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We study the problem of adsorption of linear chain polymers situated in fractal containers that belong to the
checkerboard fractal family, as well as the case of the closely related fan¥yrattals. Each member of any
of the two families has a fractal impenetrable adsorbing boundary, and can be labeled by an oddinteger
(3<b=w). By applying the exact and Monte Carlo renormalization group method, we calculate the critical
exponentp, associated with the number of adsorbed monomers, for a sequence of fractalsbith83d. We
find that, in the region studied? monotonically decreases with the increasé dthat is, with increase of the
container fractal dimensiod;). In addition, we observe that the obtained results are qualitatively the same as
in the case of fractals with Euclidean adsorbing boundaries, while the established quantitative differences can
be ascribed to the fact that the fractal nature of boundaries do enhance the polymer adsorption process. Finally,
we establish that the adsorption enhancement does not depend on specific variations of the sets of monomer-
wall interactions[S1063-651X97)04604-7

PACS numbe(s): 36.20.Ey, 64.60.Ak, 05.58.q

I. INTRODUCTION test the proposed bounds, Bouchaud and Vannimghils
have initiated the renormalization groyRG) approach to
Physics of a polymer chain in a good solvent near arthe problem and calculated for the two-dimensional and
impenetrable wall(boundary with short-range attractive three-dimensional Sierpinski gask&G) lattices (with base
forces has been extensively studied because of its practicBF 2, in both casgs The knowledge of the critical exponent
importance[1], and as a challenging problem within the ¢ is of fundamental importance because it is a requisite for

modern theory of critical phenomer{2]. The most fre- the assessment of the majority of observable physical quan-

quently applied model for a polymer chain has been the sel tities that appear in the adsorption problem. For this reason,

- the introduced RG approa¢tl] has been extended to other
avoiding random walk modefSAW), so that steps Of. the fractal case$12—-16. The obtained results revealed intrigu-

| hile the h | dina h ang facts concerning the dependencedobn the character-
polymer, while the homogeneous solvent surrounding hagsioq of underlying fractal lattices and their adsorbing

peen represented by a Euclidean Iatt|c_e. Under these asSUNisundaries, which call forth new studies under similar lines.
tions, the problem of polymer adsorption has been attacked |, this paper, we study the polymer adsorption problem in
by various theoretical methods, such as the mean-field agpe case of the infinite family of the checkerbo&@B) frac-
proach, Monte Carlo simulations, and the conformal invaria|s, as well as the case of the closely related familyXof
ance method, including certain simplificatiotes the con-  fractals. The peculiarity of the CB an fractal families is
cept of a directed polymgr Despite many studies, the the fact that each member of any of the two families has a
polymer adsorption phenomenon, in the case of Euclideafractal impenetrable boundary. We have applied the exact
lattices with homogeneous impenetrable boundaries, hagnormalization group and Monte Carlo renormalization
been an active research problem. For example, the crossovgroup (MCRG) method to calculate the crossover exponent
critical exponente, associated with the numbé&i of ad- ¢ for large sequences of both fractal families. The obtained
sorbed monomers, has been predicted, by the conformal imesults provide a new large set of data needed for possible
variance method[3], to have the value 1/2 for two- identification of a finite number of fractal properties, which
dimensional Euclidean lattices. This value has been a topidetermine characteristics of the polymer adsorption phenom-
of numerous investigatiorigl—9], which have culminated in enon, and, in particular, those properties which determine the
rigorous proof achieved via an exact study of @) loop  value of the critical exponengy. More specifically, the ob-
model on the honeycomb latti¢&O0]. tained results allow us to test the validity of the phenomeno-

Unfamiliar difficulties as regards the polymer adsorptionlogically established bound41], and a closed-form expres-
problem may appear in the case when the polymer-solversion[13], for ¢ formulated in terms of the container fractal
system is enclosed within a fractal container, which, to makelimensiond;, the adsorption wall fractal dimensial, and
things more difficult, may have an impenetrable fractalthe end-to-end distance critical exponegt(for the polymer
boundary. Such a situation can be approached by the SAW the desorbed-bulk stgteBesides, the cases under study
model located on a deterministic fractal lattice bounded byallow us to discuss the influence of particular shapes of the
an adsorbing wall. The corresponding problem has been firstnpenetrable adsorbing boundaries and the pertaining sets of
attacked by Bouchaud and Vannimefiit] who established monomer-wall interactions on possible values of the cross-
phenomenological bounds for the crossover expogenfo  over exponentp.
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FIG. 2. (&) The impenetrable wallthe shaded regiorwith the
adsorbing fractal boundaiheavy ling of theb=5 member of the
CB fractal family, at the second stage of construction. One should
observe that, in this case, there are four elementary squares whose
edges are not included in the boundary because such squares would
represent dead ends for adsorbed polymer modeled by a never-
starting and never-ending SAWhb) The three types of elements

=1 that comprise the fractal boundaries of the CB fractals.

