parameterb, we depict the
corresponding values from Table I in Fig. 6. One can see
f, being monotonically decreasing function ofb, crosses the
two-dimensional Euclidean valuef51/2 forb.13. Besides,
one can observe that the phenomenological upper bo
fu5ds /df , predicted in@11#, is always satisfied, wherea
the lower boundf l512(df2ds)nB @11# is satisfied only in

y

er

e

TABLE I. The exact (b55 andb57) and the MCRG results
(5<b<81) for the RG eigenvaluelf and the crossover critica
exponentf, in the case of the CB~andX) fractals. To make the
table complete, we quote also here the eigenvaluesln ~obtained in
Ref. @19#!, which were needed in formula~2.9! to obtainf.

b ln lf f

5 exact 6.6077 4.09110 0.746 10
6.616 0.04 4.0946 0.008 0.746 306 0.003 65

7 exact 10.8871 4.629 69 0.644 87
10.876 0.06 4.6276 0.009 0.642 016 0.002 33

9 15.816 0.09 4.9256 0.009 0.577 576 0.001 90
11 21.36 0.1 5.136 0.01 0.534 336 0.001 59
13 27.36 0.1 5.246 0.01 0.500 666 0.001 37
15 33.96 0.2 5.336 0.01 0.474 926 0.001 26
19 48.26 0.2 5.436 0.01 0.436 606 0.001 06
23 64.56 0.3 5.506 0.01 0.409 166 0.001 00
25 73.16 0.4 5.476 0.01 0.396 156 0.000 91
27 82.26 0.4 5.526 0.01 0.387 306 0.000 88
35 120.36 0.6 5.506 0.01 0.355 866 0.000 82
43 164.16 0.7 5.526 0.01 0.334 976 0.000 66
51 2126 1 5.506 0.01 0.318 196 0.000 74
61 2756 1 5.466 0.01 0.302 376 0.000 66
71 3466 1 5.486 0.01 0.290 966 0.000 54
81 4206 2 5.456 0.01 0.280 856 0.000 54
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the caseb55, which together with previous similar cases
~see, for instance,@16# and references quoted therein! calls
for a better phenomenological treatment of the adsorptio
problem on fractal lattices. However, one should not expe
that such a treatment can be an easy task, which could
illustrated by the attempt of Kumar, Sing, and Dhar@13# to
find a simple phenomenological formula forf in termsdf
and nB whose predictions turned to deviate significantly
from our exact and MCRG results~see Fig. 6!.

It is interesting to see to which extent the obtained resul
for the crossover exponentf are peculiar to the CB~and
X) family of fractals. To this end, we make a comparison
with the results obtained previously@11,12,15# for the Sier-
pinski gasket~SG! family of fractals~see Fig. 7!. First, we
can observe that, in the region studied, both curves forf
monotonically decrease with increasingdf ~that is, with in-
creasingb). This joint property~valid for all three fractal
families — CB,X, and SG! can be explained by the fact that
the adsorption appears when a balance between the attrac
polymer-surface potential and an effective ‘‘entropic’’ repul-
sion sets in. With increasingb the difference in the polymer
configurational entropy between the bulk and the adsorb
state increases, while the attractive polymer-surface potent
stays relatively constant. This competition obstructs polym
adsorption for largerdf , which results in decreasing values
of f ~see Fig. 7!. Of course, at this point, one may pose the
question whether decreasing off continues up to very large
b, or at a certainbmin.81 f acquires a minimal value, so
that forb.bmin it starts to increase. It is hard to answer this
question by straightforward calculation off, but the argu-
ments offered in regard to the similar question for the bul
critical exponent nB @19,21# make us conjecture that

FIG. 6. Data for the crossover critical exponentf for the CB
~andX) family of fractals. The exact RG results are represented b
open squares, while the MCRG results are depicted by sol
squares. The error bars related to the MCRG data are not depic
in the figure since in all cases they lie within the correspondin
symbols. The solid curves represent the upperfu and lower bounds
f l , proposed in@11#. The dashed horizontal line represents the
two-dimensional Euclidean valuef51/2. The lower solid line, la-
beled by KSD, represents the phenomenological formu
f5@11(12df)nB#/(nBAdf) proposed by Kumar, Sing, and Dhar
@13#.
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f may have a minimal value for certain largeb, and that for
b→` it tends to the Euclidean value 1/2. To vindicate th
conjecture it is necessary to pursue further the finite-s
scaling arguments initiated by Kumar, Sing, and Dhar@13#.

The foregoing comparison of the crossover exponenf
for the two different families of fractals~CB or X, versus
SG! should be completed by the observation that for a giv
value of df the inequalityfCB.fSG holds, which might
have been expected on the physical grounds. Indeed, th
equalityfCB.fSG should be related to the difference in th
fractal dimensionds of the pertaining impenetrable bound
aries. In the SG caseds

SG51, for eachb, whereasds
CB is

given by formula~2.4!, so thatds
CB.ds

SG, which implies that
on a same scale of length the CB impenetrable boundary
more adsorbing bonds than the SG boundary. Furtherm
from Fig. 7 it follows that the differencefCB2fSG de-
creases with increasingb, which is in accord with the fact
ds
CB→ds

SG51, whenb→`. While we are on the subject, w
would like to point out the finding that any pair of the C
andX fractals, labeled by the same scaling parameterb, have
same values for the crossover exponent despite the fact
the two fractals do not have the same set of monomer-w
interactions~see Fig. 3!. On the other hand, the two fracta
have the sameds , for a givenb, which demonstrates that th
crossover exponent is determined by the configuration of
penetrable boundaries, rather than by the set of the adsor
interactions.