Taking into account the self-similar way of the construction
of the fractals, one can easily show that the fractal dimension
d; for an arbitrary CB fractalas well as forX), specified by

. 2 .
This paper is organized as follows. In Sec. Il we firstb’ is equal to Ip(b™+1)/2]/Inb, so thatd; acquires the Eu-

describe the CB ani fractals and present the general cllﬁantvzlu?hz whlelb—m.d i bl the CB and
framework of the RG method for studying the polymer ad- o study the polymer adsorption problem on he an
sorption problem on these fractals, in a way that should maké fractals, it is necessary to determine precise characteristics

the method transparent for exact calculations, as well as fo(?f their impenetrable fra}ctal boundqries. Itis conveniept to
the Monte Carlo calculations. In Sec. Ill we give details of aSsume that the adsorbing boundaries are the lower sides of

the relevant calculations and results for the critical exponentlhe porrespondmg fractals, and, as an example, in Fig. 2 we
epict the boundary of the=5 CB fractal at the second

¢ for a sequence of the fractals under study. Discussion oz "oy st ¢ truction. F this fi it foll that
the obtained results and their relevance to the current knowl! =2) Stage of construction. From this figure, it follows tha

edge of the polymer adsorption phenomena are given in Seg?e adsorbing boundaries can be conceived as fractal chains
V. comprised of three types of elemems B, and C. Mass

m of such a chain, on a scale of length is given by

FIG. 1. The first two stepsr&1 andr=2) of the self-similar
construction of the CRBa) and X (b) fractals, in the casb=5.

Il. FRAMEWORK OF THE RENORMALIZATION m~ /s

2.2
GROUP APPROACH

The RG calculation of the crossover exponent for the adwheredg is the corresponding fractal dimension. If, on the
sorption problem on the CB fractals is, in principle, similar rth stage of the fractal construction, we assume that the ele-
to the previous applications of the RG method to the studiesnentsA, B, andC have the masses{’, m{’, andm{,
of the same problem on other families of deterministic frac-respectively, we can writéin the caseb=5) the recursion
tals [12-164. However, the implementation of the RG relations
method for the CB fractals is more complex and requires

additional elucidation. Before going into pertinent details, we m{ Y =3m" +2m{ +2m{ (2.29
shall briefly describe the structure of the CB and the related
X fractals.
(r+1)_ 9m(") (N 1 mn)
Each member of the plane CB aidfamily is labeled by Mg~ =2m, +2mg +mc’, (2.2b

an odd integeb=3 and can be obtained as the result of an

infinite iterative process of successive—r +1) enlarging m{ "V =am{)+2m{’+3m{) . (2.20
the fractal structuré times and replacing the smallest parts

of the enlarged structure with the generaiaitial structure,  Owing to the self-similarity of the fractal boundary chain,

r=1). The generator of a CB fractal is a square, of sizepne may assume the following behavior for large
bXxb, composed ob rows of unit squares, so that within

each row and each column every other of them is removed,

whereas in the case &f fractals instead of unit squares we
T . mo m® m®

put crosses composed of squares’ diagorfiaée Fig. L A B c

m'(ArJrl) mg+l) mg+l)

~N\. 2.3
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(a) (b) FIG. 4. Schematic representation of the twelve restricted parti-
’ tion functions used in describing all possible polymer configura-
FIG. 3. The adsorbing wallshaded regionsn the case of the tions within therth stage CB andX fractal structgr_e. Thus, _for
X (a) and CB(b) fractals, forb=5. The SAW stepgmonomers gxamplg,Fl represents a part of the polymer_chamggled solid )
along the bonds that comprise the adsorbing boundaries afée) which s_tarts at the Iowe_r left vertex that lies on the adsorption
weighted byxw. On the other hand, the SAW steps along the bondé’_"a”f and exns_ at the Iowe_r right vertex that also lies on the_adsorp-
(dotted line$ which lie in the layer adjacent to the boundary are tion WaI_I. The |nt_er|or details of th_eth orderfractal_str_ucture is not
weighted by the factokt. Besides, in the case of the CB fractals Shown(it is manifested by the writhing of the solid line
there are bondsémarked by the downward oriented arrow in the
figure) which appear as bridges over unit holes, and if a SAW stepwhere T, is the critical temperature of the adsorption, and
performed over such a bond it is weightedy. Finally, any SAW ¢ is the crossover exponef®,17]. It follows that, for tem-
step above the adsorbing boundary and its contiguous layer igeratures higher tham,, one should expect a vanishingly
weighted byx. small fraction of monomers adsorbed at the surface, whereas
for T<T, there should appear a finite fraction of adsorbed
The system of recursion relationi2.2) can have nonzero monomers.
solutions of the typg2.3) only in the case\ =7, which, in In order to describe all possible configurations of chain
conjunction with Eq(2.1), yieldsds=In7/In5. This analysis polymers on the CBX) fractals, it is necessary to introduce
can be performed quite similarly féx>5 (in both cases, that 12 restricted partition functions, which we divide into three
is, for CB andX fractals, so that for arbitraryo one can sets{F}, {G}, and{H} (see Fig. 4 The desorbed state of a
infer the general formula polymer can be described by the three functiéig, G,
andH", whose recursion relations, for arbitraby should

In(2b—3 i
d— ( ) . (2.4 be of the polynomial form
Inb
We describe equilibrium properties of a linear polymer in F“H):;j:k f(i,j,k)FOGOIHK, (2.6a

a good solvent by the self-avoiding walk model, which is a
random walk that must not contain self-intersections. In the
terminology that applies to the SAW, we assign the weight
x (fugacity) to each step in the bulkaway from the adsorb-
ing boundary and the weighkw to each step performed on
the boundary. Herev is the Boltzmann factow=e ™ /KT,
wheree,, is the energy of a monomer lying on the adsorbing HD =" h(i,j,k)FMIGMIHMK (2.60
wall, andkT is the product of the Boltzmann constant and ik

the temperature of the solvent. The fractal structure of the

adsorbing boundary of thX and CB fractals(see Fig. 3  where the coefficients, g, andh, owing to the underlying
makes it necessary to introduce two additional weightingse|f-similarity, do not depend on. The above set can be
factors t=e~ /T and u=e" /KT, with the respective regarded as the RG transformations which enables one to

monomer-wall interactions; ande, . Accordingly,xtis the  calculate the end-to-end distance critical exponent
weight of those steps that are performed in the layer adjacent

to the wall, whilexu is the weight of the steps along the

Gt =2 g(ij.WFTGTHT, (260

bonds that appear as bridges over unit holes on the adsorbing y= ﬂ 2.7
wall. The number of the adsorbed monom&teps M is a Inx,
function of temperatur@ and its relation to the total number
of monomersN is assumed to be where A, is the largest eigenvalue of the transformations
linearized at their nontrivial fixed poirif.8,19.
N(T,—T)¥ 1 T<T, The complete description of the adsorption problem re-
M~{ N*, T=T, 2.5 quires, in addition to the three bulk restricted partition func-

. tions given by Eqgs(2.6), a set of similar nine functionsee
(T=Ta) ", T>T, Fig. 4) which satisfy the following recursion relations:
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Fff“):j Ei fi(igs ... jrFOIF Mz FOIsGNI7G NG isH (MitoH(NiuH Pz, j=1,...,5 (2.89

LRI 12

G#’“):j Ej Gilin, - - - 1) PRz FIsGIITG e IoH (M IuH e =12 (2.8
s

H Y= 2 hiliy, - PR 2 FEIeGI7G e eH DiioH (DluH ez, =12 (2.89
Jl ..... le

where the coefficient$;, g;, andh;, are not functions of crossover fixed pointthe special fixed point, in the parlance
r, and each of them represents the number of ways in whichf surface critical phenomepahe two largest eigenvalues
the part of the SAW path of the corresponding type, withink, and X, (A,>\,) of the linearized RG transformations
the (r +1)th stage fractal structure, can be comprised of thaletermine the crossover exponefit[11] through the for-
SAW paths within the fractal structures of the next lowermula
order. Because of the independencer pthese coefficients
can be calculated by studying all possible SAWs within the N\
fractal generator only. - ¢
The above set of relation®.8), together with Eqs(2.6),
comprise the RG transformations which are needed to deter-
mine the crossover critical exponet Indeed, it has been To locate the relevant fixed points of the RG transformations
shown[11,12,15,16 that one can expect that the RG trans-(2.6) and (2.8) we need to specify the initial conditions in
formations of the typ€2.6) and(2.8) should have three dif- terms of the fugacitx and the Boltzmann factoss, t, and
ferent nontrivial fixed points which correspond to the threeu. With this purpose in view, we observe that for any mem-
different polymer states — the bulk stafE%T,), the cross- ber of theX fractal family the initial conditions can be de-
over state T=T,), and the adsorbed stat&#<{<T,). At the fined in the case of a unit crossiitiator, r =0)