In conclusion, we may say that, in this study of the po
mer adsorption problem on fractal lattices withfractal im-
penetrable boundaries, we have found that the results
qualitatively the same as in the case of fractals with the
clidean boundaries. On the other hand, the established q
titative differences can be ascribed to the fact that the fra
nature of boundaries do enhance the polymer adsorption
cess, but with the caution that this enhancement does
depend on specific variations of the sets of monomer-w
interactions.

y
id
ted
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a

FIG. 7. Data for the polymer adsorption critical exponentf for
the CB ~andX) family of fractals ~solid squares! and for the SG
family of fractals~solid triangles! as functions of the correspondin
fractal dimensionsdf .
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APPENDIX: THE RG TRANSFORMATIONS FOR THE b55 CB FRACTAL

In this appendix we provide the RG transformations~2.6! and ~2.8! in the case of theb55 CB ~or X) fractal. For the
b57 fractal, the pertinent transformations require much more space and we do not give them here~the relevant data are
however, available upon requests addressed to the authors!.

F85F3G21F7G21FG412F3G413F5G412F5G2H1F3G4H12F5G4H12F5G4H213F5G2H3, ~A1a!

G856F4G312F6G31G514F6G3H14F4G3H212F4G5H2, ~A1b!

H85F6G412F4G614F4G6H1G8H16F6G4H218F4G4H5, ~A1c!

F185F1
2F5G2

212F3F1F5G2
2H212F3G2F1F5G2

2H212F4HF5G2
2H1H212F4G2F5G2

2H1H21FG1
2G2

212F2GF2G1G2
2

1F3HG1
2G2

212F4GF2G1G2
21F5F2

2G2
21F4HF5G2

2H2
21F3G2F2

2G2
2 , ~A1d!

F2852F3G2F1F5G1G21F4G2HF5G1G2H11F4G2F5G1G2H11F4GF1F2F5G212F3GH2F2F5G2H11G3F1F2F5G2

1F3GF2F5G2H11F4G2F3G1G21F2G2HF3G1G21F3G2G1G21FG2G1G21F4GHF2G21F4G2HF5G1G2H2

1F3GH2F2F5G2H21F3G3HF2F3G21F2GF2G2 , ~A1e!

F385F3G213F3G2H3F3
212F4G2H2F5G1

212F3G3HF2F5G112F4G2HF31F5G2F3
212F2G4F31F4G2F5G1

2

12F3G3F2F5G11FG41G4HF2
2F5 , ~A1f!

F485F2GF1F5
2G1G2

21F3GHF5
2G1G2

2H11FG2F1F2F5
2G2

21F2G2F2F5
2G2

2H11F3GF1F3F4F5G212F2GH2F3F4F5G2H1

1G3F1F4F5G21F3GF4F5G2H11F3GF4F5G1
2G21G2HF2F4F5G1G21F2G2F3G1G21FG2G1G2

1F3GHF2F3G21F3GHF5
2G1G2

2H21F2GH2F3F4F5G2H21F2G2HF2F4F5G1G21F2GF2G2 , ~A1g!

F585FF2
2G2

212FHF4
2F5

2G2
2H1H212F2F5

3G2
4H1H212FGF2F4F5

2G2
3H112F2F2F4F5G2

2H11FF1
2F4

2F5
2G2

2

12GF1F4F5G1G2
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2F5
2G2

2H1
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2F5
3G2

412FF1F4F5
2G1G2

31FG1
2G2
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2F5G1

2G2
2 , ~A1h!

G185F2GF1F5G1G21F4GHF1F5G1G21F3G3HF5G1G2H11FG2F1F2F5G21F3G2F1F2F5G21F2G2HF2F5G2H1

1F4G2F2F5G2H11F3GF3G1G212F3GH2F3G1G21G3G1G21F4GG1G212F3G2F2G21F5GF5G1G2H2

1F2G2HF2F5G2H21F4G2F2F3G21F3G3HF5G1G2H21F4G2HF2F3G2 , ~A1i!

G285F1
2F5

2G2
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2G2
3H212F2G2F5

2G2
3H1H212FF1F4F5G1G2

212F2GF1F2F4F5G2
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2H1

12F3GF2F4F5G2
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2H21GG1
2G2

212F3F2G1G2
21F2GF2

2G2
2 , ~A1j!

H185F3G2F1
2F5G2

213F3G2H3F5G2
2H1

212F4G2HF1F5G2
2H11FG4F1

2F5G2
212F2G4F1F5G2

2H11F5G2F5G2
2H1

2

12F4G2HF1F5G2
2H214F3G2H3F5G2

2H1H21F4G2G1
2G2

21G4HG1
2G2

212F3G3HF2G1G2
21F4G2H2F2

2G2
2

1F3G2H3F5G2
2H2

2 , ~A1k!

H2852F4G2HF1F5G2
2H216F3G2H3F5G2

2H1H212F2G4F1F5G2
2H212F5G2F5G2

2H1H212F3G3HF2G1G2
21G4HG1

2G2
2

12F3G3F2G1G2
212F4G2H2F2

2G2
212F3G2H3F5G2

2H2
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2G2
2 . ~A1l!
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