=T, (2.9

FO=x2, FP=x2w2 FO=x2wt, FO=x%2, FQ=x2wt, FO=x2w? (2.103

GO=x2, GP=x2wt, GY=xw? H®=0, HP=0, HY=0, (2.10b

whereas, in the case of the CB family of fractdfer  coefficients forb=3, 5, and 7. We shall first analyze the
b>3), the initial conditions cannot be formulated for the caseb=3, and at the beginning we point out that only never-
corresponding initiatofunit squarg since relations of type starting and never-ending SAWSs are treated in the RG ap-
(2.10, upon performing the iteration procedure according toproach applied in this paper. Hence, one can verify that on
Egs. (2.6) and (2.8), would imply self-intersections of the theb=3 fractal (X or CB) infinite SAWSs can be performed
SAW path. Therefore, for every CB fractal, the initial con- only by makingG type of walks, that is, the partition func-
ditions have to be established for the fractal generatotions of theF andH type are not relevant. Accordingly, we
(r=1). We have found the appropriate initial conditions for may putF"=F"=HM=H{"=0, while for the restricted
theb=5 andb=7 CB fractals. However, the corresponding partition functions of theG type we find

polynomials inx, w, t, andu contain too many terms. In-

deed, there are 12 polynomials with altogether 1967 and G'=G3, (3.13
21 689 terms in the casge=5 andb=7, respectively, which
makes it impractical to quote them here. G;=GG,G,, (3.1b
1 _~3
Ill. CALCULATION OF THE CROSSOVER EXPONENT G2=Ga, (3.10

In this section we are going to present both the exact andihere we have used the prime symbol as a superscript for
the MCRG calculation of the crossover exponeft The the (r+1)th order parameters and no indices for ttih
exact RG calculation requires knowledge of coefficientsorder parameters. Henceforth, for the sake of simplicity, we
f, g, andh of Eq. (2.6) (which were found i 18] for the treat only theX fractal case. For the requisite initial condi-
3<b=<9 fractaly, as well as knowledge of coefficients tions, we can use Eq&2.10, and thus we find that the above
(fi, g;, andh;) of the polynomials(2.8). Using moderate set of the RG transformations has three nontrivial fixed
computer facilities, we have been able to calculate the lattegpoints — G=1, G;=0, G,=0), (G=0, G;=0, G,=1),
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and G=1, G;=t, G,=1), which, according to numerical calculations. The corresponding RG transformati¢2<)
investigations of the RG flosee Fig. %a)] correspond, re- and (2.8) in the caseb=5 are given in the Appendix,
spectively, to the polymer bulk phase, adsorption phase, angthereas in the cask=7 the pertinent transformations re-

to the coexistence of the two phases. Accordingly, in thequire much more space and we do not give thighe rel-

b=3 case, there is no multicritical point which could corre- evant data are, however, available upon requests addressed to
spond to the crossover behavior of the polymer system, andhe authors

consequently, the critical exponedgtis not definedone can In the caseb=5, a numerical analysis of the relations
verify that the same situation is valid for the=3 CB frac- (Al), together with the pertinent initial conditions, reveals
tal). existence of the following nontrivial fixed poin{svith the

We have already pointed out that for thee5 andb=7 order of coordinates that corresponds to the order of relevant
CB andX fractals we have been able to perform exact RGequations given in the Appendix

(Fis) .Gl HY ,0,0F% 5,0,0,0,0,0,0 (3.23
(Fs).Gls).H{z).Fls)-Fl&).Fie) . Fls) . Fl5):Gle) . Gls) . Hiz) . Hiz): (3.2H
(O,O,OF;‘(A),O,O,oFg(A),O,l,O,O, (3.2@

which we shall term, respectively, the bulk, crossover, anchents gives vg=0.81502, ¢»=0.644 87, andv,=1/d;,
the adsorption fixed point. For the bulk fixed pofBt23g, the  whered; is the fractal dimension of the adsorbing boundary
first three nonzero coordinates have the vaILFa‘é) [see Eq(2.4) for b=7].

=0.66371,GE‘B)=0.72464, and—|?B)=0.10003[18], while Exact RG approach to the adsorption problem on the CB
the coordinatd-3 g, is the nontrivial solution 0.477 93 of the and X fractals withb=9 is a forbidding task using the
equation present day computers, and for this reason we apply the

MCRG technique. To learn specific values of the crossover
N ok mw ik N exponent forb=9, we need to calculate the eigenvalues
3= F3(F(g),Gg)H()0,0F3,0,0,0,0,0,0. A, [see formula2.9)], since\ , has been already found for a
3.3 sequence of fractals up to=81[19] (which appears to be
an upper limit for calculations using a computer with the
The bulk fixed point can be reached, for tKefractal, start-  Intel 80860 microprocessprCalculation ofx , (for the same
ing from x,=0.8359(or from x,=0.5648 for the CB fractal ~ sequence of fractalsrequires solution of the eigenvalue
and for the relatively small parameter[see Fig. %)]. The  problem for the RG transformation®.8) linearized at the
RG transformationgA1l), linearized at the bulk fixed point, crossover fixed point, which in practice necessitates evalua-
have only one relevant eigenvalue =6.6077, which, in tion of 81 partial derivatives of the typ&Y’/dX, whereX
conjunction with the formuld2.7), givesvg=0.852 35[18]. and Y stand for any pair of quantities from the set
When w reaches the special-point value* (t,u) the RG  {Fi,G;,H;} (calculated at the crossover fixed pgint/ithin
transformationgA1l) lead to the crossover fixed poi(8.2b), an exact RG approach, calculation of these derivatives as-
and if one linearizes the RG transformations at this fixedssumes knowledge of all coefficients, g;, andh;, which
point, one finds two relevant eigenvalurs=6.6077 and Wwas a feasible task in the cases 5 andb=7. Forb=9,
Ay=4.09110, which according to Eq.(2.9 gives within the MCRG approach, we conceive the quantities
¢=0.74610. Finally, iterations of the RG transformationsF;, G;, andH;, as the grand-canonical partition functions
(A1) that start on a point of the critical line, for of ensembles of the corresponding SAWsee Fig. 4
w>w*(t,u) [see Fig. B)], lead to the adsorption point Within this approach the requisite partial derivatives can be
(3.29 which is characterized b =1/F%,, in such a Written in the form
way thatF7 ) is a function of the initial values fow, t, and
u. The adsorption fixed point is also characterized by the a_Y': Y—,<N ) (3.4
single relevant eigenvalua,=7 vyielding the end-to-end axX X YD '
distance critical exponent,=0.827 09, which turns out to
be equal to M [see Eq.(2.4) for b=>5]. The latter result where(Ny)y is the average number of the SAW elements of
implies that, for the corresponding initial conditions, the ad-the typeX, within the fractal generator, calculated in accor-
sorbing boundary is completely covered by the polymer.  dance with the grand-canonical ensemble of the type
A numerical investigation of the RG equations in the Thus, to find\ 4, we need to solve the eigenvalue problem
caseb=7 confirm the existence of the fixed points of the of the matrix whose elements are the 81 derivatives of the
type (3.2, with the following specific values — type(3.4) evaluated at the fixed poifi.2b. The coordinates
F{s)=0.568 05, G(5)=0.622 96,H 5 =0.058 49[18], and  of the crossover fixed poin{8.2b have been found in Ref.
38)=0.416 33, while the calculation of the critical expo- [19], so that it remains to evaluate onf{{y)y. at the same
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TABLE I. The exact p=5 andb=7) and the MCRG results
X (a) (5=<b=381) for the RG eigenvalua , and the crossover critical
exponente, in the case of the CBand X) fractals. To make the
table complete, we quote also here the eigenvalye@®btained in
Ref.[19]), which were needed in formul@.9) to obtain¢.

b \, g é

5 exact  6.6077 4.09110 0.746 10
6.61+ 0.04 4.094+= 0.008 0.746 30 0.003 65

; 7 exact  10.8871 4.629 69 0.644 87
o W 10.87+ 0.06 4.627+ 0.009 0.642 01+ 0.002 33
9 15.81+ 0.09 4.925+ 0.009 0.577 57+ 0.001 90
11 213+ 01 513+ 001 0.534 33+ 0.001 59
X, 13 273+ 0.1 524+ 0.01 0.500 66+ 0.001 37
(b) 15 33.9+ 0.2 533+ 0.01 0.47492+ 0.00126
19 482+ 02 543+ 001 0.436 60+ 0.00106
23 645+ 03 550+ 0.01 0.409 16 0.001 00
25 731+ 04 547+ 001 0.396 15+ 0.000 91
27 822+ 04 552+ 0.01 0.387 30+ 0.00088
35 1203+ 0.6 550+ 0.01 0.35586= 0.000 82
43 164.1+ 0.7 552+ 0.01 0.334 97+ 0.000 66
51 212+ 1 550+ 001 0.31819+ 0.000 74
- 61 275+ 1 546+ 001 0.30237+ 0.000 66
w*(t,u) w 71 346+ 1 548+ 0.01 0.290 96+ 0.000 54
81 420+ 2 545+ 001 0.280 85+ 0.000 54

FIG. 5. (a) The critical fugacityx. curve for theX fractal la-
beled byb=3 as a function of the parameterfor a givent. The

RG transformation$3.1) iterated by starting at the horizontal part _, . . ) . .
of the curve lead to the bulk fixed poinGE1, G,=0, G,=0), this case is not defined and the adsorption of monomers is

whereas if the iteration starts at the part of the critical fugacitynOt a continuous critical p_henomenon. Thls'lmpllgs that in
curve x.= 1w that appears beyond the point(=1, x* =1), it the caseb=$_ the adsor_ptlon phenomenoq is a first prder
leads to the adsorption fixed poinGE0, G,=0, G,=1). Fi- phase transition, which is accompgnled Wlth.a jump in the
nally, when the RG iteration starts at the poimt*(=1, x*=1) it  humberM of adsorbed monomefghis number is related to
leads to the fixed point@=1, G,=t, G,=1), which corresponds the derivative of the critical fugacity; see Fig(ahl. For

to the first order phase transition. The abrupt increase of the numbd&>3 there appears to be a continuous adsorption of mono-
of adsorbed monometd, at this fixed point, is relatefll6] to the ~ mers on the corresponding boundarefiose fractal dimen-
discontinuous first order derivative of the singular part of the freesions d¢— 1, when b—®). A similar appearance of an
energy per monomefg;,,=kTInx(w,t). (b) The critical fugacity — abrupt change to continuous behavior has been observed in
curve for the CB ani fractals withb>3. Behavior of the RG flow the case of adsorption of directed polymers on rough sub-
is analogous to thé=3 case, except for the poiifiv* (t,u),x7)  strates[20]. This appearance has been explained by a de-
which is now related to the crossover fixed poiat2b, while the  crease in the roughnegwhich may be related to the self-
bulk and adsorption fixed points are given by E@2a and(3.29,  similarity of the fractal boundari¢sof the corresponding
respectively. adsorbing walls. Finally, it may be appropriate to note that

] ) ) o _ the change in the type of the adsorption phase transition has
fixed point, which, within the MCRG approach, can be di- 5150 been observed in the case of a boundary within a given
rectly measuregsee, for instance 15] and references quoted (oughness providing that the monomer-wall interaction in the
therein. The final results for the crossover critical exponent|ayer adjacent to the wall may change its inten§itg)].

¢, together with the requisite eigenvalues, (and\ ), are For fractals withb=9 we have found it formidable to
given in Table I. perform exact RG calculations, and thus for a sequence
(5=b=81) we have applied the MCRG method. The reli-
IV. DISCUSSION AND SUMMARY ability of the MCRG results is manifested by the fact that in

the case®=5 andb=7 the MCRG results deviate at most
In this paper we have presented the exact and MCR®.15% from the exact results. For the sake of a better assess-
calculations for the crossover critical exponehwhich de-  ment of the global behavior of the crossover expongat a
scribes the adsorption phenomenon of a linear polymer, in &unction of the fractal scaling parametbr we depict the
good solvent, on impenetrable boundaries of fractal containeorresponding values from Table | in Fig. 6. One can see that
ers modeled by the CBand X) fractal lattices. For the first ¢, being monotonically decreasing functionlfcrosses the
three membersh=3, 5, 7) of both(CB and X) fractal two-dimensional Euclidean valug=1/2 forb>13. Besides,
families we have performed exact RG analysis, which re-one can observe that the phenomenological upper bound
vealed that in the cade= 3 there is no multicritical behavior ¢,=d./d;, predicted in[11], is always satisfied, whereas
described by Eq(2.5), that is, the crossover exponegitin - the lower boundp,=1— (d;—d,) vg [11] is satisfied only in
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FIG. 6. Data for the crossover critical exponeftfor the CB
(andX) family of fractals. The exact RG results are represented by |G, 7. Data for the polymer adsorption critical exponentor

open squares, while the MCRG results are depicted by solighe CB (andX) family of fractals(solid squaresand for the SG

squares. The error bars related to the MCRG data are not depictggmily of fractals(solid triangles as functions of the corresponding
in the figure since in all cases they lie within the correspondingfractal dimensionsl; .

symbols. The solid curves represent the uppgand lower bounds

¢,, proposed in[11]. The dashed horizontal line represents the¢ may have a minimal value for certain largeand that for

two-dimensional Euclidean valug=1/2. The lower solid line, la- b—oo it tends to the Euclidean value 1/2. To vindicate this
beled by KSD, represents the phenomenological formula

A B ) conjecture it is necessary to pursue further the finite-size
ﬁ;][lﬂl di)vs]/(vs/d) proposed by Kumar, Sing, and Dhar scaling arguments initiated by Kumar, Sing, and DHz8].

The foregoing comparison of the crossover expongnt
the caseb=5, which together with previous similar cases for the two different families of fractaléCB or X, versus
(see, for instancd;16] and references quoted thereiralls ~ SG) should be completed by the observation that for a given
for a better phenomenological treatment of the adsorptioivalue of d; the inequality ¢cg> ¢sg holds, which might
problem on fractal lattices. However, one should not expechave been expected on the physical grounds. Indeed, the in-
that such a treatment can be an easy task, which could tRfuality ¢cg> ¢sg should be related to the difference in the
illustrated by the attempt of Kumar, Sing, and Dh&8] to  fractal dimensiondg of the pertaining impenetrable bound-
find a simple phenomenological formula fgrin termsd,  aries. In the SG casd®=1, for eachb, whereasdS® is
and vg whose predictions turned to deviate significantly given by formula(2.4), so thatdg'B>d§G,which implies that
from our exact and MCRG resultsee Fig. 6. on a same scale of length the CB impenetrable boundary has
It is interesting to see to which extent the obtained resultsnore adsorbing bonds than the SG boundary. Furthermore,
for the crossover exponert are peculiar to the CBand  from Fig. 7 it follows that the differencepcg— ¢sg de-
X) family of fractals. To this end, we make a comparisoncreases with increasing, which is in accord with the fact
with the results obtained previousl§1,12,1§ for the Sier-  dS®—d5®=1, whenb—o. While we are on the subject, we
pinski gasketSG) family of fractals(see Fig. 7. First, we  would like to point out the finding that any pair of the CB
can observe that, in the region studied, both curvesdfor andX fractals, labeled by the same scaling paramietérave
monotonically decrease with increasidg (that is, with in-  same values for the crossover exponent despite the fact that
creasingb). This joint property(valid for all three fractal the two fractals do not have the same set of monomer-wall
families — CB, X, and SG can be explained by the fact that interactions(see Fig. 3. On the other hand, the two fractals
the adsorption appears when a balance between the attractibgve the samds, for a givenb, which demonstrates that the
polymer-surface potential and an effective “entropic” repul- crossover exponent is determined by the configuration of im-
sion sets in. With increasinlg the difference in the polymer penetrable boundaries, rather than by the set of the adsorbing
configurational entropy between the bulk and the adsorbethteractions.
state increases, while the attractive polymer-surface potential In conclusion, we may say that, in this study of the poly-
stays relatively constant. This competition obstructs polymemer adsorption problem on fractal lattices witiactal im-
adsorption for larged;, which results in decreasing values penetrable boundaries, we have found that the results are
of ¢ (see Fig. 7. Of course, at this point, one may pose thequalitatively the same as in the case of fractals with the Eu-
question whether decreasing ¢fcontinues up to very large clidean boundaries. On the other hand, the established quan-
b, or at a certairb,;;>81 ¢ acquires a minimal value, so titative differences can be ascribed to the fact that the fractal
that forb>b,,;, it starts to increase. It is hard to answer this nature of boundaries do enhance the polymer adsorption pro-
guestion by straightforward calculation @f, but the argu- cess, but with the caution that this enhancement does not
ments offered in regard to the similar question for the bulkdepend on specific variations of the sets of monomer-wall
critical exponent vz [19,21] make us conjecture that interactions.
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APPENDIX: THE RG TRANSFORMATIONS FOR THE b=5 CB FRACTAL

In this appendix we provide the RG transformatid2%) and (2.8) in the case of théo=5 CB (or X) fractal. For the
b=7 fractal, the pertinent transformations require much more space and we do not give thefihdneetevant data are,
however, available upon requests addressed to the authors

F'=F3G2+F'G2+FG*+2F3G*+ 3F°G*+ 2F°G?H + F3G*H + 2F°G*H + 2F°G*H?+ 3F5G?H?, (Ala)
G'=6F*G®+2F5G3+ G®+4F°%G3H + 4F*G3H?+ 2F*G°H?, (Alb)
H'=F5G*+2F*G®+4F*G®H+ G®H + 6F°G*H2+ 8F*G*H®, (Alc)

F1=F2FsG5+ 2F%F F5G5H,+ 2F3G?F | F5G5H,,+ 2F*HF sG5H  H,+ 2F4G2FsG5H  H,+ FG2G5+ 2F2G F,G, G
+F3HGIG3+ 2F*GF,G, G5+ FoF5G5+ F*HF sG3H 3+ F3G2F5G3, (A1d)

F,=2F3G?F,F5G,G,+ F*G?HF5G,G,H 1+ FAG?F5G,G,H, + FAGF F,F5Gy+ 2F3GH2F ,F 5sG,H 1 + G3F  F,F 56,
+F3GF,F5GyH, + FAG?F 3G, G, + F2G?HF 3G, G, + F3G2G, G, + FG?G,G,+ F*GHF,G,+ F*G?HFsG,G,H,
+ F3GH2F,F5G,H,+ F3G3HF ,F 3G, + F2GF,G,, (Ale)

Fi=F3G2+ 3F3G2H3F3+ 2F*G2H2F5G3+ 2F3G3HF ,F 5G, + 2F*G?HF 3+ FSG2F3+ 2F 2G*F 3+ F*G?F s G2
+2F3G3F,F5Gy + FG*+ G*HF3F s, (ALF)

F,=F2GF,F2G,G3+F3GHFZG,G3H,+ FG2F F,F 2G5+ F2G2F ,F2G5H + F3GF F 3F 4F5G,+ 2F2GH?F 3F 4F5G,H,
+G3F1F 4F5G,+ F3GF,F5G,H, + F3GF,FsGiG,+ G2HF ,F JF5G G, + F2G2F 3G, G, + FG2G, G,
+F3GHF,F3G,+ F3GHF2G,G3H,+ F2GH2F3F ,F5GoH o+ F2G2HF ,F 4F G, G, + F2GF,G,, (Alg)

FL=FF3G3+2FHF;F2G3H H,+ 2F?F3G3H  H,+ 2F GF,F sF2G3H, + 2F 2F ,F ,FsG3H, + FF2F3F 2G5
+2GFF,F5sG,G3+ FHF3F2GoH2+ F2F 2G5+ 2FF F4,F2G, G+ FG2G3+ HF3FsG1G3, (Alh)

G;=F2GF,F5G,G,+F*GHF,F5G,G,+F3G®HF5G,G,H, + FG?FF,F5G,+ F3G?F,F,F5G,+ F2G?HF,F5G,H,
+F4G?F,FsG,H + F3GF3G,G,+ 2F3GH?F3G,G,+ G3G,G,+ F*GG,G,+ 2F3G?F,G,+ F°GFsG,G,H,
+ F2G2HF,F5G,H,+ F*G2F,F 3G, + F3G3HF G, G,H, + FAG2HF ,F 3G, (ALi)

G,=F3F2G3+ 2F3F,F2G3H,+ 2F2G2F2G3H H,+ 2FF 1 F ,F 5G1 G5+ 2F2GF 1 F )F 4F G5+ 2F 2HF ,F5G,G3H
+ 2F3GF,F4F5G3H, + 2F?HF ,F5G,G3H,, + GG2G3+ 2F°F ,G, G5+ F2GF3G3, (A1j)

H{=F3G2FiFsG3+ 3F3G2H3FsGoH I+ 2F*G2HF FsG5H 1 + FG*F2F 5G3+ 2F2G*F 1 F5G3H , + F°G2F sG3H?
+2F*G?HFFsG3H, + 4F3G2H3FsGoH  H,+ FAG2GIG5+ G*HGIG3 + 2F G HF ,G, G5+ FAG2H?F 3G
+F3G2H3F5G3H3, (A1k)

H,=2F*G?HF FsG3H,+ 6F3G?H3F5G3H H,+ 2F2G*FF5G3H,, + 2F°G2F5G3H  H,+ 2F3G3HF ,G, G5+ G*HG3G5
+2F3G3%F,G, G5+ 2F*G?H?F3G5+ 2F3G?H3F s G5H3 + F*G2F3G3. (A1l)
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